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A b s t r a c t - - W e  compute  the radical of the ideal generated by the first three focus quantit ies of 
maps defined by irreducible branches of a cubic curve on the real plane. It is shown tha t  the ideal is 
not radical in this c~e .  @ 2000 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - A n a l y t i c  maps, Small limit cycles, Bautin ideal. 

Consider  a map of the form 

1. I N T R O D U C T I O N  

w =  f ( z )  = --Z--  E anzn+l,  z E R .  (1) 

Denote  by f '  (p E N)  the pth i t e r a t i o n  of map (1). 

DEFINITION 1. A s ingular  p o i n t  z = 0 o[  m a p  (1) is cMled a center  i f3  e > 0 such t ha t  V z : I:i < ~, 

the  equa l i t y  f e ( z )  = z holds,  and  a focus  o therwise .  

Clearly, if the r ight-hand side of (1) is a polynomial ,  then z = 0 is a center if and only if 

. f ( : )  - z .  

DEFINITION 2. A p o i n t  Zo > 0 is called a l imi t  cycle o f  m a p  (1) i[ zo is an isolated roo t  ~1" the  

equa t ion  

f 2 ( z )  - z = 0. (2) 

' lb investigate bifurcations of  limit cycles of map (1), one can find the re turn  (Poincar5) map 

:P(z) = f2(z)  = z + c2z "~ + c3z ~ + . . .  (3) 
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or c o m p u t e  a Lyapunov  funct ion [1,2] defined by a formal  series as 

q~(z) = z 2 1 + , 

k = l  / 

with the  p rope r ty  

(4) 

• ( f ( z ) )  - ~ ( z )  = g2z 4 9- g4 z6 ~ - . . .  + g2mz 2m+2 + ' "  . (5) 

We call the  coefficients g2i focus quantities. 

Consider  the  m a p  z --~ w, defined implici t ly by the  equat ion  

~ ( z ,  w) = w + z + a i y w  3 = O. (6) 
iT  j = 2  

This  equa t ion  has an analyt ic  solution of the  form (1), 

w = / ( z )  = - z  + . . . .  (7) 

DEFINITION 3. We say that  po lynomial  (6) defines (or has) a center in the origin i f  the equation 

kO(z, w) = 0 has solution (7) such that  the m a p  f has a center in the origin, and we say tha t  (6) 

defines ~ focus in the origin, i f  ] has a focus. 

Thus,  the  p rob lem arises as to how we can find in the space of coefficients {aij } the  manifold  

on which the  cor responding  maps  ] have a center  in the  origin and to  invest igate  b i furcat ions  of 

l imit  cycles of  such m a p s  in a ne ighborhood of the  origin. 

T h e  case of  the  cubic po lynomia l  

ffJ(z, w) = z + w + A z  2 + B z w  + C w  2 + D z  3 + E z 2 w  ~- F z w  2 + G w  3, (8) 

where  A, B , . . . ,  G E C,  was considered in [1,2]. 

Deno te  the  real space of coefficients of po lynomia l  (8) by $, 5-neighborhood of c~* = (A*, B*, 
. . . , G * )  E £ by U~(a*), and let ] a  be m a p  (7) corresponding to a given point  ~ = ( A , B ,  
• . . ,  G) of the  p a r a m e t e r  space, i.e., 

f ~ = - z  1 +  a k ( A , . . . , G ) z  k • (9) 
k = l  

DEFINITION 4. Let  n~,~ be the number  o f  l imit  cycles of  the map  f a  in ]z I < e. Then  we say  
tha t  a singular point  z ~- 0 o f  the m a p  fa* has cyclicity k wi th respect  to space £ in the origin 

i f  3 5o, co such that  for every  0 < e < e0 and 0 < 5 < 50, 

m a x  r~a, C -- k. 
acu~ (a*) 

In  the  case when  ff~(z, w) is a quadra t ic  po lynomia l  (i.e., D = E = F --- G = 0), it was shown 
in [1] t h a t  ff~(z, w) defines a center  in the  origin iff one of condit ions 

(i) A - B ÷ C = O ,  

(ii) A - C = 0 
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holds, and the cyclicity of the origin for every map f defined by 

equals 0. 
In [2], it also was proven tha t  the cyclicity of the singular point z = 0 of the map f = - z + - . .  

defined by polynomial (8) and having a focus in the origin equals 2. Thus, there remains an open 
problem to investigate bifurcations of small limit cycles fi'om a center. 

Let us denote by 2- the ideal generated by all focus quantities of the map, defined by polyn,)mial 

(8), 2- = (g2, g4 ,96 , ' . .  }. We call the ideal 2- the B a u t i n  ideal of polynomial (8). I t  tbllows fi'om 

results of [2] tha t  if the ideal h = (92, 94, g6) were radical, then the cyclicity of any center defined 
by polynomial (8) would be equal to or less than 2. 

In the present paper,  we show that  the idea l /3  defining the center variety of polynomial (8) 
is not radical, and therefore, it is impossible to give an estimation for cyclicity of cent.ors defined 
by polynomial (8) by directly applying Bautin 's  method [3]. 

2. C O M P U T I N G  O F  T H E  R A D I C A L  OF T H E  I D E A L  I3 .  

To find the radical of the idea l /3  = (92, g4, g6}, we will use the following prol)osition proven 
in [2]. 

T H E O R E M  1. T h e  cen ter  var ie t y  o f  p o l y n o m i a l  (8) is equal  to 

v(s) u V(H) u V(T), 

W/I ( 'l°e 

S = ( A - B + C , D - E + F - G } ,  H =  ( A - C , D - G , E - F ) .  and  

w i t h  

t l  = D 2 - D F  + E G  - G 2, 

t.,. = - 2 C D E  + B D F  + C D F  + C E F  - A F  2 -- 3 B D G  + 3 C D G  + 4 A E G  

- 2 B E G  - C E G  + B F G  - 2 C F G  - 3 A G  2 + 3 B G  '2, 

t:{ -- - C 2 D  + C 2 E  - B C F  + C 2 F  + F 2 + B 2 G  - B C G  - C 2 G  + 4 D G  - 4 E G  - 2 F G  + 5 G  2 

t4 :- 2 A D  - B D  - C D  + C E  - A F  + A G  + B G  - 2 C G ,  

t-, = - B C D  + C 2 D  + C 2 E  - A C E  + 2 D F  + 2 A B G  

- A C G  - B C G  - 2 D G  - 4 E G  + 2 F G  + 2G 2, 

t~ = - 2 B 2 D  + 5 B C D -  C 2 D -  4 A C E  + 2 B C E -  C 2 E  + 8 D E  + 2 A B F -  A C F  - 2 B C F  

+ 2 C 2 F -  6 D F -  4 E F  + 2F 2 + 3 A C G -  3 B C G  + 2 C 2 G -  I O D G  + 8 E G  + 2 F G  - 8G 2 

tv = A 2 - A B  + B C - C  2 -  D +  E -  F + G .  

Focus  q u a n t i t i e s  c o m p u t i n g  by  means of t he  a l g o r i t h m  fi 'om [2] are 

92 = 2 ( - A  2 + A B  - B C  + C 2 + D -  E + F -  G ) ,  

g4 = - 2 A B D  + 2 A B G  + 2 A C D  + 2 A C E  - 2 A C F  - 2 A C G  + 2 B 2 D  - 2 B 2 G  

- 4 B C D  - 2 B C E  + 2 B C F  + 4 B C G  + 2 C 2 D  + 2 C 2 E -  2 C 2 F -  2 C ~ G  

+ 4 D  2 - 4 D E  + 2 D F -  2 D G  + 2 E F -  2 E G -  2F 2 + 4 F G  - 2G 2, 

96 = 2 A B E G  - 2 A B F G  + A C D F  - A C D G  - A C E F  - 3 A C E G  + A C F  2 

+ 2 A C F G  + A C G  2 - 2 B 2 E G  + 2 B 2 F G  + B C D  2 - B C D E -  B C D F  

+ 2 B C D G  + 2 B C E F  + 3 B C E G  - 2 B C F  2 - B C F G  - 3 B C G  2 - 3 C 2 D  2 

+ 4 C 2 D E  _ C 2 D F _  C 2 D G _  C 2 E  2 _ C 2 E F  _ C 2 E G  + 2 C 2 F  "2 _ 2 C 2 F G  

+ 4 C 2 G  2 + 2D a - 2 D 2 E -  2 D 2 F  + 4 D 2 G  + 4 D E F  - 8 D E G  - 2 D F  °" + 6 D F G  

- 2 D G  2 + 2 E 2 G  - 2 E F  2 + 2 E F G  - 2 E G  2 + 2F 3 - 6 F 2 G  + 8 F G  2 - 4G :~. 

T . . . . .  tT) ,  
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We will show that  the following statement  holds. 

THEOREM 2. The ideal 13 = (g2, g4, 96) generated by the/~rst three focus quantities of map (8) 
is not radical in [A, B, . . . , G]. 

The proposition is a simple corollary of the following lemma. 

LEMMA 1. The ideals S, H, T de/~ned in Theorem 1 are prime. 

PROOF OF THEOREM 2. According to Theorem 1 and Lemma 1, 

rad (Z) = rad (•3) = S n H N T. 

We note tha t  the intersection V n W of the ideals V = ( V l , . . .  , Yrn) and W = ( w l , . . . ,  w~) in 

k[X l , . . . ,  xn] is equal to the first elimination ideal of the ideal 

@ v i , . . .  , tVm,  (1 -- t ) W l , . . .  , (1 - t)w~) C k [t, x l , . . .  ,Xn] 

(see [4, Theorem 11, p. 186]). To compute the first elimination ideal of this ideal, one finds a 
Groebner basis with respect to a lexicographic order in which t is greater then the xi and takes 

the elements of this basis which do not contain the variable t [4, p. 114]. 
Comput ing by means of the algorithm, we get the radical of I3. Then we find tha t  rad (I3) 

a n d / 3  have different Groebner bases. Therefore, rad (13) ¢ / 3 ,  i .e . , /3  is not a radical ideal. | 

Let R be any ring, I be an ideal of R, and R ~ = R / I .  For a polynomial f • R [ x l , . . . ,  x~], we 
denote by f the polynomial in R q X l , . . . ,  x~] obtained by reducing the coefficients of the powers 

of A, i.e., we have a homomorphism, 

R [ x , , . . . , x ~ ]  ~ R ' [ X l , . . . , x ~ ] ,  
f '  ' 7. (10) 

We also denote the image of an ideal K c R [ x l , . . . ,  x~] in R'[x~, . . . ,  x,~] by K.  

LEMMA 2. Let f ~ , . . . , f l  E R[x], g • R[x,w], ( h l , . . . , h k )  = I C R, R'  = R / I ,  f i  • R'[x],-g • 
R'[x, w], then 

(~l,...,Z,g}R,[x,w] n / ~ t [ x ]  : ( f l , . . . , f l , g ,  h l , . . . , h k ) R [ x , w ]  n / ~ [ x  I. 

PROOF. Let a C ( f l , . . .  ,f~,g}R'[x,w] N R'[X]. Then a = ~ f i b i  +-g-e ~ R'[x]. Put  X = }-~fibi + 
gc • R[x, w]. There exists Y e R[x] such that  Y = a. Therefore, X = Y + ~ hjR[x, w] and 

then Y = X - ~ h j R [ x , w ]  • R[z] and Y = a. We have Y • ( f l , . . . , f l , g ,  h l , . . . , h k )  N R[x] as 
desired. 

Vice versa, let 

a • ( f l , . . . , g ,  hi,...,hk)REx,w] n R[x]. 

Then 3 X = ~ f~b~ + ~ ge + ~ hjdj • R[x, w]. Hence, taking into account that  hj = 0, we get 

X C R'[x] n <~'N)R'[x,~I  • I 

To complete the proof of Theorem 2, it remains to prove Lemma 1. 
We use the method,  described in [5], which is taken from the work in [6]. Namely, we use the 

following s ta tement  [5, Corollary 4.4.9, p. 242]. 

PROPOSITION 1. An ideal I C_ R[x] is prime in R[x] if  and only if  

(i) I n R is prime; 
(ii) Ik'[x] is prime in k'[x] where R'  = R N  I, k' = R 'R  '-1, - :  R -~ R'[x]; 

(iii) ?k'[x] N R'[x] = I. 
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PROOF OF LEMMA 1. For S and H ,  the  s t a t emen t  of the  l e m m a  is obvious.  To prove p r imal i ty  
of T, we use Propos i t ion  1. 

Following Propos i t ion  1, we first need to show t h a t  the  ideal 

J2  = T N C [ B ,  C ,  . . . , G ]  

is prime.  
Compu t ing ,  we see t ha t  the  polynomials  t l , . . . ,  t7 form a Groebner  basis of the  ideal T with  

respect  to the  lexicographic order  A > B > C > D > E > F > G. Therefore ,  .]3 = Trq  

C [ C  . . . . .  G] = (tl} is p r ime because of i rreducibi l i ty of t~ and & = {t l , t3) .  We again app ly  

Propos i t ion  1 to prove t h a t  J2 is prime. 

(i) J2 = T N  C [ B , C  . . . .  ,G] = J3 is prime. 
(ii) Note  tha t  J2k'[B] = (h) .  Let  us show tha t  ([-z) is i rreducible in k'[B]. 

[-3 = G B  2 - C ( F  + G ) B  + v, 

(iii) 

where  R '  = C [ C , D , E , F , G ] / ( t I ) ,  k ' =  C ( C , E , F , G ) [ D ] ,  with  b 2 : F D  - E G  + G ':~ and 
because  o f t 1  = D 2 - F D  + E G  - G 2, v = - C 2 D  + C 2 E  + C 2 F  + F 2 - C2G + 4 D G  - 

4 E G  - 2 F G  + 5G 2. 

T h e  po lynomia l  [-3 is i rreducible in U [B] if and only if its d iscr iminant  7) = C 2 ( F  + G ) 2 _  

4Gv ¢~ (U) 2, i.e., it is not  a square. If  it were a square,  then  due to unique fac tor iza t ion  

in R'[B], D would be reducible in R'[B]. However,  it is irreducible,  because if it were 
reducible  in R'[B], then  it would be reducible in C[B,  C, D, E ,  F, G] also. 

Note  t h a t  according to Propos i t ion  4.4.4 f rom [5], if R is an integral  domain  with  k, 
its quot ient  field, I C A = R [ Z l , . . . , z n ]  is a nonzero ideal and G = {g~ . . . . .  gt} is its 
Groebne r  basis wi th  respect  to some t e rm ordering,  then  

~r~ [~1 , . . . ,  ~,,] n R [x, , . . . , :~-, , ]  = ~rRs [~, . . . .  ,.~,] n R [ x , , . . . ,  x, , ] ,  (11) 

where  s = l t ( g l ) l t ( 9 2 ) . . .  l t(gt) and Rs is the localization of R with  respect  to G. Moreover,  
if g C A, g ¢ 0, and y is a new variable,  then  due to Propos i t ion  4.4.1 f rom [5], 

IAg  n A = (I, y9 - 1) N A. (12) 

We have to show now t h a t  •k '[B] N R'[B] = &.  Taking into account  L e m m a  2 and 

formulae  (11),(12), we get 

•k'[B] n R'[B  l = 

z 

& R b [ B ]  n R'[B]  = < & , y C  - 1> n R' [B]  

(&,  y C  - I>R,[~,,,] n R ' [ B ]  = (t.~, t~, y a  - I>R[,,B ] n R IB]  

(t3, t l ,  yG  - 1 ) C [ y , B , C , D , E , F , G  ] N C[y, B, C, D, E,  F, G] 

( t 3 , t l , y G  - 1)N C [ y , B ,  C , D , E , F ,  G] = ( t3 , t l )  = ({3,) = ,L2, 

where  y > B > C > D > E > F > G. 

To comple te  the  proof,  there  remains  to consider the ideal T. 

(i) T h e  first condi t ion of Propos i t ion  1 has a l ready been proved. 
(ii) We have 

R ' :  C [ B , C , D , E , F , G ]  
( t , , t3)  

-T -- T R '  [A], 

k' = quotient  field of C[B,  C, D, E,  F, G] 
(tl,t3> 
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Note  t ha t  

Indeed,  otherwise,  we have 

Tk'[A] ¢ (1). (13) 

t2~2 + . - .  + t7c)7 = 1, 

where  &, • k'[A]. Mult iplying by a sui table  e lement  f rom R' ,  we get 

where/~i  • R'[A], 0 ¢ ~ e n ' .  Hence, 

t2/32 + " "  + t7/3~ + tl/31 + t3/33 = /3 ,  

where /5 i  e C [ A , B , . . . , G ] ,  /3 e C [ B , . . . , G ] .  Therefore ,  /3 • ( t , , . . . , t 7 }  A C [ B , . . . , G ]  = 
( t ] , t3)  due to the  Groebner  basis proper ty .  T h a t  cont radic ts  /3 ¢ 0 on R t. I t  follows 
fl 'om (13) t h a t  if among  polynomials  ti, there  is tio of the  first degree, then  -Tk'[A] = (t,o}. 

Hence,  Tk'[A] = (t2, t4, th, t6, tT} = (t2} and t2 is irreducible,  because it is a po lynomia l  of 
the  first degree in k ~[A]. 

(iii) I t  remains  to show t h a t  -Tk'[A] Cl R'[A] = T .  

Tk'[A] = (F4}. F4 has degree 1 in A, and therefore,  is irreducible. Indeed,  the  coefficient 
of A in t4 is equal  to 2D - F + D and is not zero, because it lies in R ~ and  is polyl inear  

in all variables,  bu t  t l ,  t3 a re  not  polylinear.  

F rom (11), (12), and L e m m a  2, we get 

Tk'[A] = (~4)k'[Al = (~4,w(D - F + D) - 1> n R'[A] 

= ( t4 ,w(2D - F + D) - 1 , t l , t3}  N R[A] 

C (t4, w ( 2 D  - F + D) - 1, t l ,  t3, t4, th, t6, t7) N R[A] = ( t l , . . . ,  t7) = T.  

Therefore ,  T is pr ime.  | 

REMARK. Following the  approach  suggested above,  one can also avoid very  laborious c o m p u t a -  
t ion of syzygies in E x a m p l e  4.4.20 [5]. 

To conclude,  we have shown t h a t  the  ideal, genera ted  by three  first focus quant i t ies  of m a p  (8) is 

not  radical ,  therefore,  mos t  probably,  the  Bau t in  ideal :Z" of this m a p  is not  radical  either.  However,  
it is easily seen t h a t  in the  case of m a p  (8) wi th  homogeneous  pe r tu rba t ions  (A = B = C = 0) 
and (D = E = F = G = 0), the  corresponding ideals are radical. A similar  s i tua t ion  takes  place 
for the  cyclicity of a s ingular  point  of  focus or center  type  in the  case of po lynomia l  vector  fields. 
The re  also, the  ideals of quadra t ic  sys tem and the  sys tem with  homogeneous  cubic nonlineari t ies  
are radical ,  however,  the  ideal of the  general  cubic sys tem appea r s  to be  not  radical  [7,8]. 

We also c o m p u t e d  the  forth focus quan t i ty  of m a p  (8) and found tha t  9s E / 3 .  So we believe 
t h a t  Bau t in  ideal of the  m a p  is genera ted  by the  three  first focus quanti t ies ,  and therefore,  the  
cyclici ty of the  m a p  equals two. However,  to prove the  hypothesis ,  one needs to  develop a m e t h o d  
which can be appl ied in the  cases when the  Bau t in  ideal is not radical. 
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