поверхности, выходной сигнал электрометрического зонда содержит значительную по амплитуде переменную составляющую, причем при синусоидальной модуляции зазора в динамическом конденсаторе результирующий сигнал не является синусоидальным, а содержит значительные гармонические искажения. В то же время, полученная в результате моделирования осциллограмма отличается от формы сигнала, получаемого при контроле дефектов поверхности проводящих и полупроводниковых поверхностей [2]. Это позволяет предполагать возможность различения места локализации дефекта (подложка или диэлектрическое покрытие) в композитных структурах, к примеру, структурах кремний-диэлектрик, на основе анализа спектрального состава измерительного сигнала.

1. Тявловский, А.К. Математическое моделирование дистанционной зависимости разрешающей способности сканирующего зонда Кельвина // Приборы и методы измерений. – 2012. –№ 1(4). – С. 30-36.

2. Tyavlovsky, A. Complex-harmonic analysis of electric circuit containing a vibrating-plate capacitor / A. Tyavlovsky, A. Zharin // Informatyka, Automatyka, Pomiary w gospodarce i ochronie srodowiska. -2012. $-N_{2}$ 1. -P. 32-35.

УДК 681.7.023.72

СОВЕРШЕНСТВОВАНИЕ ПРОЦЕССА ДВУСТОРОННЕГО ФОРМООБРАЗОВАНИЯ ДВОЯКОВЫПУКЛЫХ ЛИНЗ

Филонова М.И., Кузнечик В.О., Семенкович В.П., Тищенко А.В. Белорусский национальный технический университет

Минск, Республика Беларусь

В традиционной технологии финишного формообразования высокоточных линз выбор режимов обработки в каждом конкретном случае определяет оператор опытным путем, что приводит к непроизводительным затратам времени и, следовательно, повышает себестоимость продукции.

Отмеченных недостатков можно избежать, если провести предварительный расчет интенсивности съема материала в той или иной зоне детали в зависимости от величины наладочных параметров станка. В основу такого моделирования процесса обработки целесообразно положить гипотезу Ф. Престона, согласно которой производительность обработки пропорциональна при прочих равных условиях параметру Q = pl, где p– давление в зоне соприкосновения притирающихся поверхностей инструмента и детали, l – длина пути трения произвольно выбранной на поверхности детали опорной точки A относительно инструмента.

Для определения составляющей l параметра Q найдем линейную скорость скольжения $\vec{v}_{\rm ck}$ опорной точки по формуле $\vec{v}_{\rm ck} = \vec{v}_{\rm d} - \vec{v}_{\rm u}$, (1)

где $v_{\rm g}$ - линейная скорость вращения детали; $v_{\rm u}$ - линейная скорость движения инструмента, которую можно представить в виде $\vec{v}_{u} = \vec{v}_{\rm B} - \vec{v}_{\rm BB}$, (2)

где $v_{\rm B}$ и $v_{\rm BB}$ - составляющие линейной скорости инструмента, обусловленные его вращательным и возвратно-вращательным движениями; i = 1, 2.

Входящие в выражения (1) и (2) линейные скорости представим в виде

(3)
$$\left\{ \begin{array}{c} \vec{v}_{\vec{A}} = \vec{\omega}_{\text{A}} \vec{r}_{i} \\ \vec{v}_{i\text{B}} = \vec{\omega}_{\text{H}} \vec{r}_{i} \\ \vec{v}_{i\text{K}} = \vec{\omega}_{\text{H}} \vec{r}_{i}, \end{array} \right.$$

где $\omega_{\rm д}$, $\omega_{\rm H}$ и $\Omega_{\rm H}$ – скорости вращения соответственно детали, инструмента и возвратно-вращательного движения последнего, причем, согласно [1], $\omega_{\rm u} = (0,7\div0,9) \omega_{\rm g}$; r_i – радиус кривизны обрабатываемой поверхности.

Выражение для расчета скорости Ω_{μ} получим из рис. 1, на котором представлена векторная кинематическая схема рабочей зоны устройства для одновременной двусторонней обработки двояковыпуклых линз [2], устанавливаемого на серийные шлифовально-полировальные и полировально-доводочные станки мод. ШП и ПД.

Определим далее составляющую p параметра Q. На рис. 2 представлено распределение давления в зоне контакта детали l с инструментом 2 в различных его положениях при возвратно-вращательном движении по обрабатываемой поверхности.

Если принять, что инструмент в процессе обработки не деформируется, то когда он не выходит за край детали, т.е. амплитуда его возвратновращательного движения не превышает величины $L_{\min} = (d_{\pi} - d_{\mu})/2$, где $d_{\mu} - диаметр$ инструмента (инструмент в положении I на рис. 2, *a*), давление по всей поверхности сопряжения притирающихся поверхностей распределено равномерно и принимает значение $p_o = Q/S_n$, где Q – рабочее усилие, S_n – максимальная площадь сопряжения, равная площади инструмента.

же упомянутую амплитуду назначить максимальной $L_{\text{max}} = d_{\text{д}}$ (инструмент в положении II на рис. 2, *a*), то в краевой точке детали давление достигнет максимального значения $p_{\text{max}} = Q_{\text{в}}/S_{\text{ед}}$, где $Q_{\text{в}} = Q \cos \gamma_{\text{д}}$ – вертикальная составляющая силы Q, $S_{\text{ед}}$ – единичная площадь контакта, $\gamma_{\text{д}}$ – угол раствора линзы.

Рисунок 1 – Кинематическая схема рабочей зоны устройства

Рисунок 2 – Распределение давления в зоне контакта детали *l* с инструментом *2* при возвратно-вращательном движении по обрабатываемой поверхности a) инструмент в положении I, II; б) положение инструмента в произвольный момент времени

На рис. 2, δ приведено положение инструмента в произвольный момент времени, когда его амплитуда возвратно-вращательного движения принимает текущее значение $L_{\rm T}$. Будем полагать, что в этом случае эпюра давления в зоне сопряжения имеет трапециевидную форму. Тогда, как следует из анализа рис. 2, δ , текущее значение давления $p_{\rm T}$ на расстоянии x от оси вращения детали можно записать в виде

$$p_T = \frac{p_{T2} - p_{T1}}{l_1 + l_2} l_T$$
, (4)
где $p_{T1} = p_0 - \frac{p_0}{l_1 + l_2}$ и

 $p_{T2} = p_0 - \frac{p_{max} + L_{min}}{L_{max} + L_{min}} (L_T - L_{min}) - \text{ coother-}$ ственно минимальное и максимальное значения давления текущей эпюре; В $l_1 = rsin[\gamma_u - arcsin(L_T/2r)]$ И $l_T = l_1 + x -$ расстояния от края инструмента, контактирующего с деталью, до соответственно оси вращения последней и до рассматриваемой точки с текущим давлением $p_{\rm T}$; x – расстояние от оси вращения детали до точки с давлением р_т, угол раствора инструмента; γи $l_2 = 0,5d_{\pi}.$

При записи аналитических выражений для $p_{\rm T}$, $p_{\rm T1}$ и $p_{\rm T2}$ исходили из следующих соображений. Поскольку значение $p_{\rm T1}$ не должно быть больше p_0 , то можно считать, что оно уменьшается на некоторую величину $\frac{p_0}{L_{max}+L_{min}}(L_T - L_{min})$ в виде значения p_0 приходящегося на единицу длины части амплитуды $(L_T - L_{min})$, в пределах которой происходит изменение эпюры давления, и умноженного на переменную составляющую $(L_T - L_{min})$, отображающую функциональную зависимость $p_{\rm T1}$ от амплитуды возвратно-вращательного перемещения инструмента.

По аналогичной схеме записано соотношение для p_{T2} .

Равенство для текущего давления p_T представляет собой переменную часть эпюры давления ($p_{T2} - p_{T1}$), умноженную на изменяющуюся величину l_T и отнесенную к длине сечения зоны контакта инструмента и детали плоскостью, содержащей их оси вращения.

Использовав выражение (4), выполнили расчет параметра Q для линзы с $R_1 = 71,26$ мм, $R_2 = 540,58$ мм и $d_{\pi} = 90$ мм в зависимости от изменявшихся значений диаметра инструмента, величины амплитуды его возвратно-вращательного движения, а также скоростей вращения детали и входного звена исполнительного механизма базового станка. Данные получены для поверхности с $R_1 = 71,26$ мм.

С целью проверки соответствия результатов расчетов реальным закономерностям проводили полирование выпуклой сферической поверхности $R_1 = 71,26$ мм линзы диаметром 90 мм, изготовленной из оптического стекла марки K8, на устройстве для двусторонней обработки двояковыпуклых линз, смонтированном на базовом станке мод. 6ПД-100. Выполненные теоретикоэкспериментальные исследования закономерностей двусторонней обработки двояковыпуклых линз позволяют сделать следующие выводы:

 а) из наладочных параметров рычажных шлифовально-полировальных и полировальнодоводочных станков для управления процессом формообразования наиболее выгодно изменять амплитуду возвратно-вращательного перемещения инструмента и его диаметр.

б) с целью уменьшения величины локальных погрешностей на поверхности линзы такие наладочные параметры технологического оборудования, как скорости вращения входного звена его исполнительного механизма и детали, следует устанавливать минимальными. При этом для усиления съема припуска в центральной зоне обрабатываемой поверхности необходимо использовать диаметр инструмента $d_{\mu} = (0,8 - 0,85)d_{\mu}$, а амплитуду его колебательных движений *L* назначать $(0,6 - 0,62)d_{\mu}$ Для более интенсивной обработки периферии детали целесообразно применять $d_{\mu} = (0,96 - 1,0)d_{\mu}$ и $L = (0,77 - 0,8)d_{\mu}$.

- 1. Бардин А.Н. Технология оптического стекла. М., 1963.
- Устройство для одновременной двусторонней обработки оптических деталей с выпуклыми поверхностями: пат. 9420 РБ, МПК В24В 13/00 / А.С. Козерук, М.И. Филонова, В.Ф. Климович, И.В. Рутик, Е.Н. Горбаченя, опубл. 2007.06.30.

УДК 621.357.7

ВЛИЯНИЕ УЛЬТРАЗВУКА НА СВОЙСТВА ФУНКЦИОНАЛЬНЫХ ГАЛЬВАНИЧЕСКИХ ПОКРЫТИЙ

Хмыль А.А., Кушнер Л.К., Кузьмар И.И., Василец В.К., Дежкунов Н.В.

УО «БГУИР» Минск, Республика Беларусь

В современной технологии радиоэлектронного приборостроения широко используются функциональные электрохимические покрытия. Однако многие существующие процессы их формирования на постоянном токе малопроизводительны. В электрохимической практике для интенсификации процесса электроосаждения успешно применяются ультразвуковые колебания (УЗК) низкой частоты, что позволяет повысить скорость обновления электролита у катода, вследствие чего увеличивается коэффициент диффузии ионов и уменьшается толщина диффузионного слоя, что приводит к значительному увеличению предельной плотности тока [1].

Представлены результаты исследования влияния ультразвука различной интенсивности на функциональные свойства никелевых покрытий, модифицированных частицами ультрадисперсного алмаза (УДА), и покрытий сплавом олововисмут.

Электроосаждение и контроль режимов электролиза осуществляли с применением разработанных в Белорусском государственном университете информатики и радиоэлектроники высокочастотного источника питания гальванической ванны импульсно-реверсным током ИП 15-5 и ультразвуковой экспериментальной установки, включающей генератор УЗГ53-22 с пьезокерамическим излучателем, работающей на частоте 38 кГц и обеспечивающей акустическую мощность 15 Вт и интенсивность УЗК до 2,1 Вт/см² (рисунок 1) [2]. Электроосаждение никелевых покрытий проводили в электролите Уоттса. Введение в электролит предварительно диспергированной в ультразвуке суспензии УДА позволяет формировать композиционные электрохимические покрытия (КЭП) с содержанием дисперсной фазы до 1,2 масс.%. Покрытие сплавом олово-висмут формировали из сульфатного электролита.

Рисунок 1 - Программно-аппаратный комплекс, включающий управляющий компьютер, программно управляемый источник стабилизированного импульсного тока (напряжения), осциллограф и макет ультразвуковой ванны

Формирование никелевых КЭП в ультразвуковом поле позволило повысить допустимую плотность тока и равномерность, устранить пит-