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The article phenomena, soft modes and negative Poisson’ ratio are considered on bases at 

statistical theory 
 
For description of the elastic properties of elastomers the stress ensemble is used. 

The distribution function for this ensemble is obtained by means of the method of 
maximum informational entropy. At first we introduce the microscopic field of 
displacements [1] as  
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and the we construct the microscopic tensor of deformation (for simplicity we consider 
the linear case) 
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Mean value of this tensor is  

ik ikn   , (3) 

where  

1
2

i k
ik

k i

u u
x x
      


  (4) 

is macroscopic tensor of deformation,  is the particle number density. n
Quasiequilibrium distribution function defined as 

    exp , ikq dx x t H x E ik
          . (5) 

0 1
ik ikE   n 0

ik,  is the stress tensor, kT  ,  is Boltzmann constant. k

The expression type (5) may be apply for the nonlinear measure of deformation 
[2–5]. 

In linear approximation we have 
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Using this distribution function we obtain 

     'ij ij klklE x x x dx      ' '  (7) 

or in the local approximation 

   ' ' , (8) ij klij kln E x x dx     

where    'ij kl 'x x dx     is correlation function of the strains fluctuation. 

Therefore 
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where 

 45



   2 ' 'ij klijkl n x x dx       (10) B

is the tensor of the isothermal elastic compliances. 
The tensor of the elastic module  connected with the tensor of compliances 

the next relation 
ijklK

ijmn mnkl ik jlB K     (11) 

It is very important that the tensor of compliances defined by the correlation 
function of the strain fluctuations. 

Now we consider the simple case of the isotropic medium. Then we have 
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where   is shear modulus 
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In liquid case 12  , and therefore 0 . That is the shear deformation  is 

the soft mode,   is the body volume. 
12

It is interesting that in case of the no compressibility of elastomers when Tr 
 we obtain according to (10)0ij ii     that compressibility also go to zero. 

In isotropic ase the relations between elastic moduli and corresponding 
compliances directly follows from formulas [7] 
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Then we obtain the expressions for bulk elastic modulus  and for shear modulus 
(see 13) 
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The Poisson’s ratio defined by [7] 
(3 2 ) / 2(3 )K K     .  (17) 

At calculation corresponding correlation functions in (13) and (16) it may occur 
the next results. 

In case, when 3  and at 2 ,   0K     0K   (the compressibility is infinity) 

, at  or 1   K  10   
2

  . 

It shod be noted that in the work [8] the detailed and stimulated review or materiel 
with negative Poisson’s ratio ism represented.  

Let as for analyses of formula (16) take into account  the low of conservation  

0 div ,  div iin n n u u      (18) 

Besides we used the relation (3). 
The quantity 0n n n    a fluctuation of density or concentration. 

The expression (16) may be rewrite the next manner 
2
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and we find that denomination is the correlation of density (concentration) which is 
diverge at approach to the critical point.  

In result bulk elastic modulus goes to zero and according to (17) Poisson’s ratio 
comes to minus one (–1). 

Correlation function mae be represented in another form 
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where g(r) is traditional binary distribution function. 
Near critical point g(r)–1 the Orstein-Zernike form 

( ) 1 exp
4

rg r
r
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Now the quantity 9K is 

3
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where   is correlation length, which goes to infinity at approaching to critical point. 
Thereof in this case  and . 0K  1  

For nonlinear elastic extension of elastomers the low of this deformation defined 
by formula [9]  

     * 2 3/2 2 3/2 5/2 3/2 3 3 3P b b b b b b 
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,  (23) 

where , a is effective length of monomer, 

,  is the scalar order parameter, 

/ ,   /b a l b a  

2 ),   (1 )Q l a Q  (1l a  Q   is multiplicity stretch 

of material fibre, P is force per unit nondeformation area, *P P /  . 
The examples of calculation by formula (23) represented on figures 
 

 

Q = 0.5 Q = 0 
ν = 0.5 ν = 0.5 
α = 1.515 α = 0.75 
β = 0.6 β = 0.5 

 

Q = 0 
ν = 0.5 
α = 0.302 
β = 0.041 
µ = 0.645 МПа 

Fig. 1 
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In an extension of some the polymers, for example DNA molecule and nematic 
elastomers on the extensions curve the soft modes appears in form plateau. This means 
that for deformation in limits plateau Young modules and balk modules are zero. 
Therefore the Poisson’s ratio is negative and may by equal unit.  

It is very impotent generalize theory of nematic elastomets on cases whan  
or .  

0 
0.5 

For this end instead of condition volumes invariance we mast use the condition 
variability a volume. The corresponding relation is 

  1 1 1 2 ,  x y            z , (24) 

At  we obtain the condition invariants volume 0.5  1x y    . 

The equation of stretch of nenatical elastomer for 0.5   have the form 
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where  1 1 1 2d       . 

The parameters α and β find from experiment. Results of calculations at υ positive 
and negative represent Belov. at Q = 0.1 and Q = 0.3. 

 

 

 
 

Fig. 2 
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