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The article phenomena, soft modes and negative Poisson’ ratio are considered on bases at
statistical theory

For description of the elastic properties of elastomers the stress ensemble is used.
The distribution function for this ensemble is obtained by means of the method of
maximum informational entropy. At first we introduce the microscopic field of
displacements [1] as
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and the we construct the microscopic tensor of deformation (for simplicity we consider
the linear case)
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Mean value of this tensor is
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IS macroscopic tensor of deformation, n is the particle number density.
Quasiequilibrium distribution function defined as

Pq :exp[Q—IdXB(x,t)(ﬂ(x)—@iksik)] (5)

E, =TBn", 1, isthe stress tensor, B=kT , k is Boltzmann constant.

The expression type (5) may be apply for the nonlinear measure of deformation
[2-5].
In linear approximation we have

= pu [t Ja (H ()~ (H) )(B-8)+ [E ()i (x)0x]. @

Using this distribution function we obtain

(o) = [ B () (3 (x)au (x))de (7)

or in the local approximation

ne; = E, <§u (X)&a (x')>dx', (8)
where I<§u (x)ém (x')>dx' is correlation function of the strains fluctuation.
Therefore
& = Bijkl (X)TEI (X)’ (9)
where
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By =Bn [ (&3 (x)au (x')) e (10)

is the tensor of the isothermal elastic compliances.

The tensor of the elastic module K, connected with the tensor of compliances
the next relation
Bumn Kmnkl = 8ik8jl (11)
It is very important that the tensor of compliances defined by the correlation
function of the strain fluctuations.
Now we consider the simple case of the isotropic medium. Then we have

€1 (X) =Ty, (12)
where p is shear modulus

an \% (13)
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In liquid case ¢, — o, and therefore n — 0. That is the shear deformation ¢, is
the soft mode, v is the body volume.

It is interesting that in case of the no compressibility of elastomers when Tr
g; =¢&; — 0 we obtain according to (10) that compressibility also go to zero.

In isotropic ase the relations between elastic moduli and corresponding
compliances directly follows from formulas [7]

TIJ = K8"8ij + 2“(8“ _%Sijgu ); (14)
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Then we obtain the expressions for bulk elastic modulus K and for shear modulus
(see 13)

szV (16)
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The Poisson’s ratio defined by [7]

At calculation corresponding correlation functions in (13) and (16) it may occur
the next results.

In case, when 3K <2u, v<0 and at K=0 (the compressibility is infinity)

v=-l,at K> or pn—0 v—>%.
It shod be noted that in the work [8] the detailed and stimulated review or materiel
with negative Poisson’s ratio ism represented.
Let as for analyses of formula (16) take into account the low of conservation
n—n, =—-ndivu, divu =¢; (18)
Besides we used the relation (3).
The quantity An=n-n, a fluctuation of density or concentration.

The expression (16) may be rewrite the next manner

oK = KTn® (19)
J' (An(0)AN(r))dr
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and we find that denomination is the correlation of density (concentration) which is
diverge at approach to the critical point.

In result bulk elastic modulus goes to zero and according to (17) Poisson’s ratio
comes to minus one (-1).

Correlation function mae be represented in another form

6(r)=(nOn(ry-n*=n*(g(nN-1+L5m) @)

where g(r) is traditional binary distribution function.
Near critical point g(r)-1 the Orstein-Zernike form

_1=-8 eyl -1
g(r) 1_4anXp( &j (21)
Now the guantity 9K is

9K =E—I 22)

where & is correlation length, which goes to infinity at approaching to critical point.

Thereof in thiscase K >0 and v > —1.
For nonlinear elastic extension of elastomers the low of this deformation defined
by formula [9]

P*=(bA—b,A7?)—a(b¥*A? =A%)+ B (%A% —b}r?), (23)
where b =all, b=al/l, , a is effective length of  monomer,
. =a(1+2Q), |, =a(l-Q), Q is the scalar order parameter, A is multiplicity stretch

of material fibre, P is force per unit nondeformation area, P =P/ p.
The examples of calculation by formula (23) represented on figures
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In an extension of some the polymers, for example DNA molecule and nematic
elastomers on the extensions curve the soft modes appears in form plateau. This means
that for deformation in limits plateau Young modules and balk modules are zero.
Therefore the Poisson’s ratio is negative and may by equal unit.

It is very impotent generalize theory of nematic elastomets on cases whan v <0
or v=0.5.

For this end instead of condition volumes invariance we mast use the condition
variability a volume. The corresponding relation is

xxxyx=1+(x—1)(1—2v), A=A, (24)
At v=0.5 we obtain the condition invariants volume A A A =1.
The equation of stretch of nenatical elastomer for v = 0.5 have the form
P =bA-b d*A?+b, (1-2v)A" -
—a [bm?’lzkz . bf’zd 3512 4 bf’/zd (1_ 2\/) )32 ] + (25)

+B[ A% —b,2d*A? +b,%d? (1-2v)],
where d = /1+(1-1)(1-2v).

The parameters a and 3 find from experiment. Results of calculations at v positive
and negative represent Belov. at Q = 0.1 and Q = 0.3.
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