ОПИСАНИЕ ДИАГРАММ РАСТЯЖЕНИЯ УПРУГО-ПЛАСТИЧЕСКИХ МАТЕРИАЛОВ ПРИ РАЗЛИЧНЫХ УСЛОВИЯХ НАГРУЖЕНИЯ

к.т.н. Холодарь Б.Г.

УО «Брестский государственный технический университет», Брест

Для оценки работоспособности конструкции в конкретном напряженнодеформированном состоянии используются различные критерии, в частности, учитывающие фактор времени. При этом центральным является вопрос о полном и комплексном учете проявления свойств материалов в реализующихся сложных условиях нагружения. В частности, такие свойства как пластичность и хрупкость в определенном смысле конкурируют между собой, взаимосвязанно изменяя свой уровень.

Реологические уравнения типа Максвелла с нелинейной вязкостью позволяют описывать поведение реальных материалов в различных режимах – при ползучести, релаксации, деформировании или нагружении с постоянной скоростью, ударных и переменных нагрузках и др. [1-3]. Уравнения течения могут быть дополнены уравнением развития поврежденности, что позволяет оценивать долговечность материала при заданных воздействиях [4].

Далее рассматривается упруго-пластический материал, деформация которого включает только мгновенно-обратимую и остаточную компоненты.

В соответствии с кинетическими представлениями о процессах течения и развития поврежденности скорости структурных превращений в материале в зависимости от температуры и внешних силовых воздействий, выраженных через макронапряжения в точке тела, в целом подчиняется экспоненциальному закону $exp((U_{\theta} - \alpha \cdot \sigma)/k\theta)$, где k и θ – постоянная Больцмана и абсолютная температура, а U_{θ} и $\alpha \cdot \sigma$ трактуются как исходный уровень энергии активации и ее снижение при наличии упругих деформаций решетки. Однако результаты обработки экспериментальных данных показывают, что для адекватного описания особенностей поведения реономных микронеоднородных материалов структурные параметры U_{θ} и α следует принимать зависящими от вида напряженного состояния и температуры, что связано со сложным характером процессов перестройки структуры, сопутствующей нагружению [2-4]. Наличие участка упрочнения материала на диаграмме растяжения (ДР) требует введения зависимости энергии активации от достигнутой деформации.

Уравнение течения для случая одноосного растяжения имеет вид

$$\frac{d\varepsilon}{dt} = \frac{d\sigma}{Edt} + \frac{\sigma}{\eta} , \quad \eta = 3GT \tag{1}$$

где ε , σ , E, G –деформация, напряжение, модули упругости первого и второго рода, η – вязкость материала, $T = T_0 exp(U/k\theta)$ – время релаксации процессов формоизменения структурных элементов среды, U – энергия активации, T_0 – временная константа, с использованием которой определяется начальный уровень энергии активации U_0 . Далее аргумент $U/k\theta$ представлен как $U_0 - \alpha \cdot \sigma + F(\varepsilon, \sigma)$, а для функции $F(\varepsilon, \sigma)$, служащей для описания формы достигаемого упрочнения при разных скоростях и температурах, использована зависимость

$$F(\varepsilon,\sigma) = \beta \cdot (l - (l - \frac{\varepsilon - \varepsilon_{\Pi T}}{\varepsilon_{B} - \varepsilon_{\Pi T}})^{m}) \cdot \frac{\sigma}{\sigma_{B}}, \quad \varepsilon > \varepsilon_{\Pi T}$$
(2)

Структурные параметры U_{θ} , α , β , зависящие от температуры, должны быть определены по данным опытов в интересующем нас интервале ее изменения. Через ε_B в (2) обозначена деформация, соответствующая пределу прочности σ_B (максимум напряже-

147

ний на условной диаграмме растяжения), а ε_{IIT} – деформация конца площадки текучести (при ее отсутствии принимаем значение деформации, соответствующей пределу текучести σ_T). Константа *m* отражает форму ДР на участке упрочнения. Ее, а также входящее в (2) значение σ_B , можно выбрать по форме зависимости $\sigma(\varepsilon)$ на одной из диаграмм растяжения, которая принимается за базовую кривую (например, диаграмму, полученную при испытаниях в естественных условиях и скорости деформирования из диапазона стандартных).

В качестве примера применения уравнения Максвелла к описанию ДР при различных постоянных температурах использованы известные результаты испытаний стали 20 [5-7]. Ниже в табл.1 для температуры $-200^{\circ}C \div 0^{\circ}C$ протабулированы данные из [5], а для $0^{\circ}C - 900^{\circ}C$ приняты справочные данные по [6-8]. В таблице обозначено: T_{H} – температура испытаний (${}^{\circ}C$), E, σ_{B} , σ_{T} – соответственно модуль упругости, пределы прочности и текучести (*МПа*), ε_{P} – деформация на момент разрыва (%).

Ти	200	-196	-100	0	20	100	200	300	400	500	600	700	800	900	1000	1100	1200
<i>E</i> ∙ 10- 5	2.30	2.29	2.25	2.2	2.2	2.1	2.05	1.9	1.8	1.55	1.2	0.85	0.5	0.2	0.1	0.1	0.15
σ_B	830	820	585	470	450	415	410	415	340	245	180	130	90	75	47	30	20
σ_T	790	770	440	290	280	240	230	170	150	140	110	90	70	50	20	15	10
Ep	1.0	1.5	16	32	34	31	28	29	39	40	39	39	51	55	63	59	64

Таблица1 – Экспериментальные данные

В целом данные являются иллюстративными, поскольку термообработка материала могла быть неодинаковой. Кроме того, конкретные диаграммы растяжения и, что для нас было бы также важным, разброс механических характеристик в [5-8] не приведены, поэтому для расчетного построения ДР приходится делать некоторые дополнительные предположения. В частности, для всех температур испытаний приняты одинаковыми деформация в конце площадки текучести $\varepsilon_{IIT} = 1.5\%$, деформация на уровне предела прочности $\varepsilon_B=0.2$, скорость деформирования $V_{\varepsilon}=3\cdot10^{-3}$ с⁻¹ (из интервала стандартных). Использовано также условие, что на диаграмме растяжения производная $d\sigma/d\varepsilon=E/2$ при $\sigma=0.75\sigma_T$, что соответствует методике определения предела пропорциональности материала. Константа *m* для всех диаграмм выбрана равной m=4. Для кинетической константы T_{θ} использовано стандартное значение $T_{\theta}=1\cdot10^{-13}$ сек. Все другие параметры, описывающие деформационные свойства материала, получены расчетным путем по данным табл.1.

Для описания поврежденности материала $0 \le \omega \le 1$ использовано уравнение

$$\frac{d\omega}{dt} = v(1-\omega)\frac{\sigma}{\sigma_B} \exp\left(\frac{\gamma\sigma}{1-\omega}\right),\tag{3}$$

где v – частотный параметр, который, как и для процесса течения материала, определяется через константу времени и энергию активации разрушения структурных связей, γ – структурный параметр, характеризующий уменьшение энергии активации разрушения связей при наличии внешнего воздействия. Соответствующие числовые характеристики можно получить, используя данные о зависимости длительной прочности от температуры испытаний. Из литературы известно [2], что эти зависимости соответствуют зависимостям, найденным при описании ползучести материала при постоянных напряжениях. Поэтому далее для описания энергии активации процесса разрушения связей использованы построенные по табл.1 функции $U_{\theta}(\theta)$ и $\alpha(\theta)$ с той только разницей, что

вместо константы T_{θ} подобран одинаковый для всех температур временной параметр $T_{\theta\theta}$, существенно отличающийся от T_{θ} , что применительно к реальным структурнонеоднородным материалам представляется естественным, поскольку период времени разрушения связей на поверхности микроэлемента структуры составляет малую долю времени, необходимого на последующую трансформацию формы этого элемента в процессе взаимодействия с соседними элементами структуры.

Для табличных значений температуры на рис.1 приведены расчетные диаграммы растяжения и поврежденности материала для режима $V_{\varepsilon}=3\cdot 10^{-3}c^{-1}$ и диаграммы растяжения для режима $V_{\sigma}=V_{\varepsilon}\cdot E$.

Рис. 1. Расчетные диаграммы растяжения $\sigma(\varepsilon)$ и поврежденности $\omega(\varepsilon)$ стали 20 в режиме V_{ε} =const (a) и диаграммы растяжения в режиме V_{σ} =const (б) для заданных температур

Уровни пределов текучести и прочности для режима V_{ε} =const совпадают с указанными в таблице. Пунктиром отмечены части построенных ДР, которые выходят за реализующиеся экспериментально значения деформаций. С учетом принятых при построении ДР допущений и возможного разброса экспериментальных данных, в частности, по уровню предельных деформаций, можно сказать, что описание диаграмм вполне адекватно реальности. Сравнительно с режимами V_{ε} =const, для режимов $V_{\sigma}=V_{\varepsilon}\cdot E$ характерным является наступление разрушения при деформациях более низкого уровня, но с более высокими значениями напряжений, причем на максимальных деформациях поврежденность материала при всех рассмотренных температурах достигает своего предельного значения ω =1.0. Особенностью этих диаграмм является также отсутствие на них площадок текучести. В обоих случаях из общей картины выпадают только диаграммы для T= -200 °C и T= -196 °C.

С использованием интерполяции полученных расчетных параметров уравнений (1)-(3) в интервалах между заданными таблично значениями температуры в [9] произведены расчеты поведения фермы при различных условиях нагружения, в том числе при возрастании температуры с постоянной скоростью V_T . В этом случае работоспособность конструкции, определяемая заданными уровнями деформаций и поврежденности материала стержней, нарушается за промежуток времени, который, как и уровень достигнутых деформаций, уменьшается с ростом скорости нагрева. В противополож-

ном направлении скорость нагрева влияет на поврежденность материала, так что при некоторой V_T возникает переход от случая нарушения работоспособности системы изза возникновения недопустимых деформаций к случаю прямого нарушения ее целостности. В этом смысле поведение конструкции при изменении V_{σ} и V_T однообразно – рост скоростей V_{σ} и V_T способствует "охрупчиванию" материала.

Экспериментальные данные в целом показывают, что деформации разрыва ε_P на ДР увеличиваются с ростом температуры и падают при ее уменьшении, что принято характеризовать соответственно как увеличение пластичности или хрупкости материала. Аналогично ведет себя материал и при изменении скорости деформирования V_{ε} – с ее ростом "хрупкость" возрастает. С точки зрения кинетического подхода оба момента объясняются единообразно – с ростом напряжений (иначе – уровня упругих деформаций материала и, соответственно, уровня относительных смещений узлов кристаллической решетки) скорость развития поврежденности материала, а с ней и сама поврежденность, нарастают. Следует отметить, что не все материалы строго следуют этому правилу. Например, на рис.2 приведены ДР американской стали К20 для скоростей деформаций $1.66 \cdot 10^3$, $4.28 \cdot 10^2$, $2.47 \cdot 10^1$, 2.13 и 39.0 час⁻¹ (кривые 1-5 соответственно) и их обработка с помощью кинетических уравнений [3]. Напряжения даны в фунт/дюйм², через $S = \sigma \cdot (1+\varepsilon)/(1-\omega)$ обозначены истинные напряжения ($1\phiyhm/dюйm^2 \approx 6.9 K\Pi a$).

Рис. 2. Зависимости $\sigma(\varepsilon)$, $\omega(\varepsilon)$ и $S(\varepsilon)$ для стали K20. Кружочками показаны экспериментальные точки

Аналогичное поведение мы обнаружим и для рассматриваемого материала, что видно из рис.3, где построены ДР для температуры $T=20 \ ^{o}C$ при различных скоростях деформирования. Для кривой (1) $V_{\varepsilon}=3\cdot 10^{-3}c^{-1}$, на других кривых V_{ε} последовательно уменьшалась в 1.5 раза.

Режимы V_{ε} =const и V_{σ} = V_{ε} ·E=const являются двумя крайними по своим проявлениям режимами, в которых может быть снята диаграмма растяжения материала. Несмотря на многие неопределенности, связанные с получением величин деформаций и напряжений в режиме V_{ε} =const по реально фиксируемым перемещениям и усилиям на зажимах образца, эта диаграмма является базовой при описании механических свойств материала.

Рис. 3. Зависимости $\sigma(\varepsilon)$, $\omega(\varepsilon)$ для стали 20

Поэтому представляет интерес рассмотреть поведение материала и вид диаграмм растяжения в режимах, промежуточных между двумя режимами $V_{\varepsilon}=const$ и $V_{\sigma}=V_{\varepsilon}\cdot E=const$. Если условно режим V_{ε} обозначить как R_{ε} , а режим V_{σ} как R_{σ} , то гипотетические промежуточные режимы можно образовать по закону

$$R_z = R_{\varepsilon} \cdot Z + R_{\sigma} \cdot (1 - Z), \tag{4}$$

где режимная переменная Z меняется в интервале от нуля до единицы ($0 \le Z \le 1$). В соответствии с (1) уравнение ДР принимает вид

$$\frac{d\sigma}{d\varepsilon} = E \cdot \left((1 - \frac{\sigma}{V_{\varepsilon} \cdot \eta}) \cdot Z + \frac{1}{1 + \frac{\sigma}{V_{\varepsilon} \cdot \eta}} \cdot (1 - Z) \right)$$
(5)

Решение уравнения (5) совместно с уравнением (3) приведено на рис.4.

При построениях частотный параметр v уравнения развития поврежденности выбран таким образом, чтобы в режиме V_{ε} (при Z=1) при деформации $\varepsilon = \varepsilon_B$ (здесь принято значение $\varepsilon_B = 0.5$) разрушение не имело места. Остальные параметры соответствуют использованным выше для стали 20 при T=20 ^{o}C . Кружками отмечены деформации, при которых для Z<1 достигается поврежденность $\omega(\varepsilon_p)=1.0$ (разрыв образца).

Кривая, соединяющая отмеченные концевые точки диаграмм (на рис.4 не показана), отражает нарастание хрупкости материала в рассматриваемом обобщенном режиме нагружения при $Z \rightarrow 0$. Не представляет сложности перейти к диаграммам с использованием истинных деформаций и напряжений.

Проведенное рассмотрение диаграмм растяжения в различных режимах нагружения подтверждает, что понятия "хрупкость" и "пластичность" характеризуют не столько сам материал, сколько его состояние – способность к деформированию в зависимости от конкретных условий режима нагружения. Этот же вывод подтверждают и рассмотренные выше построения ДР при различных температурных и деформационных условиях.

Рис. 4. Расчетные диаграммы растяжения $\sigma(\varepsilon)$ и поврежденности $\omega(\varepsilon)$ в режиме R_z при $V_{\varepsilon} = 1.10^{-3} c^{-1}$

Параметру Z уравнения (4) можно придать числовую оценку в виде отношения реализовавшейся в конкретных условиях испытаний на ДР предельной деформации к предельной деформации на базовой кривой, построенной в режиме $V_{\varepsilon}=const$ при известных стандартных условиях нагружения, т.е. использовать соотношение $Z=\varepsilon_P/\varepsilon_{PEA3}$. В таком случае понятия "пластичность" и "хрупкость" приобретают относительный характер, а параметр Z приобретает смысл показателя располагаемой пластичности (деформативности) и может быть использован при прогнозах работоспособности материалов и конструкций в качестве числовой характеристики их хрупкого или пластического состояния. Естественно, при этом требуется более строгий подход к определению зависимости напряжений от деформаций по построенной диаграмме растяжения образца и поднимается значимость определения поврежденности материала как одной из величин, используемых при оценке его напряженно-деформированного состояния.

ЛИТЕРАТУРА

- 1. Гуревич Г.И. Деформируемость сред и распространение сейсмических волн. М.: Наука, 1974, - 483c
- 2. Регель В.Р., Слуцкер А.И., Томашевский Э.Е. Кинетическая природа прочности твердых тел. М.: Наука, 1974, – 560с
- 3. Холодарь Б.Г. Описание поведения реономного упруго-пластического материала при скоростном и ударном нагружении. Стр. 567-595, Глава 24 в книге "Перспективные технологии"/Под редакцией В.В. Клубовича – Витебск: Изд-во УО "ВГТУ", 2011. – 599с
- 4. Холодарь Б.Г. Долговечность материала при сложном напряженном состоянии и переменных нагрузках // Теоретическая и прикладная механика. Международный научнотехнический журнал. Выпуск 28. Минск. – БНТУ. – 2013. – Стр. 167-172
- 5. Прочность материалов и элементов конструкций в экстремальных условиях. Под ред. Г.С. Писаренко. Т.2. К., "Наукова думка", 1980, 771с
- 6. Стали и сплавы. Марочник: Справ. изд. Под ред. В.Г. Сорокина, М.А. Гервасьева. М.: "Интермет Инжиниринг", 2001, – 608с
- 7. <u>http://metallicheckiy-portal.ru/marki_metallov/stk/20</u>
- 8. http://www.1bm.ru/techdocs/alloys/materials/2/info/23/
- 9. Холодарь Б.Г. Напряженно-деформированное состояние фермы из реономного упругопластического материала // Вестник Брестского гос. техн. университета. Строительство и архитектура. 1'(97) 2016. – Стр.42-46.

Поступила в редакцию 03.10.2016