энергии СВЧ поля, нерезонансное поглощение также является значительным.

Литература

1. Polak, M, Kottman P., Majoros M. [et al.] Magnetic field distribution above a superconducting YBaCuO sample as an indication of sample inhomogeneities / M. Polak, P. Kottman , M. Majoros M. // Superconductor Science Technology. – 1990. – V. 3. – P. 67.

2. Hagen, C.W., Griessen, R.P., Salomons, E. Thermally activated flux motion in high Tc superconductors: an analytical model / C.W. Hagen, R.P. Griessen, E. Salomons // Physica C. – 1989. – V. 157. – P. 199.

3. Буев, А.Р. Исследование высокотемпературной высокопроводимости с помощью нового бесконтактного метода / А.Р. Буев //Известия вузов. Поволжский регион. – 2004. – № 5. – С. 98-104.

УДК 621.382

О КВАНТОВАНИИ ЭНЕРГИИ ЭЛЕКТРОНОВ В КАНАЛЕ КОРОТКОКАНАЛЬНЫХ МОП-ТРАНЗИСТОРОВ

Жевняк О.Г., Жевняк Я.О.

Белорусский государственный университет, Минск, Республика Беларусь

Как хорошо известно, в инверсионных слоях кремния возникает квантование энергии электронов в связи с тем, что средняя толщина этих слоев (около 10 нм) сравнима с длиной волны де Бройля электронов [1]. Форма квантовой ямы инверсионного слоя имеет треугольный вид, в результате чего расчет квантовых состояний электронов возможен только с помощью численного решения уравнения Шрёдингера для треугольной ямы [1, 2]. Проводящий канал короткоканальных МОП-транзисторов, являющихся основным элемен-том современных микропроцессоров, по сути представляет собой обедненную область на поверхности кремния, включающую в себя и инверсионный слой (если он сформируется). В этой связи квантование энергии электронов в инверсионном слое кремния может оказывать определенное влияние на характеристики МОП-транзисторов. Однако короткоканальный эффект, обусловленный сравнимостью размеров областей истока и стока транзистора с его длиной канала, может значительно искажать это влияние [3, 4]. В связи с тем, что затворное и стоковое напряжения в МОПтранзисторе включены навстречу друг другу, и глубина стоковой области достаточно велика, кван-тование энергии электронов в определенных участках канала будет исчезать, так как в них будет наблюдаться существенное рас-ширение проводящего канала – до размеров заметно больших длины волны де Бройля электронов [4].

Целью настоящего доклада явилось изуче-ние условий, при которых квантование энергии электронов в канале короткоканального МОПтранзистора будет существенным. В основе данного изучения лежит двухэтапная схема. Вначале проводилось численное моделирование электронного переноса в канале МОП-транзистора с помощью метода Монте-Карло (см., например, [3-5]). В результате моделирования путем численного решения уравнения Пуассона и кинетического уравнения Больцмана рассчитывались потенциальные профили U(z) проводящего канала в глубь подложки МОП-транзистора. Далее для выбранных профилей осуществлялось численное решение уравнения Шрёдингера в виде:

 $\psi'' + 2m/\hbar^2 \left(E - U(z) \right) \psi = 0.$

Профиль U(z) аппроксимировался ли-нейной функцией, что позволяло решить уравнение Шредингера с помощью степенных рядов (см., например, [6]) и рассчитать энергетические уровни. Если расстояние между ближайшими уровнями заметно превышало величину k_BT , то в яме возникало размерное квантование, в противном случае – оно отсутствовало.

На рис. 1 приведена схема моделируемого МОП-транзистора. Рассматривались два типа приборов – с глубоким (стандартным) стоком (глубина залегания $x_j = 0,1$ мкм) и мелким стоком ($x_j = 0,01$ мкм). Напряжение на стоке $V_D = 1$ В, а напряжение на затворе $V_G = 1$ В и $V_G = 3$ В. Остальные параметры транзистора были следующими: $L_{ch} = 0,4$ мкм, $d_{ox} = 6$ нм, $N_D = 5 \cdot 10^{25}$ м⁻³.

Рисунок 1 – Схема конструкции моделируемого МОП-транзистора

На рисунках 2 – 3 приведены полученные в результате моделирования профили для двух сечений канала в глубь подложки: в начальной части канала (на расстоянии около 0,2 *L*_{ch} от истока) – штриховые кривые и вблизи стока (около 0,1 *L*_{ch} от стока) – непрерывные кривые.

Рисунок 2 – Рассчитанные потенциальные профили для проводящего канала транзистора с глубоким стоком: *a* – *V*_{*G*}=1 B; *b* – *V*_{*G*}=3 B

Рисунок 3 – Рассчитанные потенциальные профили для проводящего канала транзистора с мелким стоком: *a* – *V*_{*G*}=1 B; *b* – *V*_{*G*}=3 B

Полученные профили для МОП-транзисторов с глубоким стоком показывают, что только в начале канала формируется яма, близкая по форме к треугольной. Однако ее глубина и ширина таковы, что в ней не возникает размерное квантование. Вблизи стока для рассматриваемых условий инверсионный слой вообще отсутствует (так называемая отсечка канала).

Для транзистора с мелким стоком размерное квантование при $V_G = 1$ В также не возникает. И только при V_G =3В оно возникает и при этом в существенно выраженном виде на большей части канала, но вблизи стока также исчезает. Очевидно, что появление размерного квантования в данном случае обусловлено подавлением короткоканального эффекта в приборах с мелким стоком при больших напряжениях на затворе.

Таким образом, в настоящей работе на основе численного моделирования методом Монте-Карло электронного переноса и численного решения уравнения Шредингера показано, что квантование энергии электронов в проводящих каналах короткоканальных МОП-транзисторов может быть существенным только для приборов с мелкими стоками и при напряжениях на затворе. превышающих напряжение на стоке. В большинстве остальных случаев квантование вообще не возникает, либо его влияние несущественно.

Литература

1. Андо Т., Фаулер А, Стерн Ф. Электронные свойства двумерных систем. – Москва: Мир, 1985. – 416 с.

2. Fischetti M. V., Laux S. E. Monte Carlo study of electron transport in silicon inversion layers // Phys. Rev. B. – 1993. – Vol. 48, Iss. 4. – P.2244–2274.

3. Борздов В.М., Жевняк О.Г., Комаров Ф.Ф., Галенчик В.О. Моделирование методом Монте-Карло приборных структур инте-гральной электроники – Минск: БГУ, 2007. – 175 с.

4. Zhevnyak O., Borzdov V., Borzdov A., Pozdnyakov D., Komarov F. Monte Carlo study of influence of channel length and depth on electron transport in SOI MOSFETs // Proc. SPIE. – 2008. – Vol. 7025. – P. 1L-1–8.

5. Zhevnyak O. Temperature effect on electron transport in conventional short channel MOSFETs: Monte Carlo simulation // Proc. SPIE. – 2008. – Vol. 7025. – P. 1M-1–8.

6. Жевняк О. Г. Коэффициенты туннелирования электронов через потенциальные барьеры треугольной и ступенчатой формы // Международный научно-исследовательский журнал. – 2015. – Вып. 9, Ч. 3. – С. 46–48.