ОПРЕДЕЛЕНИЕ ТЕРМООПТИЧЕСКИХ ПОСТОЯННЫХ В АНИЗОТРОПНОМ ЛАЗЕРНОМ КРИСТАЛЛЕ Nd³⁺:YVO₄

Магистрант Лойко П.А.,

доктор физ.-мат.наук, профессор Юмашев К.В. Белорусский национальный технический университет

Кристалл иттриевого ванадата YVO₄, активированный ионами неодима Nd³⁺, является перспективной средой для создания мощных компактных твердотельных лазеров с диодной накачкой [1]. Для характеристики термических искажений активной среды таких лазеров используют термооптические постоянные $W = (dn/dT + (n-1)\alpha)$, где dn/dT — температурный коэффициент показателя преломления n (определяется поляризацией излучения E и длиной волны λ), а α — коэффициент линейного термического расширения (определяется направлением распространения излучения k).

Для определения величин W использовался метод отклонения пробного пучка в среде с линейным градиентом температуры [2]. В качестве пробного использовалось излучение He-Ne лазера (длина волны $\lambda = 632,8$ нм) и микрочиплазера на кристалле Nd³⁺:YAG (λ = 1064 нм). Излучение в обоих случаях было линейно поляризованным. Исследуемый кристалл Nd³⁺(0,4 at,%); YVO₄ имел размерами $4.0 \text{ мм} \times 4.0 \text{ мм} \text{ (торец)} \times 8.0 \text{ мм (длина)}.$ параллелепипеда Противоположные торцы кристалла были полированными. Излучение в кристалле распространялось вдоль длинной грани, параллельно кристаллографической оси a(k//a). При этом ось c кристалла была расположена ортогонально к направлению распространения излучения. Верхняя и нижняя кристалла поддерживались при постоянных низкой и температурах соответственно, что приводило к возникновению в кристалле вертикального линейного градиента температуры. Отклонение регистрировалось на ПЗС-камере.

Для двух поляризаций пробного излучения E // a и E // c термо-оптические постоянные $W_1=(dn_a/dT+(n_a-1)\alpha_a)$ и $W_2=(dn_c/dT+(n_c-1)\alpha_a)$. Измеренные экспериментально значения $W_1=11,2\times 10^{-6}~{\rm K}^{-1}$ и $W_2=6,8\times 10^{-6}~{\rm K}^{-1}$ ($\lambda=632,8~{\rm hm}$), $W_1=8,3\times 10^{-6}~{\rm K}^{-1}$ и $W_2=3,6\times 10^{-6}~{\rm K}^{-1}$ ($\lambda=1064~{\rm hm}$). Они являются положительными для обеих поляризаций и уменьшаются с увеличением длины волны излучения. Значения температурного коэффициента показателя преломления в кристалле Nd^{3+} :YVO4 удовлетворяют соотношению $dn_a/dT > dn_c/dT$.

Литература

- 1. H.C. Liang, et.al. Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd: YVO_4 laser / Optics Express 25, 21149 (2008).
- 2. S. Vatnik, et.al. Thermo optic coefficients of monoclinic $KLu(WO_4)_2$ / Appl. Phys. B 95, 653 (2009).