воздух. При этом давление под заготовкой будет постепенно уменьшаться, в то время как над ним давление воздуха будет равно атмосферному. Заготовка при этом начинает втягиваться в полость формы и принимать её конфигурацию. После охлаждения необходимо для фиксации формы изделия последнее удаляют из матрицы.

УДК 621.822.1

Аникеева М. В.

ВОЗМОЖНОСТЬ ИСПОЛЬЗОВАНИЯ РАЗЛИЧНЫХ МАТЕРИАЛОВ ДЛЯ ИЗГОТОВЛЕНИЯ ВНУТРЕННИХ КОЛЕЦ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ

БелГУТ, Гомель Научный руководитель Врублевская В. И.

Подшипники – ответственные детали многих машин и механизмов. Подшипники качения и скольжения являются опорами вращающихся осей и валов и воспринимают действующие на них нагрузки. На основании требований, предъявляемых к подшипникам материал, из которого изготавливаются его элементы должен обладать высокой статической грузоподъемностью, большим сопротивлением контактной усталости, износостойкостью, размерной стабильностью.

Детали подшипников качения изготавливаются из стали марок ШХ4, ШХ15, ШХ15СГ и ШХ20СГ. Хром повышает твердость и износостойкость стали, а также обеспечивает необходимую прокаливаемость. Легирование кремнием и марганцем проводят для повышения прокаливаемости и применяют для сталей, используемых при изготовлении крупногабаритных подшипников (с толщиной стенки более 10 мм) [1].

Выяснилось, что высокоуглеродистая легированная сталь ШX-15 и все ее зарубежные аналоги обладают серьезным недостатком: точная объемная штамповка выполненных из нее колец подшипников без подогрева невозможна. По этой причине заготовки колец приходится получать фактически поштучно – либо горячей штамповкой, но чаще прямым вытачиванием из труб, при котором до 50% металла превращается в стружку. Естественно себестоимость подшипника и его цена растут, а конкурентоспособность снижается. Выход из создавшегося положения показали теоретические исследования, которые установили, что низкоуглеродистые стали хорошо и точно штампуются без подогрева и их можно подвергать химико-термическому упрочнению за счет чего значительно повышается качество рабочих поверхностей деталей подшипников, а следовательно надежность в эксплуатации.

Выводы теоретиков применили такие известные фирмы, как Тимкин (США), Койо (Япония), одна из подшипниковых фирм Южной Кореи, а также ряд отечественных подшипниковых заводов (для крупногабаритных подшипников), на практике доказав, что успешная замена стали ШХ–15, используемой для изготовления внутренних колец подшипников, низкоуглеродистыми сталями 20Х, 20ХНМ, 18ХГТ, 15Г, 12ХНЗА и др. действительно возможна.

Стендовые испытания, выполненные на ВПЗ–15 в 1996-1997 гг. показали, что цементация рабочих поверхностей значительно повышает их качество, а ресурс работы увеличивает в 1,5–2 раза [2].

Следует отметить, что по составу и свойствам подшипниковые стали близки к инструментальным из-за работы при высоких локальных нагрузках (таблица).

С 2011 года на Минском подшипниковом заводе совместно с ОИМ НАН Беларуси, кафедрой «Материаловедение в машиностроении» БНТУ и Минским заводом шестерен выполнялись исследовательские и экспериментальные работы по определению возможности и целесообразности изготовления колец

подшипников из дешевых углеродистых сталей: У8А, 60ПП, 80ПП. Дешевые углеродистые стали У8А при регулируемом упрочнении объемно-поверхностной закалкой с применением индукционного нагрева могут успешно заменить более дорогие легированные стали типа 20ХНЗА, 20Х2Н4А, ШХ15, ШХ15СГ и обеспечивают снижение стоимости материалов на изготовление в 1,5–2,5 раза при одновременном повышении прочностных характеристик и долговечности изготавливаемых деталей.

Химический состав стали, используемой для производства внутренних колец подшипников и ее заменители, %

Мар- ка стали	С	Si	Mn	Ni	S	P	Cr	Cu	Fe	Ti
ШХ1 5	1,95– 1,05	0,17- 0,37	0,2–0, 4	≤0,3	≤0,0 20	≤0,0 27	1,35 - 1,6	0,25	~9 7	
18ХГ Т	0,17- 0,23	0,17- 0,37	0,8–1,	≤ 0,3	≤ 0,03 5	≤0,0 35	1- 1,3	≤0,3	~9 6	0,0 3- 0,0 9
У8А	0,76- 0,83	0,17- 0,33	0,17- 0,33	≤ 0,25	≤ 0,02 8	≤0,0 3	≤0,2	≤ 0,25	~9 7	

Подшипники скольжения самосмазывающиеся с втулкой торцово-прессового деформирования (ПСС ТПД), разработанные в БелГУТе успешно заменили подшипники качения во многих узлах машин и механизмов. Таким образом, возможно предположить, что внутренние кольца из вышеприведенных марок сталей могут стать заменителем материала внутреннего кольца ПСС ТПД.

ЛИТЕРАТУРА

1. Жарский, И.М. Материаловедение: учеб. пособие / И.М. Жарский [и др.]. – Минск: Вышэйшая школа, 2015. – 557 с.

- 2. Дзанашвили, Г.Ф. Российские подшипники. Новые технологии и материалы / Г.Ф. Дзанашвили, О.В. Савченко, Н.М. Австрийский // Автомобильная промышленность. 1997. N010. С. 27—28.
- 3. Гурченко, П.С. Перспективы применения углеродистых сталей для подшипников и шестерен с упрочнением управляемой объемно-поверхностной закалкой с индукционного нагрева / П.С. Гурченко, А.А. Солонович // Литье и металлургия. 2015. N1(78). C. 91–97.
- 4. Гурченко, П.С. Применение углеродистой Стали У8А и объемно-поверхностной закалки при индукционном нагреве для изготовления колец подшипников / П.С. Гурченко, Г.А. Ткаченко, А.А. Солонович // Вестник БарГУ. 2013. \mathbb{N} 1. С. 66–78.

УДК 621.822.1: 666.32/.36

Аникеева М. В., Анищенко С. В., Титов А. А.

ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ ДЛЯ ПРОИЗВОДСТВА ПОДШИПНИКОВ СКОЛЬЖЕНИЯ

БелГУТ, Гомель Научный руководитель Врублевская В. И.

В истории развития подшипники скольжения уступили место подшипникам качения во многих машинах и механизмах. Такая замена произошла после определения основного преммущества подшипников качения — низкого коэффициента трения. Поэтому такие подшипники характеризуются меньшими потерями механической энергии и более высоким КПД. Но наряду с этими достоинствами подшипникам качения присущи и существенные недостатки, к которым можно отнести высокую чувствительность к чистоте и качеству смазки,