

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Белорусский национальный технический университет

Кафедра «Теория механизмов и машин»

П. П. Анципорович В. К. Акулич Е. М. Дубовская

ТЕОРИЯ МЕХАНИЗМОВ, МАШИН И МАНИПУЛЯТОРОВ

Курсовое проектирование

Учебно-методическое пособие

Минск БНТУ 2017 Кафедра «Теория механизмов и машин»

П. П. Анципорович В. К. Акулич Е. М. Дубовская

ТЕОРИЯ МЕХАНИЗМОВ, МАШИН И МАНИПУЛЯТОРОВ

Курсовое проектирование

Учебно-методическое пособие для студентов-заочников машиностроительных специальностей

Минск БНТУ 2017 УДК 621.01(075.8) ББК 34.41 А 74

> Авторы: П. П. Анципорович, В. К. Акулич, Е. М. Дубовская

> > Рецензенты: А. В. Чигарев, В. М. Сурин

Анципорович, П. П.

А 74 Теория механизмов, машин и манипуляторов. Курсовое проектирование: учебно-методическое пособие для студентовзаочников машиностроительных специальностей / П. П. Анципорович, В. К. Акулич, Е. М. Дубовская. – Минск: БНТУ, 2017. – 68 с. ISBN 978-985-550-925-8.

Учебно-методическое пособие представляет собой руководство по выполнению курсового проекта по курсу «Теория механизмов, машин и манипуляторов». Показаны особенности решения задач динамики машин и механизмов, синтеза кулачковых механизмов.

Рекомендуется для студентов-заочников машиностроительных специальностей.

УДК 621.01(075.8) ББК 34.41

ISBN 978-985-550-925-8

© Анципорович П. П., Акулич В. К., Дубовская Е. М., 2017

© Белорусский национальный технический университет, 2017

СОДЕРЖАНИЕ

Введение	4
1. ОПИСАНИЕ РАБОТЫ МАШИНЫ И ИСХОДНЫЕ ДАННЫЕ	
ДЛЯ ПРОЕКТИРОВАНИЯ	5
2. ЗАДАЧИ ИССЛЕДОВАНИЯ ДИНАМИЧЕСКОЙ НАГРУЖЕННОС	ТИ
МАШИННОГО АГРЕГАТА. ДИНАМИЧЕСКАЯ МОДЕЛЬ	
МАШИННОГО АГРЕГАТА. БЛОК-СХЕМА ИССЛЕДОВАНИЯ	
ДИНАМИЧЕСКОЙ НАГРУЖЕННОСТИ	8
3. ИССЛЕДОВАНИЕ ДИНАМИЧЕСКОИ НАГРУЖЕННОСТИ МАШИ	ΗЫ
В УСТАНОВИВШЕМСЯ РЕЖИМЕ ДВИЖЕНИЯ (ЛИСТ І)	13
3.1. Структурный анализ рычажного механизма	13
3.2. Определение кинематических характеристик рычажного	
механизма методом планов	14
3.3. Определение приведенного момента сил сопротивления M_1	Си
приведенного момента движущих сил $M_{\Pi}^{\mathcal{I}}$	21
3.4. Определение переменной составляющей приведенного мом	ента
инерции I_{Π}^{II}	30
3.5. Определение постоянной составляющей приведенного моме	ента
инерции I_{Π}^{I} и момента инерции маховика I_{M}	33
3.6. Определение закона движения звена приведения	35
3.7. Выводы	37
4. ДИНАМИЧЕСКИЙ АНАЛИЗ РЫЧАЖНОГО МЕХАНИЗМА	
(ЛИСТ 2)	38
4.1. Задачи и методы динамического анализа механизма	38
4.2. Кинематический анализ механизма	
43 Силовой расчет механизма	45
5 ПРОЕКТИРОВАНИЕ КУЛАЧКОВОГО МЕХАНИЗМА	
(ЛИСТ 3)	51
5 1 Залачи проектирования Исхолные ланные	51
5.2. Определение кинематических характеристик толкателя	52
5.3. Определение асновных размеров кулачкового механизма	58
5.5. Определение основных размеров кула пового механизма 5.4. Построение профиля куланка	59
5.5. Определение углов давления	61
5.6 Rubonu	01
Ο.Ο. ΒΟΙΟΟΔΟΙ	02
	03
ΠΓΗΊΟΛΙΕΠΗΛ	04
	3

Введение

При выполнении курсового проекта по теории механизмов, машин и манипуляторов у студентов-заочников возникают трудности в связи с необходимостью точной постановки задач проектирования, выбором методов синтеза и анализа, построением схем алгоритмов расчетов, позволяющих четко определить место (роль) каждого расчета в общей схеме исследования.

Настоящее учебно-методическое пособие построено в виде примера выполнения курсового проекта с примечаниями, позволяющими студенту пользоваться различными методами при решении тех или иных задач. В случае затруднений рекомендуется обращаться к литературным источникам, указанным в ссылках.

Курсовой проект по теории механизмов, машин и манипуляторов предусматривает решение ряда задач: динамика машинного агрегата, динамический анализ основного исполнительного механизма машины, синтез кулачкового механизма.

Курсовой проект по ТМММ состоит из пояснительной записки, выполняемой на листах формата A4, и графической части на трех листах формата A1. Задание на курсовое проектирование выдается студенту-заочнику преподавателем.

Ниже приводится пример выполнения курсового проекта на тему «Проектирование и исследование динамической нагруженности вытяжного пресса».

1. ОПИСАНИЕ РАБОТЫ МАШИНЫ И ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ

Вытяжной пресс предназначен для получения изделий методом глубокой вытяжки. Деформация заготовки осуществляется пуансоном, установленным на ползуне 5 шестизвенного рычажного механизма (рис. 1.1, *а*). Ползун совершает возвратно-поступательное движение вверх - вниз. Рабочий ход происходит при движении ползуна вниз, причем деформация заготовки производится только на части рабочего хода, равной 0,7H, где H - ход ползуна (расстояние между нижним и верхним крайними положениями E' и E''). График усилия вытяжки F_5 (силы полезного сопротивления), действующего на ползун, в зависимости от перемещения ползуна показан на рис. 1.1, *б*.

Кривошипный вал 1 исполнительного рычажного механизма приводится во вращение электродвигателем 6 через зубчатый редуктор, состоящий из планетарной передачи $Z_1 - Z_2 - Z_{2'} - Z_3 - H$ и простой передачи $Z_4 - Z_5$ (рис. 1.1, *в*).

Готовое изделие выталкивается из матрицы выталкивателем, движение которого обеспечивается кулачковым механизмом (рис. 1.1, *г*) через систему рычагов. Кулачковый механизм состоит из кулачка 7 и толкателя 8 с роликом 9. Требуемый закон изменения аналога ускорения толкателя показан на рис. 1.1, *д*.

Для обеспечения необходимой степени неравномерности вращения кривошипного вала 1 на нем установлен маховик 10. Исходные данные для проектирования приведены в табл. 1.1.

Примечание.

- 1. $l_{DS_4} = 0.5 l_{DE}$, $l_{CS_3} = 0.5 l_{CD}$, $l_{AS_2} = 0.5 l_{AB}$.
- 2. Массы звеньев: $m_4 = q \, l_{DE}$, где $q = 26 \, {\rm kr/m}; \, m_5 = 0,6 \, m_1$. Массы

*m*₂ и *m*₃ не учитывать.

3. Момент инерции звена 4: $I_{S4} = \frac{1}{12} m_4 l_{DE}^2$.

Рис. 1.1

Таблица 1.1

Мо	Поромотр	Обозна-	Размер-	Величи-
JND	Параметр	чение	ность	на
1	2	3	4	5
1	D	l_{OA}	М	0,091
1	Размеры рычажного механизма	l_{AB}	М	0,295
		l_{CB}	М	0,27
		l_{CD}	М	0,38
		l_{DE}	М	0,1
		а	М	0,14
		b	М	0,27
		С	М	0,227
2	Частота вращения элек- тродвигателя	n _ð	об/мин	960
3	Частота вращения криво- шипа 1	<i>n</i> ₁	об/мин	80
4	Максимальное усилие вы- тяжки	F _{5 max}	Н	20000
5	Масса звена 1 (без махо- вика)	m_1	КГ	50
6	Момент инерции звена 1 (без маховика)	I_0	кг·м ²	0,04
7	Момент инерции ротора электродвигателя	Ip	кг·м²	0,1
8	Приведенный к валу 1 момент инерции звеньев	$I_{\rm peg}^{\Pi}$	кг [.] м ²	2
9	Коэффициент неравно- мерности вращения звена 1	δ	-	0,1
10	Ход толкателя кулачково- го механизма	h	М	0,06

Окончание табл. 1.1

No	Параметр	Обозна-	Размер-	Величи-
JN⊇	Параметр	чение	ность	на
1	2	3	4	5
11	Фазовые углы поворота			
	кулачка:			
	- удаления	ϕ_{y}	град	80
	- дальнего стояния	$\phi_{\text{\rm JC}}$	град	20
	- возвращения	ϕ_B	град	80
12	Максимально допусти- мый угол давления в ку- лачковом механизме	θ_{max}	град	30

2. ЗАДАЧИ ИССЛЕДОВАНИЯ ДИНАМИЧЕСКОЙ НАГРУЖЕННОСТИ МАШИННОГО АГРЕГАТА. ДИНАМИЧЕСКАЯМОДЕЛЬ МАШИННОГО АГРЕГАТА. БЛОК - СХЕМА ИССЛЕДОВАНИЯ ДИНАМИЧЕСКОЙ НАГРУЖЕННОСТИ

Задачами исследования динамики машинного агрегата являются:

1) оценка динамической нагруженности машины в целом;

2) оценка динамической нагруженности отдельных механизмов, входящих в состав машины.

Оценка динамической нагруженности машины включает определение уровня неравномерности вращения главного вала проектируемой машины и приведение его в соответствие с заданным коэффициентом неравномерности вращения (динамический синтез машины по заданному коэффициенту неравномерности движения), а также определение закона вращения главного вала машины после достижения заданной неравномерности вращения (динамический анализ машины). Параметром, характеризующим динамическую нагруженность машины, является коэффициент динамичности.

Динамическая нагруженность отдельных механизмов машины оценивается величиной и направлением реактивных сил и моментов сил в кинематических парах (динамический анализ механизмов). Поскольку при определении реактивных нагрузок используется кинетостатический метод расчета, то динамический анализ механизмов включает последовательное выполнение кинематического анализа, а затем кинетостатического силового расчета.

Блок-схема машинного агрегата показана на рис. 2.1.

Рис. 2.1

В движении входного звена исполнительного рычажного механизма имеют место колебания угловой скорости, основными причинами которых являются:

- несовпадение законов изменения сил сопротивления и движущих сил в каждый момент времени;
- непостоянство приведенного момента инерции звеньев исполнительного и некоторых вспомогательных механизмов.

Чтобы учесть влияние названных причин на закон движения входного звена исполнительного механизма, составляется упрощенная динамическая модель машинного агрегата и на ее основе – математическая модель, устанавливающая функциональную взаимосвязь исследуемых параметров.

Наиболее простой динамической моделью машинного агрегата может быть одномассовая модель, представленная на рис. 2.2.

В качестве такой модели рассматривается условное вращающееся звено – звено приведения, которое имеет момент инерции I_{Π} относительно оси вращения (приведенный момент инерции) и находится под действием момента сил M_{Π} (приведенного момента сил).

Рис. 2.2

В свою очередь, $M_{\Pi} = M_{\Pi}^{A} - M_{\Pi}^{C}$, где M_{Π}^{A} - приведенный момент движущих сил; M_{Π}^{C} - приведенный момент сил сопротивления. Кроме того, $I_{\Pi} = I_{\Pi}^{I} + I_{\Pi}^{II}$, где I_{Π}^{I} - постоянная составляющая приведенного момента инерции; I_{Π}^{II} - переменная составляющая приведенного момента инерции. В величину I_{Π}^{I} собственный момент инерции кривошипа входят (I_0) инерции ротора электродвигателя приведенные моменты передаточного механизма ($I_{\rm P}^{\Pi}, I_{\rm пер.м.}^{\Pi}$), а также момент инерции I_м добавочной массы (маховика), причем необходимость установки маховика определяется на основании заданной степени неравномерности движения звена приведения.

Динамические характеристики M_{Π} и I_{Π} должны быть такими, чтобы закон вращения звена приведения был таким же, как и у главного вала машины (кривошипа 1 основного исполнительного рычажного механизма), т.е. $\phi_{\Pi} = \phi_{1}$, $\omega_{\Pi} = \omega_{1}$, $\varepsilon_{\Pi} = \varepsilon_{1}$.

Блок-схема исследования динамики машинного агрегата показана на рис. 2.3.

10

Из схемы видно, что в исследовании можно выделить следующие этапы:

1. Исследование динамики машины:

1.1. Определение кинематических характеристик исполнительного механизма, которое включает нахождение крайних положений рабочего органа и соответствующих ему значений обобщенных координат, вычисление функций положений, аналогов скоростей и ускорений для ряда последовательных положений за 1 цикл движения.

1.2. Определение динамических характеристик звена приведения:

a) приведенных моментов сил полезного сопротивления и движущих сил;

б) приведенного момента инерции ($I_{\Pi} = I_{\Pi}^{I} + I_{\Pi}^{II}$) и его производной.

1.3. Определение закона вращения звена приведения и оценка динамической нагруженности по коэффициенту динамичности.

2. Динамический анализ исполнительного механизма:

2.1. Кинематический анализ, включающий определение скоростей и ускорений точек и звеньев с учетом полученного закона вращения звена приведения.

2.2. Силовой расчет, целью которого является определение реакций в кинематических парах и уравновешивающего момента.

В проекте исследованию задач динамической нагруженности машины посвящен лист 1 (приложение 1), динамической нагруженности рычажного механизма – лист 2 (приложение 2).

3. ИССЛЕДОВАНИЕ ДИНАМИЧЕСКОЙ НАГРУЖЕННОСТИ МАШИНЫ В УСТАНОВИВШЕМСЯ РЕЖИМЕ ДВИЖЕНИЯ (ЛИСТ 1)

3.1. Структурный анализ рычажного механизма

Целью структурного анализа механизма является определение формулы строения механизма и классификация входящих в его состав структурных групп, так как формула строения определяет порядок выполнения кинематического и силового расчетов, а классы структурных групп – методы расчетов.

Структурная схема основного исполнительного механизма изображена на рис. 3.1. Число подвижных звеньев n = 5. Число низших кинематических пар $p_{\rm H} = 7$, в том числе вращательные пары–O(1,0), A(1,2), B(2,3), C(3,0), D(3,4), E(4,5),

поступательная пара E(5,0). Число высших кинематических пар $p_{\rm B} = 0$. Число степеней свободы механизма

$$W = 3n - 2p_{\rm H} - p_{\rm B} = 3 \cdot 5 - 2 \cdot 7 - 0 = 1$$

Рис. 3.1

Таким образом, для того, чтобы все звенья механизма совершали однозначно определенные движения, необходимо задать движение одному звену – в данном случае кривошипу 1. Тогда угловая

координата кривошипа φ_1 является обобщенной координатой механизма, а кривошип – начальным звеном.

Данный механизм образован последовательным присоединением к механизму 1-го класса (кривошипу 1 и стойке 0) двух структурных групп (2, 3) и (4, 5) (рис. 3.2).

Рис. 3.2

Формула строения механизма $I(1,0) \rightarrow II(2,3) \rightarrow II(4,5)$. Так как обе группы 2-го класса, то механизм относится ко 2-ому классу.

Таким образом, кинематический анализ начинается с механизма I(1,0), а заканчивается группой II(4,5). Силовой расчет выполняется в обратной последовательности $II(4,5) \rightarrow II(2,3) \rightarrow I(1,0)$.

3.2. Определение кинематических характеристик рычажного механизма методом планов

3.2.1. Построение планов положений механизма

Для построения планов выберем масштабный коэффициент длины $\mu_l = 0,002 \frac{M}{MM}$.

Примечание. Масштабные коэффициенты рекомендуется принимать в виде чисел, содержащих одну цифру 1, 2, ..., 9 с требуемым количеством нулей слева или справа. Например, 0,02; 2; 20.

Тогда чертежные размеры рычажного механизма будут равны

$$OA = l_{OA} / \mu_l = 0,091 / 0,002 = 45,5 \text{ MM},$$

$$AB = l_{AB} / \mu_l = 0,295 / 0,002 = 147,5 \text{ MM},$$

$$CD = l_{CD} / \mu_l = 0,38 / 0,002 = 190 \text{ MM},$$

$$CB = l_{CB} / \mu_l = 0,27 / 0,002 = 135 \text{ MM},$$

$$DE = l_{DE} / \mu_l = 0,1 / 0,002 = 50 \text{ MM},$$

$$DS_4 = 0,5DE = 0,5 \cdot 50 = 25 \text{ MM},$$

$$A = a / \mu_l = 0,14 / 0,002 = 70 \text{ MM},$$

$$B = b / \mu_l = 0,27 / 0,002 = 135 \text{ MM},$$

$$C = c / \mu_l = 0,227 / 0,002 = 113,5 \text{ MM}.$$

По полученным чертежным размерам строим 12 планов положений механизма.

Построение планов положений выполняется методом засечек, начиная с крайнего нижнего положения ползуна 5, через 30^0 по углу поворота кривошипа *OA*.

Для построения крайнего нижнего положения 1 из точки O делаем засечку радиусом r = AB - OA на траектории точки B (дуге окружности радиуса CB) и получаем точку B_1 . Через точки B_1 и O проводим прямую линию и получаем точку A_1 . Положение $OA_1B_1D_1E_1$ является крайним нижним положением механизма. В этом положении звенья OA и AB складываются в одну прямую линию.

Крайнее верхнее положение 6[′] находим дополнительно. Для его построения из точки *O* делаем засечку радиусом r = AB + OA на траектории точки *B* и получаем точку $B_{6'}$. Через точку $B_{6'}$ и *O* проводим прямую линию и получаем точку $A_{6'}$. Положение $OA_{6'}B_{6'}D_{6'}E_{6'}$ является крайним верхним положением механизма. В этом положении звенья *OA* и *AB* вытягиваются в одну прямую линию.

3.2.2.Построение планов аналогов скоростей

Для приведения сил и масс потребуются передаточные функции звеньев и центров масс (аналоги скоростей). Для их определения используем графический метод – построение планов аналогов скоростей для всех положений механизма.

Аналог скорости точки А равен

$$U_{A} = \frac{V_{A}}{\omega_{1}} = \frac{\omega_{1} l_{OA}}{\omega_{1}} = l_{OA} = 0,091 \,\mathrm{m}.$$

Принимаем масштабный коэффициент аналогов скоростей $\mu_U = 0,002 \frac{M}{MM}$. Тогда отрезок, изображающий U_A , равен

$$pa = \frac{U_A}{\mu_U} = \frac{0,091}{0,002} = 45,5 \,\mathrm{MM}$$
.

Примечание. Рекомендуется принимать μ_U таким, чтобы pa = 45...80 мм.

Так как $\overline{V}_A \perp OA$ и направлена в сторону вращения кривошипа 1, то откладываем отрезок $pa \perp OA$ (в соответствующем положении механизма).

Далее на основании теоремы о сложении скоростей в плоском движении составляем векторные уравнения в порядке присоединения структурных групп. Для определения аналога скорости \overline{U}_B точки B используем уравнения

$$\overline{U}_{B} = \overline{U}_{A} + \overline{U}_{BA},$$

$$\overline{U}_{B} = \overline{U}_{C} + \overline{U}_{BC},$$
(3.1)

где $\overline{U}_C = 0$ (точка C неподвижна), $\overline{U}_{BA} \perp AB$, $\overline{U}_{BC} \perp CB$. Здесь \overline{U}_{BA} и \overline{U}_{BC} - аналоги относительных скоростей точки B. В соответствии с уравнениями (3.1) из точки *а* проводим направление $\overline{U}_{BA} \perp AB$, а из точки *с*, которая совпадает с полюсом *p*, - направление $\overline{U}_{BC} \perp CB$. В точке пересечения этих направлений получаем точку *b*.

Точку *d* находим на основании теоремы подобия. Для этого вдоль отрезка *pb* откладываем отрезок *pd*, который находим из пропорции

$$\frac{pd}{pb} = \frac{CD}{CB}, \qquad pd = pb\frac{CD}{CB} = \frac{190}{135}(pb) = 1.41(pb).$$

Для определения аналога скорости \overline{U}_E точки E используем уравнения

$$\overline{U}_E = \overline{U}_D + \overline{U}_{ED},$$

$$\overline{U}_E = \overline{U}_{E_0} + \overline{U}_{EE_0},$$
(3.2)

где $\overline{U}_{ED} \perp DE$, $\overline{U}_{E_0} = 0$, $\overline{U}_{EE_0} // y$ (вертикально). Здесь E_0 - это точка, принадлежащая стойке O и в данный момент совпадающая с точкой E. Так как стойка неподвижна, то $\overline{U}_{E_0} = 0$.

Согласно уравнениям (3.2) из точки d проводим направление $\overline{U}_{ED} \perp DE$, а из точки e_0 , которая совпадает с полюсом p, направление $\overline{U}_{EE_0} // y$. В точке пересечения этих направлений получаем точку e.

Точку *s*₄ на плане аналогов скоростей находим по теореме подобия:

$$\frac{ds_4}{de} = \frac{DS_4}{DE}, \qquad ds_4 = de \frac{DS_4}{DE} = 0.5 (de).$$

На основании выполненных построений можно определить передаточные функции (аналоги скоростей):

$$i_{21} = \frac{\omega_2}{\omega_1} = \frac{ab}{pa} \cdot \frac{l_{OA}}{l_{AB}} = \frac{ab}{l_{AB}} \cdot \mu_U,$$

$$i_{31} = \frac{\omega_3}{\omega_1} = \frac{pb}{pa} \cdot \frac{l_{OA}}{l_{CB}} = \frac{pb}{l_{CB}} \cdot \mu_U,$$

$$i_{41} = \frac{\omega_4}{\omega_1} = \frac{de}{pa} \cdot \frac{l_{OA}}{l_{DE}} = \frac{de}{l_{DE}} \cdot \mu_U,$$

$$i_{541} = U_{54} = \frac{V_{54}}{\omega_1} = \frac{ps_4}{pa} \cdot l_{OA} = (ps_4) \mu_U,$$

$$i_{51} = U_E = \frac{V_E}{\omega_1} = \frac{pe}{pa} \cdot l_{OA} = (pe) \mu_U,$$

$$y'_{54} = U''_{54} = \frac{V''_{54}}{\omega_1} = \frac{ps''_{4}}{pa} \cdot l_{OA} = (ps''_{4}) \mu_U.$$

В данном курсовом проекте необходимо определить i_{41} , i_{541} , i_{51} , y'_{54} . Например, для положения 12 находим

$$\begin{split} i_{41} &= \frac{7,5}{0,1} \cdot 0,002 = 0,15, \\ i_{S_41} &= 21,5 \cdot 0,002 = 0,043 \text{ m}, \\ i_{51} &= 20,5 \cdot 0,002 = 0,041 \text{ m}, \\ y'_{S_4} &= 21 \cdot 0,002 = 0,042 \text{ m}. \end{split}$$

Результаты построений и вычислений приведены в табл. 3.1 и 3.2.

Таблица 3.1

	$ps_4 \qquad ps_4^y$	0 0	24 235	- 1	54,5 54	54,5 54 85 85	54,5 52,5 54,5 54 85 85 79 78,5	54,5 54,5 54,5 54 85 85 79 78,5 26,5 26	54,5 54,5 54 54,5 54 85 85 85 85 79 78,5 26 26,5 26 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$dS_4 = l$		0	4,2	67 5	1,0 1	1,5	8,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5	8,2 2 4,7 2	0,2,2 8,2 0 0	0,2 0,2 0 <td>0,2 0,2 0 0 0 0 0 0 6,5 0<!--</td--><td>0,2 0,2 1,5 1,5 8,2 8,2 4,7 2 4,7 2 6,5 6</td><td>0,2 1,5 1,5 8,2 8,2 8,2 8,2 6,5 5,8 6,5 5,8 6,5 5,8 6,5</td><td>3,2 4,7 2 3 8,2 4,7 2 3 3 3,2 6,5 6 6 3</td><td>-0.2 -0.2 1,5 1,5 8,2 8,2 0 0 6,5 5,8 3,2 5,8 3,2 6,5 3,2 6,5</td></td>	0,2 0,2 0 0 0 0 0 0 6,5 0 </td <td>0,2 0,2 1,5 1,5 8,2 8,2 4,7 2 4,7 2 6,5 6</td> <td>0,2 1,5 1,5 8,2 8,2 8,2 8,2 6,5 5,8 6,5 5,8 6,5 5,8 6,5</td> <td>3,2 4,7 2 3 8,2 4,7 2 3 3 3,2 6,5 6 6 3</td> <td>-0.2 -0.2 1,5 1,5 8,2 8,2 0 0 6,5 5,8 3,2 5,8 3,2 6,5 3,2 6,5</td>	0,2 0,2 1,5 1,5 8,2 8,2 4,7 2 4,7 2 6,5 6	0,2 1,5 1,5 8,2 8,2 8,2 8,2 6,5 5,8 6,5 5,8 6,5 5,8 6,5	3,2 4,7 2 3 8,2 4,7 2 3 3 3,2 6,5 6 6 3	-0.2 -0.2 1,5 1,5 8,2 8,2 0 0 6,5 5,8 3,2 5,8 3,2 6,5 3,2 6,5
de		0	8,5	12.5		́ю	3 3 16,5	3 16,5 9,5	3 16,5 9,5 0	3 16,5 9,5 0 9,5	3 16,5 9,5 9,5 9,5 13	3 16,5 9,5 9,5 13 11,6	3 16,5 9,5 9,5 9,5 13 11,6 11,6 4,5	3 3 9,5 9,5 9,5 13 13 13 13,6 11,6 6,5	3 16,5 9,5 9,5 9,5 13 13 11,6 4,5 6,5 11
	be	0	23	54.5	- 6	85,5	85,5 78	85,5 85,5 78 26,5	85,5 78 26,5 0	85,5 78 26,5 0 26,2	85,5 78 78 26,5 26,2 54,5 54,5	85,5 78 78 26,5 26,5 54,5 54,5 63,2	85,5 85,5 78 26,5 56,5 54,5 63,2 64,5 64,5	85,5 78 78 26,5 26,5 54,5 54,5 63,2 64,5 59,5	85,5 78 26,5 26,5 54,5 54,5 64,5 64,5 64,5 59,5 59,5 72 64,5 64,5 59,5 59,5
	pd	0	25,3	55,7		85,1	85,1 80,9	85,1 80,9 27,4	85,1 80,9 27,4 0	85,1 80,9 27,4 0 26,7	85,1 80,9 27,4 0 26,7 56,3	85,1 80,9 27,4 0 26,7 56,3 65,2	85,1 80,9 27,4 27,4 0 0 56,3 56,3 65,2 65,4	85,1 80,9 27,4 27,4 0 0 26,7 56,3 56,3 65,4 65,4 59,1	85,1 80,9 27,4 27,4 0 0 0 26,7 56,3 56,3 56,3 65,4 65,4 65,4 43,6 43,6
	ab	45,5	35,5	9,5		31,5	31,5 63	31,5 63 56	31,5 63 56 45,5	31,5 63 56 45,5 32	31,5 63 56 45,5 32 11,5	31,5 63 56 45,5 32 11,5 3,7	31,5 63 56 56 45,5 32 11,5 11,5 3,7 5,5	31,5 63 56 56 45,5 32 11,5 11,5 3,7 5,5 5,5 20,5	31,5 63 56 56 45,5 32 11,5 11,5 3,7 5,5 5,5 34 34
	qd	0	18	39,5		60,5	60,5 57,5	60,5 57,5 19,5	60,5 57,5 19,5 0	60,5 57,5 19,5 0 19	60,5 57,5 19,5 0 19 40	60,5 57,5 19,5 0 19 40 45,8	60,5 57,5 57,5 19,5 19 40 40 45,8 46,5	60,5 57,5 57,5 19,5 19 19 40 40 45,8 46,5 42	60,5 57,5 19,5 19,5 19 40 40 45,8 46,5 42 31
;	Ле пол.	1	2	3		4	4 2	6 5 4	6 6	4 5 6 6 7	4 5 6 6 7 7 8	4 5 6 6 6 7 7 H	4 6 6 9 9 4 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 5 6 6 6 9 9 9 9 9 10	4 5 6 6 6 6 7 7 7 10 10 11

19

Таблица 3.2	${\cal Y}'_{S4}, M$	0	0,047	0,108	0,17	0,157	0,052	0	0,052	0,11	0,127	0,129	0,116	0,083	0,042
	<i>і</i> 5 <i>I</i> , М	0	0,0460	0,109	0,171	0,156	0,0530	0	0,0524	0,109	0,1264	0,129	0,119	0,0840	0,0410
	$\dot{l}_{S^4I,\mathrm{M}}$	0	0,0480	0,109	0,170	0,158	0,0530	0	0,0520	0,110	0,1278	0,129	0,118	0,0850	0,0430
	i_{4l}	0	0,170	0,250	0,0600	0,330	0,190	0	0,190	0,260	0,232	0,0900	0,130	0,220	0,150
	№ пол.	1	2	3	4	5	6	6′	7	8	Н	6	10	11	12

3.3. Определение приведенного момента сил сопротивления $M_{\Pi}^{\rm C}$ и приведенного момента

движущих сил $M_{\Pi}^{\mathcal{A}}$

3.3.1. Определение сил полезного (технологического) сопротивления

В рассматриваемой рабочей машине приведенный момент движущих сил принимается постоянным (M_{Π}^{A} = const), а приведенный момент сил сопротивления M_{Π}^{C} определяется в результате приведения силы полезного сопротивления F_5 и сил тяжести звеньев. Сила F_5 , действующая на рабочий орган, определяется из механической характеристики технологического процесса, заданной в виде графической зависимости $F_5(S_E)$ (см. рис. 1.1, δ).

Для решения динамических задач необходимо получить зависимость F_5 от обобщенной координаты φ_1 . Для этого механическую характеристику $F_5(S_E)$ привязываем к крайним положениям механизма. Учитываем, что рабочий ход происходит при движении ползуна сверху - вниз (точки E'' - E'). Точку, в которой начинает действовать сила F_5 , обозначаем H и дополнительно строим план положения механизма $OA_H B_H D_H E_H$. Используя разметку хода ползуна (точки E), находим значения силы F_5 во всех положениях механизма:

$$F_5 = y_F \mu_F,$$

где y_F - ордината графика $F_5(S_E)$,

μ_{*F*} - масштабный коэффициент сил.

$$\mu_F = \frac{F_{5\,\text{max}}}{y_{F\,\text{max}}} = \frac{20000}{100} = 200 \frac{\text{H}}{\text{MM}}.$$

Результаты определения F_5 приведены в табл. 3.3. Таблица 3.3

№ пол.	1 - <i>H</i>	9	10	11	12	13
${\mathcal Y}_F$,мм	0	57	100	100	38,5	0
F_5, H	0	11400	20000	20000	7700	0

3.3.2. Определение M_{Π}^{C}

Величину M_{Π}^{C} определяем из равенства мгновенных мощностей, развиваемых моментом M_{Π}^{C} на звене приведения и силами F_5 , G_4 , G_5 :

$$M_{\Pi}^{C} \omega_{1} = F_{5} V_{E} \pm G_{4} V_{S_{4}}^{y} \pm G_{5} V_{E}.$$

Здесь знак «плюс» берется в том случае, когда направления силы и соответствующей скорости не совпадают, а знак «минус», когда эти направления совпадают (в этом случае соответствующая сила является движущей, а мы определяем приведенный момент сил сопротивления).

По исходным данным определяем массы звеньев:

$$m_4 = q l_{DE} = 26 \cdot 0, 1 = 2,6$$
 кг,
 $m_5 = 0,6m_1 = 0,6 \cdot 50 = 30$ кг.

Центральный момент инерции звена 4:

$$I_{S4} = \frac{1}{12} m_4 l_{DE}^2 = \frac{1}{12} \cdot 2,6 \cdot 0,1^2 = 0,00217 \text{ kg} \cdot \text{m}^2.$$

Силы тяжести звеньев

$$G_1 = m_1 g = 50 \cdot 9,81 = 490 \text{ H},$$

$$G_4 = m_4 g = 2,6 \cdot 9,81 = 25,5 \text{ H},$$

$$G_5 = m_5 g = 30 \cdot 9,81 = 294 \text{ H}.$$

Тогда

$$M_{\Pi}^{C} = F_{5} \cdot \frac{V_{E}}{\omega_{1}} \pm G_{4} \cdot \frac{V_{S_{4}}^{y}}{\omega_{1}} \pm G_{5} \cdot \frac{V_{E}}{\omega_{1}} = F_{5} \ i_{51} \pm G_{4} \ y_{S_{4}}^{\prime} \pm G_{5} \ i_{51}.$$

Используя табл. 3.2 и 3.3, вычисляем M_{Π}^{C} . Например, для положения 12

 $M_{\Pi}^{C} = 7700 \cdot 0,041 - 25,5 \cdot 0,042 - 294 \cdot 0,041 = 302,6 \,\mathrm{H} \cdot \mathrm{m}.$

Приняв масштабный коэффициент моментов из условия

$$\mu_M = \frac{M_{\Pi \max}^{\rm C}}{y_{M_{\Pi}^{\rm C} \max}} = \frac{2342,1}{117,1} = 20 \frac{\rm H \cdot M}{\rm MM},$$

вычисляем ординаты графика $y_{M_{\Pi}^{C}} = \frac{M_{\Pi}^{C}}{\mu_{M}}$.

Например, для положения 12

$$y_{M_{\Pi}^{\rm C}} = \frac{M_{\Pi}^{\rm C}}{\mu_M} = \frac{302.6}{20} = 15.1 \,\mathrm{MM}.$$

Результаты вычислений приведены в табл. 3.4, на основании их построен график $M_{\Pi}^{C}(\varphi_{1})$. Масштабный коэффициент углов

$$\mu_{\phi} = \frac{2\pi}{[1-13]} = \frac{2\pi}{180} = 0,0349 \frac{\text{pag}}{\text{MM}}.$$

Здесь отрезок [1-13] = 180 мм соответствует одному циклу установившегося движения ($\phi_{II} = 360^0 = 2 \pi$ рад).

Приведенный момент движущих сил M_{Π}^{A} принимается постоянным, а его величина определяется из условия, что за цикл установившегося движения изменение кинетической энергии машины $\Delta T = A_{\Pi} - A_{C} = 0$ и, следовательно, работы движущих сил и сил сопротивления равны ($A_{\Pi\Pi} = A_{C\Pi}$).

Таблица 3.4	ł

N⁰	F ₅ <i>i</i> ₅₁ ,	$G_4 y'_{S_4}$,	$G_5 i_{51}$,	M_{Π}^{C} ,	$\mathcal{Y}_{M\Pi}^{\ \mathrm{C}}$,
пол.	Н∙м	Н∙м	Н∙м	Н∙м	MM
1	0	0	0	0	0
2	0	1,1985	13,52	14,7	0,7
3	0	2,7540	32,05	34,8	1,7
4	0	4,3350	50,27	54,6	2,7
5	0	4,0035	45,86	49,9	2,5
6	0	1,3260	15,58	16,9	0,8
6′	0	0	0	0	0
7	0	-1,3260	-15,41	-16,7	-0,8
8	0	-2,8050	-32,05	-34,9	-1,7
Н	0	-3,2385	-37,16	-40,4	-2,0
9	1470,6	-3,2895	-37,93	1429,4	71,5
10	2380	-2,958	-34,99	2342,1	117,1
11	1680	-2,1165	-24,70	1653,2	82,7
12	315,7	-1,0710	-12,05	302,2	15,1

3.3.3. Определение работы сил сопротивления $A_{\rm C}\,$ и работы движущих сил $\,A_{\rm I}$

Так как работа сил сопротивления

$$A_{\rm C} = \int_{\varphi_0}^{\varphi_1} M_{\Pi}^{\rm C} d\varphi_1,$$

то график $A_{\rm C}(\varphi_1)$ можно построить путем либо численного, либо графического интегрирования зависимости $M_{\Pi}^{\rm C}(\varphi_1)$.

Используем численное интегрирование по методу трапеций, согласно которому

$$A_{Ci} = A_{Ci-1} + 0.5 \left(M_{\Pi i-1}^{C} + M_{\Pi i}^{C} \right) \cdot \Delta \varphi_{1}, \qquad (3.3)$$

где $\Delta \phi_1$ – шаг интегрирования.

$$\Delta \phi_1 = \frac{2\pi}{12} = 0,5236$$
 рад.

Формула (3.3) применяется последовательно от интервала к интервалу:

$$\begin{split} &A_{\rm C1} = 0; \\ &A_{\rm C2} = A_{\rm C1} + 0.5 \left(M_{\Pi 1}^{\rm C} + M_{\Pi 2}^{\rm C} \right) \cdot \Delta \varphi_1 = 0 + 0.5 (0 + 14.7) \times \\ &\times 0.5236 = 3.85 \, \text{Дж}; \\ &A_{\rm C3} = A_{\rm C2} + 0.5 \left(M_{\Pi 2}^{\rm C} + M_{\Pi 3}^{\rm C} \right) \cdot \Delta \varphi_1 = 3.85 + 0.5 (14.7 + 34.8) \times \\ &\times 0.5236 = 16.81 \, \text{Дж}; \\ &A_{\rm C4} = A_{\rm C3} + 0.5 \left(M_{\Pi 3}^{\rm C} + M_{\Pi 4}^{\rm C} \right) \cdot \Delta \varphi_1 = 16.81 + 0.5 (34.8 + 54.6) \times \\ &\times 0.5236 = 40.21 \, \text{Дж}; \end{split}$$

$$\begin{split} &A_{\rm C5} = A_{\rm C4} + 0.5 \left(M_{\rm H4}^{\rm C} + M_{\rm H5}^{\rm C} \right) \cdot \Delta \varphi_{1} = 40,21 + 0.5(54,6 + 49,9) \times \\ &\times 0.5236 = 67,57 \, \mathrm{J} \mathrm{x}; \\ &A_{\rm C6} = A_{\rm C5} + 0.5 \left(M_{\rm H5}^{\rm C} + M_{\rm H6}^{\rm C} \right) \cdot \Delta \varphi_{1} = 67,57 + 0.5(49,9 + 16,9) \times \\ &\times 0.5236 = 85,06 \, \mathrm{J} \mathrm{x}; \\ &A_{\rm C6'} = A_{\rm C6} + 0.5 \left(M_{\rm H6}^{\rm C} + M_{\rm H6'}^{\rm C} \right) \cdot \Delta \varphi_{6-6'} = 85,06 + 0.5(16,9 + 0) \times \\ &\times 0.2443 = 87,12 \, \mathrm{J} \mathrm{x}; \\ &A_{\rm C7} = A_{\rm C6'} + 0.5 \left(M_{\rm H7}^{\rm C} + M_{\rm H7}^{\rm C} \right) \cdot \Delta \varphi_{6'-7} = 87,12 + 0.5(0 - 16,7) \times \\ &\times 0.2793 = 84,79 \, \mathrm{J} \mathrm{x}; \\ &A_{\rm C8} = A_{\rm C7} + 0.5 \left(M_{\rm H7}^{\rm C} + M_{\rm H8}^{\rm C} \right) \cdot \Delta \varphi_{1} = 84,79 + 0.5(-16,7 - 34,9) \times \\ &\times 0.5236 = 71,28 \, \mathrm{J} \mathrm{x}; \\ &A_{\rm CH} = A_{\rm C8} + 0.5 \left(M_{\rm H8}^{\rm C} + M_{\rm H9}^{\rm C} \right) \cdot \Delta \varphi_{8-H} = 71,28 + 0.5(-34,9 - 40,4) \times \\ &\times 0.3491 = 58,14 \, \mathrm{J} \mathrm{x}; \\ &A_{\rm C9} = A_{\rm CH} + 0.5 \left(M_{\rm H9}^{\rm C} + M_{\rm H9}^{\rm C} \right) \cdot \Delta \varphi_{1} = 179,35 + 0.5(1429,4 + \\ + 1429,4) \times 0,1745 = 179,35 \, \mathrm{J} \mathrm{x}; \\ &A_{\rm C10} = A_{\rm C9} + 0.5 \left(M_{\rm H9}^{\rm C} + M_{\rm H10}^{\rm C} \right) \cdot \Delta \varphi_{1} = 1166,73 + 0.5(2342,1 + \\ + 1653,2) \times 0,5236 = 2212,7 \, \mathrm{J} \mathrm{x}; \\ &A_{\rm C12} = A_{\rm C11} + 0.5 \left(M_{\rm H11}^{\rm C} + M_{\rm H11}^{\rm C} \right) \cdot \Delta \varphi_{1} = 2212,7 + 0.5(1653,2 + \\ + 302,6) \times 0,5236 = 2724,73 \, \mathrm{J} \mathrm{x}; \\ &A_{\rm C13} = A_{\rm C12} + 0.5 \left(M_{\rm H12}^{\rm C} + M_{\rm H13}^{\rm C} \right) \cdot \Delta \varphi_{1} = 2724,73 + 0.5(302,6 + 0) \times \\ &\times 0,5236 = 2803,95 \, \mathrm{J} \mathrm{x}. \end{split}$$

Таким образом, работа сил сопротивления за цикл $A_{\rm C\,II} = A_{\rm C\,I3} = 2803,95$ Дж.

Принимаем масштабный коэффициент работ $\mu_A = 30 \frac{Дж}{MM}$, вычисляем и откладываем ординаты графика $A_C(\phi_1)$

$$y_{A_{\rm C}} = \frac{A_{\rm C}}{\mu_A}$$

и строим график $A_{\rm C}(\phi_1)$. Результаты вычислений приведены в табл. 3.5.

Таблица 3.5

№ пол.	<i>А</i> _{С,} Дж	$y_{A_{C}}$, mm
1	0	0,0
2	3,85	0,1
3	16,81	0,6
4	40,21	1,3
5	67,57	2,3
6	85,06	2,8
6′	87,12	2,9
7	84,79	2,8
8	71,28	2,4
Н	58,14	1,9
9	179,35	6,0
10	1166,73	38,9
11	2212,70	73,8
12	2724,73	90,8
13	2803,95	93,5

Примечание. При графическом интегрировании методом хорд на каждом интервале криволинейную фигуру под графиком M_{Π}^{C} заменяем равновеликим прямоугольником так, чтобы заштрихованные площади были примерно равны (рис. 3.3). Верхние стороны полученных прямоугольников проецируем на ось M_{Π} и получаем точки 9⁷, 10⁷, 11⁷, 12⁷, 13⁷. Слева от начала координат на расстоянии h выбираем полюс p, который соединяем с полученными точками. Далее в системе координат $A - \varphi_1$ на соответствующих интервалах последовательно проводим лучи 8-9'', 9''-10'' и т.д., параллельные лучам p9', p10'' и т.д. В результате получаем ломаную линию, которая является приближенным графиком $A_{C}(\varphi_1)$. Ломаную линию заменяем плавной кривой.

Рис. 3.3

Масштабный коэффициент работ μ_A в этом случае зависит от принятой величины полюсного расстояния h и определяется по формуле

$$\mu_A = \mu_M \ \mu_{\varphi} \ h \tag{3.4}$$

Можно также поступить иначе: принять величину μ_A , а затем вычислить полюсное расстояние *h* из формулы (3.4).

При построении графика $A_{\rm C}(\varphi_1)$ путем графического интегрирования работа сил сопротивления за цикл вычисляется, исходя из построенного графика:

 $A_{\rm CII} = [13 - 13^{1/2}]\mu_{A_{\rm c}}$

где [13-13''] - ордината в последнем, 13-м положении.

Учитывая, что за цикл установившегося движения работы движущих сил и сил сопротивления равны $(A_{ДII} = A_{CII})$ и $M_{II}^{II} = const$, график $A_{II}(\varphi_1)$ изображается в виде прямой линии, соединяющей начало координат и конец графика $A_{II}(\varphi_1)$.

3.3.4. Определение M_{Π}^{Π}

Так как работа движущих сил за цикл $A_{\Pi \Pi} = M_{\Pi}^{\Pi} \cdot 2\pi$, то приведенный момент движущих сил равен

$$M_{\Pi}^{\Pi} = \frac{A_{\Pi \Pi}}{2\pi} = \frac{A_{C\Pi}}{2\pi} = \frac{2803,95}{2\pi} = 446,3 \,\mathrm{H} \cdot \mathrm{M}.$$

Ордината графика $M_{\Pi}^{\mathcal{A}} = const$ равна

$$y_{M_{\Pi}}^{A} = \frac{M_{\Pi}}{\mu_{M}} = \frac{446,3}{20} = 22,3 \,\mathrm{MM}.$$

3.4. Определение переменной составляющей приведенного момента инерции $I_{\Pi}^{I\!I}$

Величина I_{Π}^{II} определяется из равенства кинетической энергии звена приведения с моментом инерции I_{Π}^{II} и суммы кинетических энергий звеньев с переменными передаточными функциями. Такими звеньями являются звенья 2, 3, 4 и 5 исполнительного рычажного механизма. Тогда имеем равенство

$$\frac{I_{\Pi}^{II}\omega_{1}^{2}}{2} = \frac{m_{2}V_{S2}^{2}}{2} + \frac{I_{S2}\omega_{2}^{2}}{2} + \frac{I_{C}\omega_{3}^{2}}{2} + \frac{m_{4}V_{S4}^{2}}{2} + \frac{I_{S4}\omega_{4}^{2}}{2} + \frac{m_{5}V_{E}^{2}}{2},$$

откуда

$$\begin{split} I_{\Pi}^{II} &= m_2 \left(\frac{V_{S2}}{\omega_1}\right)^2 + I_{S2} \left(\frac{\omega_2}{\omega_1}\right)^2 + I_C \left(\frac{\omega_3}{\omega_1}\right)^2 + m_4 \left(\frac{V_{S4}}{\omega_1}\right)^2 + \\ &+ I_{S4} \left(\frac{\omega_4}{\omega_1}\right)^2 + m_5 \left(\frac{V_E}{\omega_1}\right)^2 = a + b + c + d + e + f, \end{split}$$

где

$$a = m_2 i \frac{2}{S_{21}}, \qquad b = I_{S2} i \frac{2}{21}, \qquad c = I_C i \frac{2}{31},$$

$$d = m_4 i \frac{2}{S_{41}}, \qquad e = I_{S4} i \frac{2}{41}, \qquad f = m_5 i \frac{2}{51}.$$

Здесь I_C - момент инерции звена 3 относительно оси вращения C. На основании теоремы о моментах инерции относительно параллельных осей

$$I_C = I_{S3} + m_3 l_{CS_3}^2.$$

В данном курсовом проекте звеньями с переменными передаточными функциями являются звенья 4 и 5. Тогда

$$I_{\Pi}^{II} = d + e + f.$$

Например, для положения 12

$$d = 2,6 \cdot 0,043^2 = 0,00481 \text{ kg} \cdot \text{m}^2,$$

$$e = 0,00217 \cdot 0,15^2 = 0,000049 \text{ kg} \cdot \text{m}^2,$$

$$f = 30 \cdot 0,041^2 = 0,0504 \text{ kg} \cdot \text{m}^2.$$

$$I_{\Pi}^{II} = 0,00481 + 0,000049 + 0,0504 = 0,05526 \text{ kg} \cdot \text{m}^2.$$

Приняв масштабный коэффициент из условия

$$\mu_I = \frac{I_{\Pi \max}^{II}}{y_{I \max}} = \frac{0.9523}{136} = 0.007 \frac{\kappa \Gamma \cdot M^2}{MM},$$

вычисляем ординаты графика $y_I = \frac{I_{\Pi}^{II}}{\mu_I}$.

Например, для положения 12

$$y_I = \frac{I_{\Pi}^{II}}{\mu_I} = \frac{0.05526}{0.007} = 8 \,\mathrm{MM}.$$

Результаты определения I_{Π}^{II} приведены в табл. 3.6, на основании их построен график $I_{\Pi}^{II}(\phi_1)$.

<i>f</i> , ĸr [·] .m ² 0 0,0635 0,3564 0,3564 0,8772	$\frac{I_{\Pi}{}^{H}, \mathrm{kr} \cdot \mathrm{M}^{2}}{0}$	$y_{d,}$, MM	$\mathcal{Y}_{e,}$, MM	$\mathcal{Y}_{f},$ MM	V_L , MM
0 0,0635 0,3564 0,3564 0,8772	0 0,0696				(, , ,
0,0635 0,3564 0,8772 0,7301	0,0696	0	0	0	0
0,3564 0,8772 0.7301		6'0	0,009	9,1	6'6
0,8772	0,3874	4,4	0,019	50,9	55,3
0 7301	0,9523	10,7	0,001	125,3	136,0
	0,7952	9,3	0,034	104,3	113,6
0,0843	0,0917	1,0	0,011	12,0	13,1
0	0	0	0	0	0
0,0824	0,0895	1,0	0,011	11,8	12,8
0,3564	0,3880	4,5	0,021	50,9	55,4
0,4793	0,5219	6,1	0,017	68,5	74,6
0,4992	0,5425	6,2	0,003	71,3	77,5
0,4248	0,4610	5,2	0,005	60,7	65,9
0,2117	0,2306	2,7	0,015	30,2	32,9
0,0504	0,0552	0,7	0,007	7,2	6'L
	0,4793 0,4992 0,4248 0,4248 0,2117 0,0504	0,4793 0,5219 0,4992 0,5425 0,4992 0,5425 0,4248 0,4610 0,2117 0,2306 0,0504 0,0552	0,4793 0,5219 6,1 0,4992 0,5425 6,2 0,4992 0,5425 6,2 0,4992 0,5425 6,2 0,4248 0,4610 5,2 0,42117 0,2306 2,7 0,0504 0,0552 0,7	0,4793 0,5219 6,1 0,017 0,4992 0,5425 6,2 0,003 0,4948 0,4610 5,2 0,005 0,4248 0,4610 5,2 0,005 0,2117 0,2306 2,7 0,015 0,0504 0,0552 0,7 0,007	0,4793 $0,5219$ $6,1$ $0,017$ $68,5$ $0,4992$ $0,5425$ $6,2$ $0,003$ $71,3$ $0,4248$ $0,4610$ $5,2$ $0,005$ $60,7$ $0,4248$ $0,4610$ $5,2$ $0,005$ $60,7$ $0,2117$ $0,2306$ $2,7$ $0,015$ $30,2$ $0,0504$ $0,0552$ $0,7$ $0,007$ $7,2$

3.5. Определение постоянной составляющей приведенного момента инерции I_{Π}^{I} и момента инерции маховика I_{M}

Путем графического вычитания ординат работ A_{\perp} и $A_{\rm C}$ строим график изменения кинетической энергии машины $\Delta T = A_{\perp} - A_{\rm C}$. Масштабный коэффициент $\mu_T = \mu_A = 30 \frac{\mu_{\rm K}}{MM}$.

Определение I_{Π}^{I} производим методом Н.И.Мерцалова. Для этого строим график изменения кинетической энергии $\Delta T_{I}(\varphi_{1})$ звеньев с постоянным приведенным моментом инерции I_{Π}^{I} .

При этом

$$\Delta T_I = \Delta T - T_{II} \tag{3.5}$$

где $T_{II} \approx \frac{I_{\Pi}^{II} \omega_{1 cp}^2}{2}$ - кинетическая энергия звеньев с переменным приведенным моментом инерции I_{Π}^{II} . На основании выражения (3.5) имеем

$$y_{\Delta T_I} = y_{\Delta T} - k \, y_I,$$

где $y_{\Delta T_I}$, $y_{\Delta T}$, y_I - ординаты соответствующих графиков;

$$k = \frac{\mu_I \,\omega_{1\rm cp}^2}{2\mu_T};$$

 $\omega_{1cp}\,$ - средняя угловая скорость кривошипа 1, равная

$$\omega_{1 \text{ cp}} = \frac{\pi n_1}{30} = \frac{\pi \cdot 80}{30} = 8,38 \text{ pag/c}.$$

33

Тогда

$$k = \frac{0,007 \cdot 8,38^2}{2 \cdot 30} = 0,00819.$$

Например, для положения 12

$$y_{\Delta T_I} = -5 - 0, 1 = -5, 1 \,\mathrm{mm}.$$

Результаты определения ординат $y_{\Delta T_I}$ приведены в табл. 3.7, на основании их построен график $\Delta T_I(\varphi_1)$.

Таблица 3.7

№ пол.	$\mathcal{Y}_{\Delta T}$, мм	<i>k у_I</i> , мм	${\cal Y}_{\Delta T_I}$, mm
1	0	0	0
2	8	0,1	7,9
3	15,5	0,5	15
4	22	1,1	20,9
5	29	0,9	28,1
6	36	0,1	35,9
6′	40	0	40
7	44	0,1	43,9
8	52	0,5	51,5
Н	58	0,6	57,4
9	56	0,6	55,4
10	31	0,5	30,5
11	4	0,3	3,7
12	-5	0,1	-5,1

В рассматриваемом примере график $\Delta T_I(\varphi_1)$ практически сливается с графиком $\Delta T(\varphi_1)$. На графике $\Delta T_I(\varphi_1)$ находим наибольший перепад кинетической энергии

$$\Delta T_{Iab} = (ab) \mu_T = 62,5 \cdot 30 = 1875$$
 Дж.

Тогда

$$I_{\Pi}^{I} = \frac{\Delta T_{Iab}}{\delta \omega_{1cp}^{2}} = \frac{1875}{0.1 \cdot 8.38^{2}} = 267 \,\mathrm{kr} \cdot \mathrm{m}^{2}.$$

Вычисляем приведенный момент инерции I_{Π}^{0} всех вращающихся звеньев (без маховика) и сравниваем с I_{Π}^{I} . Из условия равенства кинетических энергий имеем

$$I_{\Pi}^{0} = I_{0} + I_{P}^{\Pi} + I_{peg}^{\Pi} = I_{0} + I_{P} \left(\frac{n_{\partial}}{n_{1}}\right)^{2} + I_{peg}^{\Pi} = 0,04 + 0,1 \left(\frac{960}{80}\right)^{2} + 2 = 16,44 \,\mathrm{kr} \cdot \mathrm{m}^{2}.$$

Так как $I_{\Pi}^{I} > I_{\Pi}^{0}$, то требуется установка дополнительной вращающейся массы в виде маховика, момент инерции которого при установке на кривошипном валу равен

$$I_{\rm M} = I_{\Pi}^I - I_{\Pi}^0 = 267 - 16,44 \approx 250,6 \,\mathrm{kg} \cdot \mathrm{m}^2.$$

3.6. Определение закона движения звена приведения

График $\Delta T_I(\varphi_1)$ одновременно является приближенным графиком изменения угловой скорости $\Delta \omega_1(\varphi_1)$ звена приведения, причем

$$\Delta \omega_1 = \omega_1 - \omega_{1 \text{ cp}}.$$

35

Линия средней угловой скорости $\omega_{1 cp}$ проходит посредине отрезка *ab*. Масштабный коэффициент угловой скорости

$$\mu_{\omega} = \frac{\omega_{1\,\text{max}} - \omega_{1\,\text{min}}}{ab} = \frac{\sigma \omega_{1\,\text{cp}}}{ab} = \frac{0.1 \cdot 8.38}{62.5} = 0.0134 \frac{\text{pag}}{\text{c} \cdot \text{mm}}.$$

Тогда для любого положения угловая скорость звена приведения (кривошипа 1)

$$\omega_1 = \omega_{1cp} + \Delta \omega_1 = \omega_{1cp} + y_{\Delta \omega} \cdot \mu_{\omega},$$

где $y_{\Delta \omega}$ - ордината графика $\Delta \omega_1(\varphi_1)$, измеряемая от линии средней угловой скорости ω_{1cp} с учетом знака.

Для положения 12

$$\omega_1 = 8,38 + (-31) \cdot 0,0134 = 7,965 \text{ pag/c}.$$

Угловое ускорение ε_1 определяется из дифференциального уравнения движения:

$$\varepsilon_1 = \frac{M_{\Pi}^{\Pi} - M_{\Pi}^{C} - \frac{\omega_1^2}{2} \cdot \frac{dI_{\Pi}}{d\varphi_1}}{I_{\Pi}^{I} + I_{\Pi}^{II}},$$

где производная $\frac{d I_{\Pi}}{d \varphi_1}$ может быть получена методом графического дифференцирования:

$$\frac{d I_{\Pi}}{d \varphi_1} = \frac{\mu_I}{\mu_{\varphi}} \operatorname{tg} \alpha,$$

где α - угол наклона касательной к графику $I_{\Pi}^{II}(\phi_1)$ в соответствующей точке.

Для положения 12 находим

$$\frac{d I_{\Pi}}{d \varphi_1} = \frac{0,007}{0,0349} \operatorname{tg} 125^0 = -0,286 \text{ kg} \cdot \text{m}^2,$$

тогда

$$\varepsilon_1 = \frac{446,3 - 302,6 - \frac{7,965^2}{2} \cdot (-0,286)}{267 + 0,05526} = 0,572 \text{ pag/c}^2.$$

Так как $\varepsilon_1 > 0$, то направление ε_1 совпадает с направлением ω_1 . Если же получается, что $\varepsilon_1 < 0$, то направление ε_1 противоположно направлению ω_1 .

3.7. Выводы

Из анализа динамического исследования машины установлено: 1. Для обеспечения вращения звена приведения с заданным коэффициентом неравномерности вращения $\delta = 0,1$ необходимо, чтобы постоянная составляющая приведенного момента инерции I_{Π}^{I} была равна $I_{\Pi}^{I} = 267 \, \mathrm{kr} \cdot \mathrm{m}^{2}$.

2. Так как приведенный момент инерции всех вращающихся звеньев $I_{\Pi}^{0} < I_{\Pi}^{I}$, то на вал кривошипа необходимо установить маховик, момент инерции которого $I_{\rm M} = 250,6 \, {\rm kr} \cdot {\rm m}^2$.

3. Получена графическая зависимость изменения угловой скорости звена приведения $\Delta \omega_1$ после установки маховика, а также значение углового ускорения ε_1 в расчетном положении.

4. ДИНАМИЧЕСКИЙ АНАЛИЗ РЫЧАЖНОГО МЕХАНИЗМА (ЛИСТ 2)

4.1. Задачи и методы динамического анализа механизма

Задачами динамического анализа механизма являются:

- 1) определение реакций в кинематических парах;
- определение уравновешивающего (движущего) момента, действующего на вал кривошипа со стороны привода.

Указанные задачи решаем кинетостатическим методом, основанным на принципе Даламбера. В соответствии с этим принципом, если к числу активных сил и реакций связей, действующих на механическую систему, приложить силы инерции (главные векторы и главные моменты сил инерции) звеньев, то система рассматривается как находящаяся в равновессии и вместо уравнений движения можно записывать уравнения равновесия (статики).

Для определения сил инерции необходимо знать ускорения центров масс и угловые ускорения звеньев. Поэтому силовому анализу предшествует кинематический анализ по известному закону $\omega_1(\phi_1)$ и $\varepsilon_1(\phi_1)$. Задачи кинематики и кинетостатики можно решать как аналитически, так и графически. В данном проекте воспользуемся графическим решением – построением планов скоростей, ускорений и сил.

Расчет выполняем для положения 12.

Примечание. Для расчета выбирается любое положение механизма на рабочем ходу, кроме крайних.

4.2. Кинематический анализ механизма

Изображаем схему механизма в положении 12. Для построения плана скоростей используются методика и уравнения, аналогичные тем, которые были использованы в п.3.2 при построении планов аналогов скоростей. Для положения 12 в п.3.6 были получены $\omega_1 = 7,965 \text{ рад/с}$ и $\varepsilon_1 = 0,572 \text{ рад/с}^2$.

Скорость точки А равна

$$V_A = \omega_1 l_{OA} = 7,965 \cdot 0,091 = 0,725 \text{ M/c}$$
.

Принимаем масштабный коэффициент $\mu_V = 0.01 \frac{M}{c \cdot MM}$.

Тогда отрезок, изображающий V_A, равен

$$pa = \frac{V_A}{\mu_V} = \frac{0,725}{0,01} = 72,5 \,\mathrm{MM}.$$

Выбрав полюс p, откладываем отрезок $pa \perp OA$ в сторону вращения кривошипа.

В группе (2, 3) скорость внутренней точки *В* находим согласно уравнениям

$$\overline{V}_B = \overline{V}_A + \overline{V}_{BA},
\overline{V}_B = \overline{V}_C + \overline{V}_{BC},$$
(4.1)

где \overline{V}_A и \overline{V}_C известны ($\overline{V}_C = 0$), $\overline{V}_{BA} \perp AB$, $\overline{V}_{BC} \perp CB$. Здесь \overline{V}_{BA} - скорость точки *B* при вращении звена 2 относительно точки *A* (относительная скорость), \overline{V}_{BC} - скорость точки *B* при вращении звена 3 относительно точки *C*.

Указанные уравнения решаем графически, для чего через конец вектора $\overline{V}_A(\overline{pa})$ проводим направление \overline{V}_{BA} , а через точку *с* (находится в полюсе *p*) – направление \overline{V}_{BC} . Пересечение направлений определяет положение точки *b*.

Точки d, s_2 , s_3 на плане скоростей находим на основании теоремы подобия:

$$pd = pb\frac{CD}{CB} = 25,5 \cdot \frac{190}{135} = 35,9 \text{ MM},$$

$$as_2 = 0,5(ab) = 0,5 \cdot 69,5 = 34,7 \text{ MM},$$

$$ps_3 = 0,5(pb) = 0,5 \cdot 25,5 = 12,7 \text{ MM}.$$

В группе (4, 5) скорость точки Е находим согласно уравнениям

$$\overline{V}_E = \overline{V}_D + \overline{V}_{ED},$$

$$\overline{V}_E = \overline{V}_{E_0} + \overline{V}_{EE_0},$$
 (4.2)

где $\overline{V}_{ED} \perp DE$, $\overline{V}_{E_0} = 0$, $\overline{V}_{EE_0} / / y - y$ (вертикально вдоль направляющей ползуна).

По теореме подобия

$$ds_4 = 0.5(de) = 0.5 \cdot 12 = 6$$
 MM.

Из плана скоростей находим линейные и угловые скорости:

$$\begin{split} V_B &= (p_B) \mu_V = 25, 5 \cdot 0, 01 = 0, 255 \text{ M/c}, \\ V_D &= (pd) \mu_V = 35, 9 \cdot 0, 01 = 0, 359 \text{ M/c}, \\ V_E &= (pe) \mu_V = 32, 5 \cdot 0, 01 = 0, 325 \text{ M/c}, \\ V_{S_2} &= (ps_2) \mu_V = 41, 5 \cdot 0, 01 = 0, 415 \text{ M/c}, \\ V_{S_3} &= (ps_3) \mu_V = 18 \cdot 0, 01 = 0, 18 \text{ M/c}, \\ V_{S_4} &= (ps_4) \mu_V = 34 \cdot 0, 01 = 0, 34 \text{ M/c}, \\ \omega_2 &= \frac{V_{BA}}{l_{AB}} = \frac{(ab) \mu_V}{l_{AB}} = \frac{69, 5 \cdot 0, 01}{0, 295} = 2, 36 \text{ pag/c}, \\ \omega_3 &= \frac{V_B}{l_{CB}} = \frac{0, 255}{0, 27} = 0, 944 \text{ pag/c}, \\ \omega_4 &= \frac{V_{ED}}{l_{DE}} = \frac{(de) \mu_V}{l_{DE}} = \frac{12 \cdot 0, 01}{0, 1} = 1, 2 \text{ pag/c}. \end{split}$$

Направление угловой скорости ω_2 звена 2 получим, поместив вектор относительной скорости \overline{V}_{BA} (вектор $a\overline{b}$) в точку *B* и рассматривая поворот точки *B* относительно точки *A*. Аналогично определяются направления угловых скоростей остальных звеньев.

Переходим к построению плана ускорений.

Ускорение точки А

$$\overline{a}_A = \overline{a}_A^n + \overline{a}_A^\tau,$$

где \bar{a}_A^n - нормальное ускорение точки *A*, направленное от точки *A* к точке *O*; \bar{a}_A^{τ} - касательное (тангенциальное) ускорение точки *A*, направленное перпендикулярно *OA* в сторону углового ускорения ε_1 .

$$a_A^n = \omega_1^2 l_{OA} = 7,965^2 \cdot 0,091 = 5,773 \text{ M/c}^2,$$

 $a_A^\tau = \varepsilon_1 l_{OA} = 0,572 \cdot 0,091 = 0,052 \text{ M/c}^2.$

Принимаем масштабный коэффициент ускорений $\mu_a = 0.04 \frac{M}{c^2 \cdot MM}$ и находим отрезки, изображающие \overline{a}_A^n и \overline{a}_A^{τ} :

$$\pi n_1 = \frac{a_A^n}{\mu_a} = \frac{5,773}{0,04} = 144,3 \text{ MM},$$
$$n_1 a = \frac{a_A^\tau}{\mu_a} = \frac{0,052}{0,04} = 1,3 \text{ MM}.$$

Из полюса плана ускорений π откладываем отрезок πn_1 в направлении \overline{a}_A^n , а из точки n_1 - отрезок $n_1 a$ в направлении \overline{a}_A^{τ} . Тогда отрезок πa изображает полное ускорение точки A

$$a_A = l_{OA} \sqrt{\omega_1^4 + \varepsilon_1^2} = 0,091 \cdot \sqrt{7,965^4 + 0,572^2} = 5,773 \,\mathrm{m/c^2}$$

Далее на основании теоремы о сложении ускорений в плоском движении составляем векторные уравнения в порядке присоединения структурных групп.

Для определения ускорения точки В используем уравнения

$$\overline{a}_B = \overline{a}_A + \overline{a}_{BA}^n + \overline{a}_{BA}^{\tau},$$

$$\overline{a}_B = \overline{a}_C + \overline{a}_{BC}^n + \overline{a}_{BC}^{\tau},$$
(4.3)

где $\bar{a}_{C} = 0$ (точка *C* неподвижна); \bar{a}_{BA}^{n} и \bar{a}_{BA}^{τ} - нормальная и касательная составляющие ускорения точки *B* при вращательном движении звена 2 относительно точки *A*; \bar{a}_{BC}^{n} и \bar{a}_{BC}^{τ} - нормальная и касательная составляющие ускорения точки *B* при вращательном движении звена 3 вокруг точки *C*. Вектор \bar{a}_{BA}^{n} направлен от точки *B* к точке *A*, \bar{a}_{BA}^{τ} - перпендикулярно *AB*; вектор \bar{a}_{BC}^{n} направлен от точки *B* к точке *C*, \bar{a}_{BC}^{τ} - перпендикулярно *CB*.

$$a_{BA}^{n} = \omega_{2}^{2} l_{AB} = 2,36^{2} \cdot 0,295 = 1,64 \text{ m/c}^{2},$$

$$a_{BC}^{n} = \omega_{3}^{2} l_{CB} = 0,944^{2} \cdot 0,27 = 0,241 \text{ m/c}^{2}.$$

Находим отрезки, изображающие \bar{a}_{BA}^n и \bar{a}_{BC}^n :

$$an_2 = rac{a_{BA}^n}{\mu_a} = rac{1,64}{0,04} = 41 \,\mathrm{MM},$$

 $\pi n_3 = rac{a_{BC}^n}{\mu_a} = rac{0,241}{0,04} = 6 \,\mathrm{MM}.$

Уравнения (4.3) решаем графически. Для этого из точки *а* откладываем отрезок an_2 в направлении \overline{a}_{BA}^n , через точку n_2 проводим линию в направлении \overline{a}_{BA}^{τ} . Затем из точки *c*, которая совпадает с полюсом π , откладываем отрезок πn_3 в направлении \overline{a}_{BC}^n , через точку n_3 проводим линию в направлении \overline{a}_{BC}^{τ} . В

пересечении указанных линий получаем точку b, которую соединяем с полюсом π и получаем отрезок πb , изображающий \overline{a}_{B} .

Точку d на плане ускорений находим по теореме подобия. Для этого вдоль отрезка πb откладываем отрезок πd , который находим из пропорции

$$\frac{\pi d}{\pi b} = \frac{CD}{CB}, \quad \pi d = \pi b \frac{CD}{CB} = 94 \cdot \frac{190}{135} = 132,3 \,\text{MM}.$$

Для определения ускорения точки Е используем уравнения

$$\overline{a}_E = \overline{a}_D + \overline{a}_{ED}^n + \overline{a}_{ED}^\tau,$$

$$\overline{a}_E = \overline{a}_{E_0} + \overline{a}_{EE_0},$$

(4.4)

где \overline{a}_{ED}^{n} и \overline{a}_{ED}^{τ} - нормальная и касательная составляющие относительного ускорения точки *E* (по отношению к точке *D*); $\overline{a}_{E_0} = 0$ (так как точка E_0 , принадлежащая стойке *O* и в данный момент совпадающая с точкой *E*, неподвижна); \overline{a}_{EE_0} относительное ускорение точки *E* по отношению к точке E_0 , направленное вдоль направляющей ползуна, то есть вертикально).

$$a_{ED}^{n} = \omega_{4}^{2} l_{DE} = 1,2^{2} \cdot 0,1 = 0,144 \text{ m/c}^{2}.$$

Отрезок, изображающий \overline{a}_{ED}^n , равен

$$dn_4 = \frac{a_{ED}^n}{\mu_a} = \frac{0,144}{0,04} = 3,6$$
 MM.

В соответствии с уравнениями (4.4) из точки d откладываем отрезок dn_4 в направлении \overline{a}_{ED}^n , из точки n_4 проводим линию в направлении \overline{a}_{ED}^{τ} , а из точки e_0 , расположенной в полюсе π ,

проводим линию в направлении \overline{a}_{EE_0} . В пересечении указанных линий получаем точку e, которую соединяем с полюсом π и получаем отрезок πe , изображающий \overline{a}_E .

Точки s_2 , s_3 , s_4 на плане ускорений находим по теореме подобия (аналогично тому, как это было сделано при построении плана скоростей):

$$as_2 = 0.5(ab) = 0.5 \cdot 57 = 28.5$$
 MM,
 $\pi s_3 = 0.5(\pi b) = 0.5 \cdot 94 = 47$ MM,
 $ds_4 = 0.5(de) = 0.5 \cdot 36 = 18$ MM.

Из плана ускорений находим линейные и угловые ускорения:

$$a_{B} = (\pi b) \mu_{a} = 94 \cdot 0.04 = 3.76 \text{ M/c}^{2},$$

$$a_{D} = (\pi d) \mu_{a} = 132.3 \cdot 0.04 = 5.29 \text{ M/c}^{2},$$

$$a_{E} = (\pi e) \mu_{a} = 127.5 \cdot 0.04 = 5.10 \text{ M/c}^{2},$$

$$a_{S_{2}} = (\pi s_{2}) \mu_{a} = 118 \cdot 0.04 = 4.72 \text{ M/c}^{2},$$

$$a_{S_{3}} = (\pi s_{3}) \mu_{a} = 66 \cdot 0.04 = 2.64 \text{ M/c}^{2},$$

$$a_{S_{4}} = (\pi s_{4}) \mu_{a} = 129 \cdot 0.04 = 5.16 \text{ M/c}^{2},$$

$$\varepsilon_{2} = \frac{a_{BA}^{\tau}}{l_{AB}} = \frac{(n_{2}b) \mu_{a}}{l_{AB}} = \frac{39,5 \cdot 0,04}{0,295} = 5,36 \text{ pad/c}^{2},$$

$$\varepsilon_{3} = \frac{a_{BC}^{\tau}}{l_{CB}} = \frac{(n_{3}b) \mu_{a}}{l_{CB}} = \frac{94 \cdot 0,04}{0,27} = 13,9 \text{ pad/c}^{2},$$

$$\varepsilon_{4} = \frac{a_{ED}^{\tau}}{l_{DE}} = \frac{(n_{4}e) \mu_{a}}{l_{DE}} = \frac{36 \cdot 0,04}{0,1} = 14,4 \text{ pad/c}^{2}.$$

Направление углового ускорения ε_2 звена 2 получим, поместив вектор тангенциального ускорения \overline{a}_{BA}^{τ} (вектор $n_2\overline{b}$) в точку *B* и

рассматривая поворот точки В относительно точки А. Аналогично определяются направления угловых ускорений остальных звеньев.

4.3. Силовой расчет механизма

4.3.1. Определение сил инерции и моментов сил инерции звеньев

Главные векторы сил инерции равны:

$$F_{\rm W1} = m_1 a_{S_1} = 0,$$

так как $a_{S_1} = 0$ (центр масс S_1 находится на оси вращения и является неподвижным);

$$F_{\rm H\,4} = m_4 a_{S_4} = 2,6 \cdot 5,16 = 13,4$$
 H,
 $F_{\rm H\,5} = m_5 a_E = 30 \cdot 5,10 = 153$ H.

Силы инерции приложены в центрах масс и направлены противоположно ускорениям центров масс звеньев.

Главные моменты сил инерции:

$$M_{\rm H1} = I_{\Pi}^{I} \varepsilon_{1} = 267 \cdot 0,572 = 152,7 \text{ H} \cdot \text{m},$$
$$M_{\rm H4} = I_{S4} \varepsilon_{4} = 0,00217 \cdot 14,4 = 0,0312 \text{ H} \cdot \text{m}$$

Моменты сил инерции направлены противоположно угловым ускорениям звеньев.

4.3.2. Кинетостатический силовой анализ механизма

Силовой в порядке. обратном анализ выполняется присоединению структурных групп. Поэтому отделяем OT механизма статически определимую структурную группу (4,5). В пары прикладываем неизвестную по точке *D* вращательной направлению реакцию \overline{F}_{43} на звено 4 со стороны звена 3, которую раскладываем на составляющие - \overline{F}_{43}^n , направленную вдоль звена DE, и \overline{F}_{43}^{τ} , направленную перпендикулярно DE. Реакция на звено 5 со стороны стойки $O \overline{F}_{50}$ приложена в точке E (так как все силы, действующие на звено 5, проходят через эту точку) и направлена перпендикулярно направляющим ползуна.

Составляющую \overline{F}_{43}^{τ} находим из уравнения моментов всех сил, действующих на звено 4, относительно точки *E*:

$$\sum M_E = 0$$
 или $\sum M_E = \frac{M_{\rm H4}}{\mu_l} + F_{\rm H4}h_1 + G_4h_2 - F_{43}^{\tau}DE = 0,$

Откуда

$$F_{43}^{\tau} = \frac{\frac{M_{\rm H4}}{\mu_l} + F_{\rm H4}h_1 + G_4h_2}{DE} = \frac{\frac{0,0312}{0,002} + 13,4 \cdot 6 + 26 \cdot 3}{50} = 3,48 \,\rm H.$$

Здесь плечи сил h_1 , h_2 , *DE* берутся непосредственно из чертежа измерением в миллиметрах.

Примечание. Если окажется, что $F_{43}^{\tau} < 0$, то первоначально выбранное направление F_{43}^{τ} следует изменить на противоположное.

Составляющую \overline{F}_{43}^{n} , полную реакцию \overline{F}_{43} и реакцию \overline{F}_{50} находим путем построения плана сил согласно уравнению

равновесия группы, которое записываем в соответствии с принципом Даламбера:

$$\overline{F}_{43}^{n} + \overline{F}_{43}^{\tau} + \overline{F}_{H4} + \overline{G}_{4} + \overline{F}_{H5} + \overline{G}_{5} + \overline{F}_{5} + \overline{F}_{50} = 0$$
(4.5)

Принимаем масштабный коэффициент сил $\mu_F = 40 \frac{H}{MM}$ и находим отрезки, изображающие все известные силы:

$$\begin{bmatrix} 1-2 \end{bmatrix} = \frac{F_{43}^{\tau}}{\mu_F} = \frac{3,5}{40} = 0,087 \text{ MM};$$

$$\begin{bmatrix} 2-3 \end{bmatrix} = \frac{F_{\text{H4}}}{\mu_F} = \frac{13,4}{40} = 0,3 \text{ MM};$$

$$\begin{bmatrix} 3-4 \end{bmatrix} = \frac{G_4}{\mu_F} = \frac{25,5}{40} = 0,6 \text{ MM};$$

$$\begin{bmatrix} 4-5 \end{bmatrix} = \frac{F_{\text{H5}}}{\mu_F} = \frac{153}{40} = 3,8 \text{ MM};$$

$$\begin{bmatrix} 5-6 \end{bmatrix} = \frac{G_5}{\mu_F} = \frac{294}{40} = 7,3 \text{ MM};$$

$$\begin{bmatrix} 6-7 \end{bmatrix} = \frac{F_5}{\mu_F} = \frac{7700}{40} = 192,5 \text{ MM};$$

В соответствии с векторным уравнением (4.5) последовательно откладываем отрезки [1-2], [2-3] и т.д. в направлении соответствующих сил. Затем из точки 1 проводим направление силы \overline{F}_{43}^n , а из точки 7 – направление силы \overline{F}_{50} . В пересечении этих направлений получаем точку 8. Тем самым многоугольник сил оказывается замкнутым. В результате находим

$$F_{43}^{n} = [8-1] \mu_{F} = 182 \cdot 40 = 7280 \text{ H},$$

$$F_{43} = [8-2] \mu_{F} = 182 \cdot 40 = 7280 \text{ H},$$

47

$$F_{50} = [7 - 8] \mu_F = 17 \cdot 40 = 680 \,\mathrm{H}.$$

Реакцию \overline{F}_{54} , действующую на звено 5 со стороны звена 4 и приложенную в точке E, находим из уравнения равновесия звена 5:

$$\overline{F}_{H5} + \overline{G}_5 + \overline{F}_5 + \overline{F}_{50} + \overline{F}_{54} = 0$$
 (4.6)

Для этого согласно уравнению (4.6) на построенном плане сил достаточно соединить точки 8 и 4. Тогда

$$F_{54} = [8 - 4] \mu_F = 182 \cdot 40 = 7280 \text{ H}.$$

Далее рассматриваем структурную группу (2,3). В точке D прикладываем известную реакцию $\overline{F}_{34} = -\overline{F}_{43}$, в точке A - реакцию со стороны звена 1 \overline{F}_{21} и в точке C - реакцию со стороны стойки O \overline{F}_{30} . Реакцию \overline{F}_{21} раскладываем на составляющие - \overline{F}_{21}^{n} , направленную вдоль звена AB, и \overline{F}_{21}^{τ} , направленную перпендикулярно AB. Аналогичным образом раскладываем реакцию \overline{F}_{30} на \overline{F}_{30}^{τ} .

Составляющую \overline{F}_{21}^{τ} находим из уравнения моментов всех сил, действующих на звено 2, относительно точки *B*:

$$\sum M_B = 0$$
 или $\sum M_B = -F_{21}^{\tau} AB = 0$,

откуда $\overline{F}_{21}^{\tau} = 0.$

Составляющую \overline{F}_{30}^{τ} определяем из уравнения моментов всех сил, действующих на звено 3, относительно точки *B*:

$$\sum M_B = 0$$
 или $\sum M_B = F_{34} h_5 + F_{30}^{\tau} CB = 0.$

откуда

$$F_{30}^{\tau} = \frac{-F_{34}h_5}{CB} = \frac{-7280\cdot 50}{135} = -2696,3 \,\mathrm{H}.$$

Для определения \overline{F}_{21}^{n} , \overline{F}_{21} , \overline{F}_{30}^{n} , \overline{F}_{30} строим план сил согласно уравнению равновесия группы:

$$\overline{F}_{21}^{n} + \overline{F}_{34} + \overline{F}_{30}^{\tau} + \overline{F}_{30}^{n} = 0.$$
(4.7)

Принимаем масштабный коэффициент сил $\mu_F = 40 \frac{\text{H}}{\text{мм}}$ и находим отрезки, изображающие известные силы F_{34} и F_{30}^{τ} :

$$[1-2] = \frac{F_{34}}{\mu_F} = \frac{7280}{40} = 182$$
 MM;
 $[2-3] = \frac{F_{30}^{\tau}}{\mu_F} = \frac{2696,3}{40} = 67,4$ MM.

Согласно уравнению (4.7) последовательно откладываем отрезки [1-2], [2-3] в направлении соответствующих сил. Затем из точки 1 проводим направление силы \overline{F}_{21}^n , а из точки 3 – направление силы \overline{F}_{30}^n . В пересечении этих направлений получаем точку 4. В результате из плана сил находим

$$F_{21} = F_{21}^{n} = [4-1] \mu_{F} = 226,5 \cdot 40 = 9060 \text{ H},$$

$$F_{30}^{n} = [3-4] \mu_{F} = 90,5 \cdot 40 = 3620 \text{ H},$$

$$F_{30} = [2-4] \mu_{F} = 114 \cdot 40 = 4560 \text{ H}.$$

Реакцию \overline{F}_{32} , действующую на звено 3 со стороны звена 2 во внутренней кинематической паре *B*, находим из уравнения равновесия звена 3:

$$\overline{F}_{34} + \overline{F}_{30} + \overline{F}_{32} = 0.$$
(4.8)

Для этого согласно уравнению (4.8) на построенном плане сил достаточно соединить точки 4 и 1. Тогда

$$F_{32} = [4-1] \mu_F = 226, 5 \cdot 40 = 9060 \text{ H}$$

В заключение рассматриваем начальное звено – кривошип 1. В точке A прикладываем известную реакцию $\overline{F}_{12} = -\overline{F}_{21}$, а в точке O - реакцию \overline{F}_{10} со стороны стойки O, которую находим путем построения плана сил согласно уравнению равновесия:

$$\overline{F}_{12} + \overline{G}_1 + \overline{F}_{10} = 0. \tag{4.9}$$

Масштабный коэффициент сил $\mu_F = 40 \frac{H}{MM}$. Отрезки, изображающие известные силы:

$$[1-2] = \frac{F_{12}}{\mu_F} = \frac{9060}{40} = 226,5$$
 MM
 $[2-3] = \frac{G_1}{\mu_F} = \frac{490}{40} = 12,5$ MM.

Согласно уравнению (4.9) откладываем отрезки [1-2] и [2-3] в направлении сил \overline{F}_{21} и \overline{G}_1 , а затем, замыкая треугольник сил, соединяем точку 3 с точкой 1 отрезком [3-1]. Тогда

$$F_{10} = [3-1] \mu_F = 215, 5 \cdot 40 = 8620 \text{ H}.$$

Уравновешивающий (движущий) момент M_V находим из уравнения моментов

$$\sum M_0 = F_{12} h_1 \mu_l + M_{\rm H1} - M_{\rm Y} = 0,$$

откуда

$$M_{\rm Y} = F_{12} h_1 \mu_l + M_{\rm H1} = 9060 \cdot 16,5 \cdot 0,002 + 152,7 = 451,68 \,\mathrm{H} \cdot \mathrm{M}.$$

5. ПРОЕКТИРОВАНИЕ КУЛАЧКОВОГО МЕХАНИЗМА (ЛИСТ 3)

5.1. Задачи проектирования. Исходные данные

Задачами проектирования кулачкового механизма являются:

- 1) определение основных размеров из условия ограничения угла давления;
- 2) построение профиля кулачка, обеспечивающего заданный закон движения толкателя.

Исходными данными для синтеза являются схема механизма (рис. 5.1) и параметры, приведенные в табл. 5.1.

Рис. 5.1

Таблица 5.1

Ход	Фаз	овые у	глы,		Закон д	Закон движения		
толка-		град		θ_{max} ,	толкателя			
теля	Юv			грал	при удале-	при возвра-		
<i>h</i> , м	ΨУ	ΨДС	ΨB	- P	нии	щении		
0,06	80	20	80	30	треуголь- ный	косинусо- идальный		

Графическая часть раздела 5 приведена в приложении 3.

5.2. Определение кинематических характеристик толкателя

Движение толкателя характеризуется зависимостями перемещения $S_{\rm T}$, аналога скорости $S_{\rm T}^{\ \prime}$, аналога ускорения $S_{\rm T}^{\ \prime\prime}$ от угла поворота кулачка $\varphi_{\rm 1}$.

Рабочий угол кулачка равен

$$\varphi_{\rm P} = \varphi_{\rm y} + \varphi_{\rm AC} + \varphi_{\rm B} = 80 + 20 + 80 = 180^{\circ},$$

а в радианах

$$\varphi_{\rm P}^{\rm P} = \frac{\varphi_{\rm P} \cdot \pi}{180} = \frac{180 \cdot \pi}{180} = 3,14$$
 pag.

Фазовые углы в радианах равны

$$\varphi_{y}^{P} = \frac{\varphi_{y} \cdot \pi}{180} = \frac{80 \cdot \pi}{180} = 1,3963 \text{ рад,}$$
$$\varphi_{DC}^{P} = \frac{\varphi_{DC} \cdot \pi}{180} = \frac{20 \cdot \pi}{180} = 0,349 \text{ рад,}$$
$$\varphi_{B}^{P} = \frac{\varphi_{B} \cdot \pi}{180} = \frac{80 \cdot \pi}{180} = 1,3963 \text{ рад.}$$

Примем отрезок [1-18], изображающий на графиках рабочий угол ϕ_P , равным 270 мм. Тогда масштабный коэффициент μ_{ϕ} будет равен

$$\mu_{\phi} = \frac{\phi_{P}}{[1-18]} = \frac{180}{270} = 0,6667 \text{ град/мм},$$

а отрезки, изображающие на графиках фазовые углы:

$$\begin{bmatrix} 1-9 \end{bmatrix} = \frac{\phi_{y}}{\mu_{\phi}} = \frac{80}{0,6667} = 120 \text{ MM},$$
$$\begin{bmatrix} 9-10 \end{bmatrix} = \frac{\phi_{AC}}{\mu_{\phi}} = \frac{20}{0,6667} = 30 \text{ MM},$$
$$\begin{bmatrix} 10-18 \end{bmatrix} = \frac{\phi_{B}}{\mu_{\phi}} = \frac{80}{0,6667} = 120 \text{ MM}.$$

Каждый из отрезков [1-9] и [10-18] делим на 8 равных частей.

Примечание. Если интервал [9–10], соответствующий углу $\varphi_{\text{дC}}$, получается большим, то на графиках его можно изобразить с разрывом.

Для определения $S_{T}(\varphi_{1})$, $S_{T}'(\varphi_{1})$, $S_{T}''(\varphi_{1})$ используем аналитические зависимости [2] для соответствующих законов движения. Так как на фазе удаления толкатель движется по треугольному закону, то расчетные формулы имеют вид:

$$S_{\mathbf{y}}^{\prime\prime} = \begin{cases} \frac{32k \cdot h}{\left(\phi_{\mathbf{y}}^{\mathbf{P}}\right)^{2}} & \text{при } 0 \le k \le 0,25, \\ \frac{16h \cdot (1-2k)}{\left(\phi_{\mathbf{y}}^{\mathbf{P}}\right)^{2}} & \text{при } 0,25 \le k \le 0,75, \\ \frac{32h \cdot (k-1)}{\left(\phi_{\mathbf{y}}^{\mathbf{P}}\right)^{2}} & \text{при } 0,75 \le k \le 1. \end{cases}$$

$$S_{\mathbf{y}}^{\prime} = \begin{cases} \frac{16k^2 \cdot h}{\varphi_{\mathbf{y}}^{\mathbf{p}}} & \text{при } 0 \le k \le 0,25, \\ \frac{h \cdot \left[16k \cdot (1-k) - 2\right]}{\varphi_{\mathbf{y}}^{\mathbf{p}}} & \text{при } 0,25 \le k \le 0,75, \\ \frac{16h \cdot (1-k)^2}{\varphi_{\mathbf{y}}^{\mathbf{p}}} & \text{при } 0,75 \le k \le 1. \end{cases}$$
$$S_{\mathbf{y}} = \begin{cases} \frac{16k^3 \cdot h}{3} & \text{при } 0 \le k \le 0,25, \\ h \cdot \left[\frac{1}{6} - 2k \cdot (1-4k) - \frac{16k^3}{3}\right] & \text{при } 0,25 \le k \le 0,75, \\ h \cdot \left[1 - \frac{16 \cdot (1-k)^3}{3}\right] & \text{при } 0,75 \le k \le 1. \end{cases}$$

где $k = \frac{\phi}{\phi_y}$ - позиционный коэффициент (отношение текущего угла

поворота кулачка Ф к фазовому углу Фу), изменяющийся от 0 до 1.

На фазе возвращения (косинусоидальный закон изменения аналога ускорения толкателя):

$$S_{\rm B}^{\prime\prime} = \frac{\pi^2 \cdot h}{2\left(\phi_{\rm B}^{\rm P}\right)^2} \cdot \cos\left(\pi \cdot k\right),$$
$$S_{\rm B}^{\prime} = -\frac{\pi \cdot h}{2\phi_{\rm B}^{\rm P}} \cdot \sin\left(\pi \cdot k\right),$$
$$S_{\rm B} = \frac{h}{2} \cdot \left[1 - \cos(\pi \cdot k)\right]$$

где $k = \frac{\phi}{\phi_{\rm B}}$ - позиционный коэффициент ($0 \le k \le 1$), причем на

фазе возвращения отсчет коэффициента k должен производиться с конца фазы.

Приводим пример расчета кинематических характеристик на фазах удаления и возвращения.

Для положения 6 на фазе удаления ($\phi_6 = 50^0$)

$$k_6 = \frac{\varphi_6}{\varphi_V} = \frac{50}{80} = 0,625.$$

При $k_6 = 0,625$ используется формула для участка $0,25 \le k \le 0,75$:

$$\begin{split} S_6^{//} &= \cdot \frac{16 \cdot 0,06 \cdot \left(1 - 2 \cdot 0,625\right)}{1,3963^2} = -0,1231 \text{ m}, \\ S_6^{/} &= \frac{0,06 \cdot \left[16 \cdot 0,625 \cdot \left(1 - 0,625\right) - 2\right]}{1,3963} = 0,0752 \text{ m}, \\ S_6 &= 0,06 \cdot \left[\frac{1}{6} - 2 \cdot 0,625 \cdot \left(1 - 4 \cdot 0,625\right) - \frac{16 \cdot 0,625^3}{3}\right] = 0,04437 \text{ m}. \end{split}$$

Для положения 15 на фазе возвращения (с учетом определения ϕ_{15} от конца фазы $\phi_{15} = 30^0$)

$$k_{15} = \frac{\phi_{15}}{\phi_{\rm B}} = \frac{30}{80} = 0,375.$$

$$S_{15}^{\prime\prime\prime} = \frac{\pi^2 \cdot 0,06}{2 \cdot 1,3963^2} \cdot \cos(\pi \cdot 0,375) = 0,0581 \,\mathrm{M},$$

$$S_{15}^{\prime} = -\frac{\pi \cdot 0,06}{2 \cdot 1,3963} \cdot \sin(\pi \cdot 0,375) = -0,0624 \,\mathrm{M},$$

$$S_{15} = \frac{0,06}{2} \left[1 - \cos(\pi \cdot 0,375)\right] = 0,01852 \,\mathrm{M}.$$

55

Результаты определения $S_{\rm T}$, $S_{\rm T}^{\,\prime}$, и $S_{\rm T}^{\,\prime\prime}$ приведены в табл. 5.2, на основании их построены графики $S_{\rm T}(\varphi_1)$, $S_{\rm T}^{\,\prime\prime}(\varphi_1)$, $S_{\rm T}^{\,\prime\prime}(\varphi_1)$.

						1.	аозппца – 5.2.
Фаза	№ пол.	k	φ		Ѕ ″, м	Ѕ/,м	<i>S</i> _т ,м
			град	рад	1	1	1
Удаления	1	0	0	0	0	0	0
	2	1/8	10	0,1745	0,1231	0,01074	0,00063
	3	2/8	20	0,3491	0,2462	0,04297	0,005
	4	3/8	30	0,5236	0,1231	0,07520	0,01563
	5	4/8	40	0,6981	0	0,08594	0,03
	6	5/8	50	0,8727	-0,1231	0,07520	0,04437
	7	6/8	60	1,0472	-0,2462	0,04297	0,055
	8	7/8	70	1,2217	-0,1231	0,01074	0,05937
	9	1	80	1,3963	0	0	0,06
Возвращения	10	1	80	1,3963	-0,1519	0	0,06
	11	7/8	70	1,2217	-0,1403	-0,0258	0,05772
	12	6/8	60	1,0472	-0,1074	-0,0477	0,05121
	13	5/8	50	0,8727	-0,0581	-0,0624	0,04148
	14	4/8	40	0,6981	0	-0,0675	0,03
	15	3/8	30	0,5236	0,0581	-0,0624	0,01852
	16	2/8	20	0,3491	0,1074	-0,0477	0,00879
	17	1/8	10	0,1745	0,1403	-0,0258	0,00228
	18	0	0	0	0,1519	0	0

Таблица 5.2.

Масштабные коэффициенты равны

$$\mu_{S''} = \frac{S_{\text{max}}^{//}}{y_{S_{\text{max}}^{//}}} = \frac{0,2462}{82,1} = 0,003 \text{ м/мм},$$
$$\mu_{S'} = \frac{S_{\text{max}}^{/}}{y_{S_{\text{max}}^{/}}} = \frac{0,08594}{85,9} = 0,001 \text{ м/мм},$$

$$\mu_S = \frac{h}{y_{S_{\text{max}}}} = \frac{0.06}{60} = 0.001 \text{ м/мм.}$$

Примечание. Равенство коэффициентов $\mu_{S} = \mu_{S'}$ обязательно для последующих построений.

Ординаты графиков вычисляются как

$$y_{S''} = \frac{S_T''}{\mu_{S''}}; \quad y_{S'} = \frac{S_T}{\mu_{S'}}; \quad y_S = \frac{S_T}{\mu_S}.$$

Например,

$$y_{S_{6}^{/\prime}} = \frac{S_{6}^{/\prime}}{\mu_{S^{\prime\prime}}} = -\frac{0,1231}{0,003} = -41 \text{ MM},$$

$$y_{S_{6}^{\prime}} = \frac{S_{6}^{\prime}}{\mu_{S^{\prime}}} = \frac{0,0752}{0,001} = 75,2 \text{ MM},$$

$$y_{S_{6}} = \frac{S_{6}}{\mu_{S}} = \frac{0,04437}{0,001} = 44,4 \text{ MM},$$

$$y_{S_{15}^{\prime\prime}} = \frac{S_{15}^{\prime\prime}}{\mu_{S^{\prime\prime}}} = \frac{0,0581}{0,003} = 19,4 \text{ MM},$$

$$y_{S_{15}^{\prime\prime}} = \frac{S_{15}^{\prime}}{\mu_{S^{\prime\prime}}} = -\frac{0,0624}{0,001} = -62,4 \text{ MM},$$

$$y_{S_{15}} = \frac{S_{15}}{\mu_{S}} = \frac{0,01852}{0,001} = 18,5 \text{ MM}.$$

Примечание График $S_{T}^{\prime}(\varphi_{1})$ можно построить также путем графического интегрирования графика $S_{T}^{\prime\prime}(\varphi_{1})$, а график $S_{T}(\varphi_{1})$ - путем

57

графического интегрирования графика $S_{T}'(\varphi_{1})$. При этом для получения равенства масштабных коэффициентов $\mu_{S} = \mu_{S'}$ полюсное расстояние *h* следует определять по формуле $h = \frac{1}{\mu_{\infty}}$.

При построении графиков кинематических характеристик можно использовать также известные геометрические приемы построения синусоиды, параболы и др. простых кривых [2]. В этом случае предварительно определяются максимальные значения S_T^{\prime} и $S_T^{\prime\prime}$, например,

$$S_{y \max}^{\prime\prime} = \frac{8h}{\left(\varphi_{y}^{P}\right)^{2}} = \frac{8 \cdot 0,06}{1,3963^{2}} = 0,2462 \text{ M},$$

$$S_{y \max}^{\prime} = \frac{2h}{\varphi_{y}^{P}} = \frac{2 \cdot 0,06}{1,3963} = 0,08594 \text{ M},$$

$$S_{B\max}^{\prime\prime} = \frac{\pi^{2}h}{2\left(\varphi_{B}^{P}\right)^{2}} = \frac{\pi^{2} \cdot 0,06}{2 \cdot 1,3963^{2}} = 0,1519 \text{ M}.$$

$$\left|S_{B}^{\prime\prime}\right|_{\max} = \frac{\pi h}{2\varphi_{B}^{P}} = \frac{\pi \cdot 0,06}{2 \cdot 1,3963} = 0,0675 \text{ M}.$$

5.3. Определение основных размеров кулачкового механизма

Минимальный радиус-вектор r_0 центрового профиля кулачка и эксцентриситет (смещение) e толкателя определяются из условия, что угол давления θ в проектируемом механизме во всех положениях не должен превышать максимально допустимой величины $\theta_{\text{max}} = 30^0$.

Решение указанной задачи выполняем графическим методом. Для этого на основании графиков $S_{T}(\phi_{1})$ и $S_{T}'(\phi_{1})$ строим

совмещенную диаграмму $S_T^{\prime}(S_T)$, при этом ординаты S_T^{\prime} откладываются повернутыми на 90⁰ в сторону вращения кулачка. К построенным кривым слева и справа проводим касательные под углом $\theta_{\text{max}} = 30^0$ к оси S_T . Ниже точки пересечения этих касательных находится зона, в которой можно выбирать центр вращения кулачка из условия $\theta_i \leq \theta_{\text{max}}$. Наименьшие габариты механизма получаются, если центр вращения выбрать в точке пересечения касательных. Из чертежа находим

$$r_0 = OA_1 \cdot \mu_S = 110 \cdot 0,001 = 0,11$$
 м,
 $e = OB \cdot \mu_S = 9 \cdot 0,001 = 0,009$ м.

Примечание. Рассмотренная методика используется в случае геометрического (кинематического) замыкания высшей пары. В случае силового замыкания с помощью пружины достаточно построить диаграмму $S'_{T}(S_{T})$ только для фазы удаления, так как при возвращении толкатель движется под действием пружины и опасность заклинивания механизма вследствие превышения угла θ_{max} не возникнет. Однако и при силовом замыкании можно поступить так же, как и при геометрическом, если принять, что кулачок может работать в реверсируемом режиме, то есть может вращаться в противоположную сторону.

5.4. Построение профиля кулачка

Используем графический способ построения центрового профиля кулачка по точкам, применяя метод обращения движения. В соответствии с этим методом кулачок в обращенном движении остается неподвижным, а толкатель обкатывается по кулачку, вращаясь в направлении, противоположном вращению кулачка, и все время касаясь окружности радиуса *e*.

Проводим две окружности радиуса e и r_0 и вертикальную касательную к окружности радиуса e (линию движения толкателя). В соответствии с графиком $S_{T}(\phi_1)$ наносим разметку хода

толкателя $A_1, A_2, A_3, ..., A_9$ для фазы удаления. От луча OA_9 в действительному направлении. противоположном вращению откладываем фазовые поворота кулачка, углы кулачка φ_y, φ_{лC}, φ_B. Дугу, соответствующую углу φ_y, делим на 8 равных частей в соответствии с графиком $S_{T}(\phi_{1})$ и получаем точки 1, 2, 3, ..., 9, через которые проводим касательные к окружности радиуса e. Затем радиусами OA_1 , OA_2 , OA_3 ,..., OA_9 проводим дуги до пересечения с соответствующими касательными в точках $1', 2', 3', \dots, 9'$, которые являются положениями центра ролика в обращенном движении. Соединяя полученные точки плавной кривой, получаем центровой профиль кулачка для фазы удаления.

Для фазы возвращения все построения выполняются аналогичным образом.

Профиль дальнего стояния очерчивается по дуге окружности радиуса $r_{\text{max}} = OA_9$, а профиль ближнего стояния – по дуге окружности r_0 .

Радиус ролика выбирается с учетом двух условий:

1) $r_{\rm p} \le 0.4 \cdot r_0$ (конструктивное условие);

2) $r_{\rm p} \le 0.7 \cdot \rho_{\rm min}$ (условие отсутствия заострения действительного профиля кулачка), где р_{min} - минимальный радиус кривизны выпуклых участков центрового профиля кулачка. Радиус ρ_{min} с помощью следующего построения. В определяется зоне наибольшей кривизны центрового профиля отмечаем точку. Вблизи от нее на равном расстоянии отмечаем еще две точки и соединяем их с первой хордами. Через середины полученных хорд проводим к ним перпендикуляры, пересекающиеся в точке, которая является центром окружности, проходящей через все три точки. Радиус этой окружности приближенно можно принять за р_{min}.

Тогда

$$\rho_{\min} = 67 \cdot \mu_S = 67 \cdot 0,001 = 0,067$$
 м.

$$r_{\rm p} \le 0.4 r_0 = 0.4 \cdot 0.11 = 0.044$$
 м,
 $r_{\rm p} \le 0.7 \,
ho_{\rm min} = 0.7 \cdot 0.067 = 0.047$ м.

Принимаем радиус ролика $r_{\rm p} = 0.04$ м.

Действительный профиль кулачка строим в виде эквидистантной кривой по отношению к центровому профилю. Для ее построения из точек центрового профиля описываем ряд дуг радиусом r_p . Огибающая всех этих дуг и представляет собой действительный профиль кулачка.

5.5. Определение углов давления

Угол давления в каждом положении механизма определяется из зависимости

$$tg \theta = \frac{S_{\rm T}^{\,\prime} - k \, e}{\sqrt{r_0^2 - e^2} + S_{\rm T}},$$

где k = +1 при вращении кулачка против часовой стрелки или k = -1 при вращении кулачка по часовой стрелке.

Смещение *е* берется со знаком «плюс», если толкатель расположен справа от центра вращения кулачка, или со знаком «минус», если толкатель расположен слева.

Для проектируемого механизма имеем k = -1, e = -0,009 м, $r_0 = 0,11$ м. Значения перемещения $S_{\rm T}$ и аналога скорости $S_{\rm T}^{\,\prime}$ толкателя берутся из табл.5.2 (при этом на фазе возвращения $S_{\rm T}^{\,\prime} < 0$).

Результаты определения угла давления θ приведены в табл. 5.3, на основании которой построен график $\theta(\phi)$. Масштабный коэффициент

$$\mu_{\theta} = \frac{\theta_{\max}}{y_{\theta\max}} = \frac{30}{30} = 1 \text{ град/мм}.$$

Примечание. Угол давления θ можно также определять графически из диаграммы $S_{T}^{\prime}(S_{T})$. Для этого концы ординат S_{T}^{\prime} следует соединить с точкой *O* (центром вращения кулачка). Тогда угол между ординатой S_{T}^{\prime} и соответствующим лучом, выходящим из точки *O*, равен углу $(90^{0} - \theta)$ в конкретном положении механизма.

Таблица 5.3

№ пол	θ, град	${\mathcal Y}_{ {\boldsymbol heta}}$, MM	№ пол	θ, град	${\mathcal Y}_{ {f heta}}$, MM
1	-4,7	-4,7	10	-3,0	-3,0
2	0,9	0,9	11	-11,8	-11,8
3	16,5	16,5	12	-19,4	-19,4
4	27,9	27,9	13	-25,3	-25,3
5	28,9	28,9	14	-28,7	-28,7
6	23,3	23,3	15	-29,1	-29,1
7	11,7	11,7	16	-25,6	-25,6
8	0,6	0,6	17	-17,3	-17,3
9	-3,0	-3,0	18	-4,7	-4,7

5.6. Выводы

Спроектирован кулачковый механизм минимальных размеров, обеспечивающий движение толкателя по заданным законам. Угол давления во всех положениях не превышает заданного допускаемого угла θ_{max} .

ЛИТЕРАТУРА

- 1. Теория механизмов, машин и манипуляторов. Курсовое проектирование: Учебно-методическое пособие для студ.-заочников машиностроит. спец. / П.П.Анципорович [и др.] Мн.: БНТУ, 2004. 67с.
- Синтез кулачковых механизмов: учебно-методическое пособие по курсовому проектированию по дисциплине «Теория механизмов, машин и манипуляторов» / П.П. Анципорович [и др.] – Минск: БНТУ, 2010. – 65 с.
- 3. Курсовое проектирование по теории механизмов и машин / Под общ. ред. Г.Н. Девойно. Мн.: Выш. шк., 1986. 285 с.
- Попов, С.А. Курсовое проектирование по теории механизмов и механике машин / С.А. Попов, Г.А. Тимофеев – 2-е изд., перераб. и доп. – М.: Высш. шк., 1998. – 351 с.
- 5. Теория механизмов и механика машин / К.В. Фролов [и др.] 3е изд. – М.: Высш. шк., 2001. – 496 с.
- Филонов, И.П. Теория механизмов, машин и манипуляторов / И.П. Филонов, П.П. Анципорович, В.К. Акулич.– Мн.: Дизайн ПРО, 1998. – 656 с.

Приложения

Учебное издание

АНЦИПОРОВИЧ Петр Петрович АКУЛИЧ Валерий Константинович ДУБОВСКАЯ Елена Михайловна

ТЕОРИЯ МЕХАНИЗМОВ, МАШИН И МАНИПУЛЯТОРОВ

Курсовое проектирование

Учебно-методическое пособие для студентов-заочников машиностроительных специальностей

Технический редактор Е. О. Германович

Подписано в печать 07.08.2017. Формат 60×84¹/₁₆. Бумага офсетная. Ризография. Усл. печ. л. 3,79 + 0,35. Уч.-изд. л. 2,96 + 0,14. Тираж 300. Заказ 907.

Издатель и полиграфическое исполнение: Белорусский национальный технический университет. Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/173 от 12.02.2014. Пр. Независимости, 65. 220013, г. Минск.