Решение задачи Дирихле для уравнения Лапласа методом дельта вейвлетов

Романчак В.М.

Белорусский национальный технический университет

Доказана теорема, уточняющая условия применения метода дельта вейвлетов с целью решения задачи Дирихле для уравнения Лапласа.

Вейвлет преобразование, относительно вейвлет функции единичного точечного заряда $\psi(R)=1/R$, определим по рекуррентным формулам:

$$\varphi_{k+1}(M) = \varphi_k(M) - V_h \varphi_k(M_h)$$

где

$$V_h \varphi(N) = \frac{1}{h^2} \int_{S} \frac{\varphi(P)}{C_h(P_h)} \psi\left(\frac{R_{PN}}{h}\right) dS_P,$$

$$C_h(N) = \frac{1}{h} \int_{S} \psi\left(\frac{R_{PN}}{h}\right) dS_P,$$

 $\phi_0(M)$ - граничные значения, гармонической в области D функции U(Q), такой, что $U(M) = \phi_0(M)$, $M \in S$;

n(M) - внешняя нормаль к поверхности S в точке $M \in S$;

n(P) - внешняя нормаль к поверхности S в точке $P \in S$;

 M_h - точка, которая принадлежит внешней области $D, M_h \rightarrow M$ по нормали n(M), при $h \rightarrow 0$;

 P_h - принадлежит внешней области D, P_h →P, при h→0 по нормали n(P); N- точка, которая принадлежит внешней области D.

Теорема. Пусть S — замкнутая поверхность Ляпунова с показателем гладкости δ =1, ограничивающая область D, тогда гармоническая функция может быть восстановлена по формуле обратного вейвлет преобразования для точек Q области D:

$$U(Q) = \sum_{k=1}^{\infty} V_h \varphi_k(Q),$$

где $h=a_k, a_k \rightarrow 0$.