УДК 621.311.25

ВЕДЕНИЕ ВОДНО-ХИМИЧЕСКОГО РЕЖИМА II КОНТУРА С ДОЗИРОВАНИЕМ ОРГАНИЧЕСКИХ АМИНОВ НА АЭС С ВВЭР-1200

Струй Е.В.

Научный руководитель – к.т.н., доцент Чиж В.А.

Ввод в эксплуатацию в 2018 г Белорусской АЭС уже сейчас ставит вопрос обоснованного выбора оптимального водно-химического режима (ВХР) I и II контуров энергоблока ВВЭР-1200. Отсутствие своего опыта эксплуатации АЭС требует тщательного изучения зарубежных водо-водяных ядерных реакторов.

Надежность работы любого элемента теплоэнергетического оборудования определяется взаимным влиянием трех факторов:

- конструкцией аппарата;
- конструкционными материалами;
- водно-химическим режимом (коррозионная агрессивность теплоносителя).

Водно-химический режим АЭС является одним из важнейших факторов, влияющих на надежность, экономичность и безопасность эксплуатации. Создание и поддержание таких физико-химических свойств теплоносителей, которые способствовали бы предотвращению коррозионных повреждений конструкционных материалов оборудования и образования отложений на его поверхностях, - актуальная проблема и в настоящее время. Водно-химический режим должен быть организован таким образом, чтобы обеспечивались целостность защитных барьеров (оболочек ТВЭЛов и границ контура теплоносителя), выполнения требований к радиационной безопасности, а также надежности работы оборудования второго контура.

Теплоносители I и II контуров необходимо подвергать тщательной очистки, и он должен соответствовать строго установленным нормам качества.

В первом реакторном отделении основную опасность предоставляют продукты коррозии, конструктивные материалы которых, как правило, оседают на ТВЭЛах.

BXP первого контура достаточно стабильно поддерживает установленные нормы теплоносителя, дозированные аммиаком, КОН с регулированием реактивности борной кислоты (т.е. слабощелочной восстановительный режим).

Важнейшими задачами организации оптимального BXP II контура AЭC с BBЭР являются:

- повышение надежности работы оборудования;
- уменьшение выноса продуктов коррозии конструкционных материалов в парогенератор (ПГ);
 - высокое качество добавочной воды для восполнения потерь в цикле;
 - эффективная деаэрация теплоносителя;
 - оптимизация коррекционной обработки конденсата турбины и питательной воды ПГ;
 - надежный автоматический и ручной химический контроль;
- •высокая плотность конденсатного тракта, находящегося под вакуумом и трубок конденсаторов турбины;
 - минимизация скорости коррозионно-эрозионного износа оборудования.

Особенно сложная задача - подавление коррозии-эрозии оборудования, работающего в области влажного пара и двухфазных потоков. Поступление продуктов коррозии железа в питательную воду в основном из пароводяного тракта II контура.

Парогенератор не может быть отключен, он радиоактивен, закрыт теплоизоляцией, помещен в бокс, который расположен внутри герметичной оболочки. Свободный доступ к парогенераторам не возможен. Поэтому в ВХР II контура особое внимание уделяют парогенераторам.

Предотвращение коррозионного износа элементов II контура и, как следствие, уменьшение роста отложений на трубной системе парогенераторов во многом определяются организацией водно-химического режима II контура. Водородный показатель при рабочей температуре (pH_t) — это основной параметр для предупреждения коррозии оборудования II контура. Скорость коррозии углеродистой стали, из которой выполнена значительная часть конденсатно-питательного тракта, влияют и другие факторы, такие как температура, качество рабочей среды и концентрация кислорода.

Многочисленными исследованиями показано, что при повышении водородного показателя рН от нейтрального до щелочных значений существенно уменьшается скорость эрозионно-коррозионного износа углеродистой стали, при увеличении р H_t от 6,31 до 6,82 (на единицу по отношению к точке нейтральности) при температуре рабочей среды 150 °C скорость коррозии стали снижается почти в 3 раза.

Сложность поддержания BXP II контура на действующих АЭС с BBЭР-1000 связана с использование для оборудования и трубопроводов II контура различных конструкционных материалов. Это обстоятельство не позволяет поддерживать то значение рH, которое соответствовало бы минимуму скорости коррозии для каждого из них, и вынуждает идти на принятие некоторого «компромиссного» значения и вынужденного BXP.

Наличие медьсодержащих сплавов в конденсатно-питательном тракте не дает возможности повысить рН питательной воды, чтобы уменьшить коррозию трубопроводов и оборудования из углеродистых сталей и тем самым избежать заноса трубчатки ПГ продуктами коррозии.

Для блоков с медьсодержащими сплавами во втором контуре необходимо использовать корректирующий реагент, удовлетворяющий следующим требованиям:

- лучшие, по сравнению с аммиаком, щелочные свойства (т.е. более высокая величина константы диссоциации Kb) и меньшая степень снижения Kb с ростом температуры;
- коэффициент распределения между паром и водой в двухфазной среде Kd близкий к 1;
 - способность повышать рН без вреда для медных сплавов;
 - совместимость с конструкционными материалами;
 - стабильность (низкая скорость термического разложения);
 - обеспечение нормальной эксплуатации систем поддержания BXP-2 (БОУ и CBO-5);
 - минимальное воздействие на окружающую среду и здоровье персонала;
 - экономическая целесообразность.

В результате интенсивного поиска альтернативных аммиаку реагентов, используемых для коррекции BXP-2 на AЭС с PWR Франции, США, Англии, Японии, Канады, Бельгии, ЮАР, Кореи с медьсодержащими сплавами в оборудовании, наибольшее распространение получили два органических амина – морфолин и этаноламин.

Основным недостатком существовавшего до 2005 г. на всех АЭС с ВВЭР гидразинно-аммиачного (ГАР) ВХР II контура является то, что поддержание рН питательной воды осуществлялось аммиаком, полученным в результате расположения гидразина. Из-за высокой летучести аммиака при дополнительном поступлении аминов сильных кислот во II контур р $H_t = 5.7$ -6.2 в объеме парогенераторов и в сепарате сепаратора-пароперегревателя (СПП) не обеспечивалось. Концентрация железа в питательной воде ПГ гидразинно-аммиачном BXP составляла 10-12 мкг/дм 3 .

В 2005-2006 гг. на Ростовской и Балаковской АЭС с ВВЭР-1000 были внедрены соответственно морфолиновый и этаноламиновый водно-химические режимы II контура.

Особенности морфолинового ВХР. Морфолин обладает низкой коррозионной агрессивностью по отношению к медьсодержащим сплавам. В отличие от гидразина, морфолин не разлагается при рабочих параметрах второго контура, и после достижения необходимой концентрации морфолина в питательной воде его дозировка прекращается и производится периодически для восполнения потерь реагента с протечками. В условиях герметичного второго контура концентрация морфолина удерживается на стабильном уровне

значительное время и не требует дополнительного дозирования реагента, в то время как гидразин выводится из тракта безвозвратно.

При работе энергоблока в морфолиновом режиме получены следующие результаты:

при стабильной работе энергоблока вывод железа с продувкой увеличился с 1 (при ГАР ВХР) до 7,3 % количества железа, поступающего в ПГ с питательной водой;

осаждение железа на теплообменной поверхности снизилось с 65 (при Γ AP BXP) примерно до 35 %.

Химический анализ отложений, отобранных с внутренних поверхностей ПГ со стороны II контура в 2005 и 2007 гг., показал, что по сравнению с ГАР при введении морфолинового ВХР доля оксидов меди в отложениях увеличилось почти в 2 раза (с 8,9 до 16,7 %). Это обусловлено снижением поступления железа в ПГ с питательной водой примерно на 60 %, а поступление меди осталось на прежнем уровне либо снизилось не значительно.

Однако, в результате термического разложения и окисления морфолина образуются органические кислоты – уксусная и муравьиная:

$OC_4H_8NH \rightarrow CH_3COOH + HCOOH$

Опыт эксплуатации показывает, что наличие органических кислот (уксусной и муравьиной), накапливаемых во втором контуре при ведении морфолинового BXP-2, не оказывает значительного влияния на значения pH_T в продувочной воде $\Pi\Gamma$.

Особенности этаноламинового ВХР. Этаноламин (ЭТА) — формула C_2H_7ON ($H_2NCH_2CH_2OH$). Горючая жидкость с резким аммиачным запахом. С водой и спиртом смешивается во всех отношениях. Хорошо растворим во многих органических растворителях.

При взаимодействии с водой этаноламин повышает ее рН:

$H_2NCH_2CH_2OH + H_2O = {}^{+}H_3NCH_2CH_2OH + OH^{-}$

При внедрении этаноламинового ВХР:

при стабильной работе энергоблока вывод железа с продувкой увеличился с 1 (при ГАР ВХР) примерно до 7 % количества железа, поступающего в ПГ с питательной водой;

осаждение железа на теплообменной поверхности снизилось с 65 (при ГАР ВХР) примерно до 33 %.

При ведении этаноламинового BXP наблюдается снижение процентного содержания меди в отложениях по всем контролируемым точкам. По теплообменной поверхности ПГ оно снизилось в 3,3 раза (со среднего значения 9,5 при ГАР до 2,9 %). При этом содержание железа увеличилось с 87,9 да 93 %.

Анализ работы БОУ при ведении морфолинового и этаноламинового режимов показал следующее:

при ведении этих режимов и снижении концентрации железа в конденсате турбины целесообразно отключение электромагнитного фильтра $(ЭМ\Phi)$ блочно-обессоливающей установки (БОУ);

работа фильтра смешенного действия (ФСД) БОУ в Н-ОН-форме обеспечивает эффективную сорбцию катионов и анионов;

при одинаковом качестве ионообменных смол в загрузках Φ СД и при одном и том же значении присосов охлаждающей воды в концентраторах объемы пропущенной воды через Φ СД БОУ сопоставимы.

Анализ работы СВО-5 при ведении морфолинового и этаноламинового режимов показал следующее:

при работе ниток СВО-5 в Н—ОН-форме наблюдается эффективная сорбция катионов и анионов:

при введении морфолинового BXP лимитирующим фактором длительности фильтроциклов ниток CBO-5 является обменная емкость анионита, при введении этаноламинового BXP – обменная емкость катионита;

объем пропущенной через CBO-5 воды при морфолиновом BXP составил 70-110 тыс. m^3 , при этаноламиновом – 45-65 тыс. m^3 , т.е. в 1,7 раз меньше;

для увеличения длительности фильтроциклов ниток CBO-5 в этаноламиновом BXP целесообразно повышать объем катионита, изменяя загрузку одного анионитового фильтра, а в морфолиовом BXP повышать объем анионита изменением загрузки катионитового фильтра.

Амин	Формула	Молекулярная масса	Логарифм константы диссоциации, рКь			Коэффициент распределения между паром и водой, Кd			Продукты
			25°C	150°C	300°C	25°C	150°C	300°C	разложени я %/ч при 285°C
Аммиак	NH ₃	17	4,76	5,13	6,83	30,20	10	3,23	0
Морфолин	C ₄ H ₈ ONH	87	5,50	5,30	6,63	0,12	0,77	1,29	~ 2
Этанолами н	C ₂ H ₄ (OH)NH ₂	61	4,50	4,83	6,40	0,004	0,11	0,489	~ 0,7

Таблица 1 – Сравнительные характеристики аммиака, морфолина и этаноламина

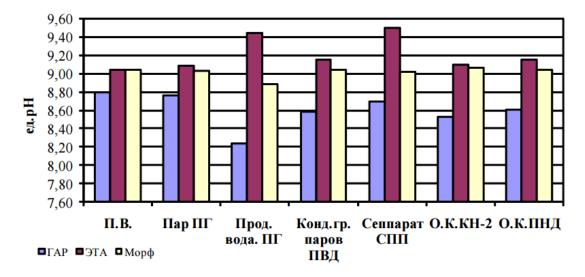


Рисунок 1 – Эксплуатационные значения рH25 по потокам второго контура при различных BXP

В результате изучения опыта эксплуатации энергоблоков с гидразинно-аммиачным ВХР выявил следующие недостатки: сложность поддержание показателя рН питательной воды на уровне безопасным для конструкционных материалов оборудования, загрязнение теплоносителя оксидами железа и меди. Этих недостатков удалось избежать на Ростовской и Балаковской АЭС с ВВЭР-1000, когда на них были внедрены соответственно морфолиновый и этаноламиновый водно-химические режимы II контура. При применении этаноламина и морфолина происходит повышение и выравнивание рН во всех потоках второго контура, снижение скорости эрозионно-коррозионного износа оборудования, снижение концентрации продуктов коррозии. Применение этаноламина и морфолина приводит к накоплению в контуре органических кислот — уксусной и муравьиной, однако, величина χ_H при этом находится на уровне, ниже нормируемого.

Литература

1. Тяпков В.Ф. Ведение водно-химического режима II контура АЭС с ВВЭР на энергоблоках с отсутствием медьсодержащих сплавов // Теплоэнергетика. 2014. №7.

- 2. Тяпков В.Ф., Ерпылева С.Ф., Быкова В.В. Внедрение водно-химического режима II контура с дозированием органических аминов на АЭС с ВВЭР-1000 // Теплоэнергетика. 2009. №5.
- 3. Тяпков В.Ф., Шарафитдинов Р.Б. Состояние, основные проблемы и направления совершенствования водно-химического режима АЭС // Теплоэнергетика. 2007. №5.
- 4. Рощектаев Б.М. Водно-химический режим АЭС с реакторами ВВЭР-1000 и РБМК-1000// М: НИЯУ МИФИ. 2010.