износостойкие покрытия на рабочих органах почвообрабатывающих машин соответствуют необходимым требованиям технической документации.

На ОАО «Минский автомобильный завод» создан участок с необходимым оборудованием для производства стальной литой термообработанной дроби. Созданные технология и оборудование термообработки дроби при индукционном нагреве позволяют регулировать температуру обработки и обеспечивать твердость дроби в заданном интервале с учетом изменения химического состава. При этом отпадает необходимость выплавки стали специального состава. Термообработка дроби при индукционном нагреве позволяет в 3-5 раз по сравнению с литым состоянием повысить стойкость дроби при очистке литых заготовок. Процессы отпуска при индукционном нагреве наиболее интенсивно протекают и практически завершаются в первые 5 – 7 минут нагрева.

Стальная литая дробь, производимая на Минском автомобильном заводе с использованием разработанного дробелитейного комплекса, отличается выходом дроби (70%) правильной сферической формы с гладкой поверхностью. Дробь, производимая из широко применяемых марок стали 35-40Л, не требует специальной подготовки химического состава и внедрения дополнительного внепечного оборудования. Изготовление стальной литой дроби производится на действующем литейном оборудовании в условиях массового производства деталей машиностроения.

Таким образом, размещение на Минском автомобильном заводе дополнительного участка диффузионного легирования металлоотходов в подвижных порошковых средах позволит создать безотходную технологию получения наплавочных сплавов из отходов металлических дискретных материалов, образующихся в процессе производства деталей машиностроения.

УДК 669.041

Расчет производительности печи с различной степенью черноты изделия

Студентки гр.104219 Роговая Ю.А., гр.104510 Люцкевич А.И. Научный руководитель — Стефанович В.А. Белорусский национальный технический университет г. Минск

Расчет производительности печи с различной степенью черноты изделия осуществлялся при изменении степени черноты тела в пределах: ε =0,52...0,61 для стали не окисленной, шлифованной; ε =0,77...0,79 для стали окисленной при 600° С; ε =0,94...0,97 для стали окисленной шероховатой. Данные расчеты выполнялись для газовой печи при нагреве проволоки под патентирование с коэффициентом расхода воздуха α = 0,9, что обеспечивает создание защитной атмосферы в печи. Распределение температур по рабочему пространству печи и проволоки показаны на рисунке 1. При этом на проволоке образуется слой окислов толщиной 1,5 – 3 мкм и практически отсутствует обезуглероживание поверхности. В таких условиях слой окислов почти черного цвета с наибольшим коэффициентом черноты образуется на проволоке в 3 – 4 зоне. Толщина окисной пленки и шероховатость её поверхности определяют степень черноты нагреваемого тела, которая оказывает влияние на коэффициент теплоотдачи и скорость нагрева проволоки.

Для увеличения степени черноты проволоки в зонах 1-2 предлагается сжигание газа с коэффициентом расхода воздуха α =1,05..1,10 и созданием окислительной атмосферы.

Для оценки увеличения производительности печи использовали программу для расчета температурно-временных параметров при нагреве проволоки в агрегате патентирования. Переменными при расчете являлись степень черноты тела є, которая изменялась от 0,7 до 0,95, и скорость движения проволоки.

Рисунок 1 – Распределение температур проволоки и печи по зонам при DV96

Скорость движения проволоки для каждого значения Е подбиралась таким образом, чтобы температура проволоки по рабочему пространству была одинаковой (таблица 1).

Таблица 1 – Распределение температур проволоки (диаметр 1.78 мм) по зонам печи

тиолици т тиспределение температур проволоки (диаметр 1.70 мм) по зонам не и					
	ε=0,7	ε=0,78	ε=0,85	ε=0,9	ε=0,95
Температура печи по зонам, °С	Температура проволоки по зонам, °С				
Зона 0 = 600	202	201	198	198	196
Зона 1 = 1050	596	599	596	602	597
Зона 2 = 1020	820	824	823	828	823
Зона 3 = 990	906	909	908	912	910
Зона 4 = 990	946	948	948	951	949
VD	70	76	82	86	90
Производительность, тонн/час	1,8	1,98	2,13	2,23	2,34
Время, с.	33,7	31,1	28,8	27,4	26,2

Расчет производился для проволоки диаметром 1.78мм. На рисунке 2 представлена зависимость производительности печи от степени черноты.

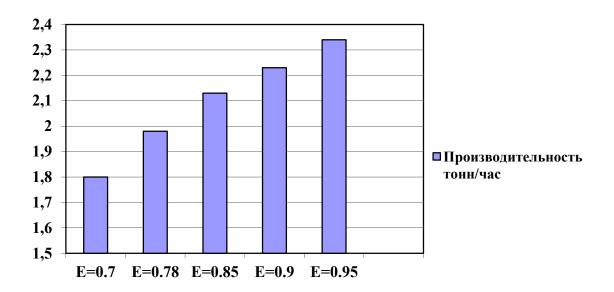


Рисунок 2 – Зависимость производительности печи от степени черноты тела

Представленные результаты показывают, что время нагрева проволоки при ϵ =0,7 составляет 33,7 с., а при ϵ =0,95 – 26,2 с., т.е. время нагрева сократилось в 1.22 раза. Расчет производительности показывает, что увеличение коэффициента черноты с 0,7 до 0,95 увеличивает производительность на 30%.

УДК 621.745.669.13

3D-принтеры в промышленности

Студентка гр. 10401112 Юркевич К.С. Научный руководитель – Вейник В.А. Белорусский национальный технический университет г. Минск

Трехмерные технологии всерьез и надолго вошли в нашу жизнь. Они нашли широкое применение в различных областях промышленности. Особенно это касается мелкосерийного изготовления изделий, для которого технологическая цепочка производства, требующая как времени, так и средств, попросту нерентабельна.

Промышленный 3D-принтер отличается от «офисного собрата» целым рядом улучшенных характеристик. Главные особенности промышленной машины — высочайшее качество, точность до нескольких микрон, большая площадь печати, полный контроль процесса, практически полная автоматизация. Для установки такого агрегата требуется достаточно большое помещение.

В качестве печатных материалов промышленный 3D-принтер может использовать практически любые строительные материалы: пластик, металлы, в том числе титан, гипс, керамические массы, цемент, стеклянный порошок и др. При том работа, направленная на выявление новых веществ, которые можно использовать в качестве строительного материала, ведется постоянно, в результате чего появляются все новые и новые композиты, пригодные для трехмерной печати.

Покупатели промышленных 3D-принтеров – компании, постоянно нуждающиеся в печати больших точных моделей, например, в экспериментальном или постоянно развивающемся производстве. Одна из таких фирм – General Electric, печатающая титановые части сложной конструкции, из которых собирают авиационные двигатели.