

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Белорусский национальный технический университет

Кафедра «Высшая математика № 2»

Л. Д. Матвеева А. Н. Рудый

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Учебно-методическое пособие

Минск БНТУ 2016

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет

Кафедра «Высшая математика № 2»

Л. Д. Матвеева А. Н. Рудый

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Учебно-методическое пособие для студентов энергетических специальностей

Рекомендовано учебно-методическим объединением по образованию в области энергетики и энергетического оборудования

Минск БНТУ 2016 УДК 512.85(075.8) ББК 18.87я7 М 33

> Рецензенты: *А. В. Чигарев, Г.М. Заяц*

Матвеева, Л. Д.

М 33 Математический анализ: учебно-методическое пособие для студентов энергетических специальностей / Л. Д. Матвеева, А. Н. Рудый. – Минск: БНТУ, 2016. – 129 с.

ISBN 978-985-550-551-9.

Содержатся задания по темам «Комплексные числа», «Введение в математический анализ. Дифференциальное исчисление функции одной переменной» и др. Приводятся примеры решения типовых задач.

Содержится список рекомендуемой литературы.

Издание предназначено для студентов 1-го курса энергетического факультета БНТУ, может быть также полезно преподавателям, ведущим практические занятия по данному курсу.

УДК 519.85(075.8) ББК 18.87я7

ISBN 978-985-550-551-9

- © Матвеева Л. Д., Рудый А. Н., 2016
- © Белорусский национальный технический университет, 2016

1. КОМПЛЕКСНЫЕ ЧИСЛА

Определение 1.1. Многочленом (полиномом) степени n с действительными коэффициентами называется любое выражение вида

$$P_n(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n,$$
 (1.1)

где $a_i \in R$, i = 1, 2, ..., n, $a_0 \neq 0$;

x – переменная.

Корнем многочлена (1.1) называется любое число x_0 такое, что

$$P_n(x_0) = a_0 x_0^n + a_1 x_0^{n-1} + \dots + a_{n-1} x_0 + a_n = 0.$$
 (1.2)

Нетрудно заметить, что некоторые многочлены вообще не имеют действительных корней, например:

$$P_2(x) = x^2 + 1$$
; $x^2 + 1 \neq 0$, $\forall x \in R$.

Расширим множество действительных чисел. Добавим к этому множеству символ i, такой что $i^2 = -1$ (i называется мнимой единицей). Тогда $\pm i$ – два корня уравнения $x^2 + 1 = 0$.

Определение 1.2. Множеством комплексных чисел называется множество

$$C = \left\{ a + bi \middle| a, b \in R, i^2 = -1 \right\}.$$

Суммой двух комплексных чисел $z_1 = a_1 + b_1 i$ и $z_2 = a_2 + b_2 i$ называется число

$$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i$$
.

Произведением двух комплексных чисел $z_1 = a_1 + b_1 i$ и $z_2 = a_2 + b_2 i$ называется число

$$z_1 \cdot z_2 = (a_1 + b_1 i)(a_2 + b_2 i) = (a_1 a_2 - b_1 b_2) + i(a_1 b_2 + a_2 b_1).$$

Для числа z = a + bi число a называется действительной частью, число b – мнимой частью. Обозначения:

$$a = \text{Re}(z), b = \text{Im}(z).$$

Относительно операций «+» и « \cdot » комплексные числа C обладают такими же свойствами, как и действительные числа. Эти операции коммутативны и ассоциативны; для них существуют обратные операции: вычитание и деление (кроме деления на 0).

Пример 1.1

Найти
$$\frac{3+4i}{6+7i}$$
.

Решение

$$\frac{3+4i}{6+7i} = \frac{(3+4i)(6-7i)}{(6+7i)(6-7i)} = \frac{18+28+i(24-21)}{49+36} = \frac{46+3i}{85} = \frac{46}{85} + \frac{3}{15}i.$$

Теорема 1.1 (основная теорема алгебры). Любое уравнение вида (1.2) имеет решение во множестве C.

Пример 1.2

Решить уравнение $2x^2 + x + 1 = 0$.

Решение

$$D = b^2 - 4ac = 1 - 8 = -7 = 7i^2$$
.

$$x_{1, 2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{7i^2}}{4} = \frac{-1 \pm \sqrt{7}i}{4} = -\frac{1}{4} \pm \frac{\sqrt{7}}{4}i$$
.

Определение 1.3. Для комплексного числа z = a + bi число $\overline{z} = a - bi$ называется комплексно-сопряженным, число $|z| = \sqrt{a^2 + b^2}$ называется модулем z.

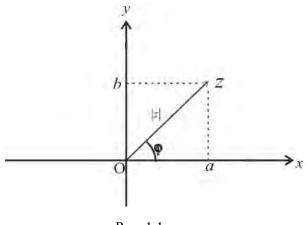


Рис. 1.1

Если рассмотреть плоскость с декартовой системой координат (O, x, y) и на оси Ox отложить a – действительную часть z, а на оси Oy – b – мнимую часть z, то получим взаимно однозначное соответствие между множеством C всех комплексных чисел и множеством точек плоскости.

Такая плоскость называется комплексной плоскостью, рис. 1.1.

При этом $|z| = \sqrt{a^2 + b^2}$ — длина радиуса-вектора точки z.

$$z \cdot \overline{z} = (a+bi)(a-bi) = a^2 + b^2 = |z|^2$$
.

Определение 1.4. Аргументом комплексного числа z = a + bi называется угол ϕ , который образует радиус-вектор точки z с положительным направлением оси Ox Аргумент будем обозначать Arg z. Аргумент определен с точностью до $2\pi n$. При этом значение $-\pi < \phi \le \pi$ называется главным и обозначается arg z.

Замечание. Arg $z = \arg z + 2\pi n$, $n = 0, \pm 1, \pm 2, ...$ При этом

$$\begin{cases} \arctan \frac{b}{a}, \ z \in I, \ IV \ \text{четвертям}; \\ \pi + \arctan \frac{b}{a}, \ z \in II \ \text{четверти}; \\ -\pi + \arctan \frac{b}{a}, \ z \in III \ \text{четверти}; \\ \frac{\pi}{2}; \ a = 0, \ b > 0; \\ -\frac{\pi}{2}; \ a = 0, \ b < 0. \end{cases}$$
 (1.3)

Если ϕ – аргумент z, то z представляется в виде

$$z = |z| \cdot (\cos \varphi + i \sin \varphi) - \tag{1.4}$$

тригонометрическая форма комплексного числа.

Теорема 1.2. Пусть $z_1 = r_1 \cdot (\cos \varphi_1 + i \sin \varphi_1)$, $z_2 = r_2 \cdot (\cos \varphi_2 + i \sin \varphi_2)$. Тогда

$$z_{1} \cdot z_{2} = r_{1} \cdot r_{2} (\cos(\varphi_{1} + \varphi_{2}) + i \sin(\varphi_{1} + \varphi_{2}));$$

$$\frac{z_{1}}{z_{2}} = \frac{r_{1}}{r_{2}} (\cos(\varphi_{1} - \varphi_{2}) + i \sin(\varphi_{1} - \varphi_{2})). \tag{1.5}$$

Доказательство

 $z_1 \cdot z_2 = r_1 \cdot r_2 (\cos \varphi_1 + i \sin \varphi_1) (\cos \varphi_2 + i \sin \varphi_2) =$ = $r_1 \cdot r_2 (\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2) + i (\sin \varphi_1 \cos \varphi_2 + \cos \varphi_1 \sin \varphi_2) =$ = $r_1 \cdot r_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2))$, что и требовалось доказать. Из формул (1.5) следует, в частности, что

$$z_1^n = r_1^n(\cos n\varphi + i\sin n\varphi) - формула Муавра.$$
 (1.6)

Пример 1.3

 $z_1=1+\sqrt{3}i;\ z_2=-1+i;\ z_3=\sqrt{3}-i$. Представить числа $z_1,\ z_2,\ z_3$ в тригонометрической форме.

Решение

$$z_1 = 1 + \sqrt{3}i; \ |z_1| = \sqrt{1^2 + (\sqrt{3})^2} = 2; \ z_1 \in I$$
 четверти,

поэтому по формуле (1.3)

$$\arg z_1 = \operatorname{arctg} \frac{b}{a} = \operatorname{arctg} \sqrt{3} = \frac{\pi}{3}$$
.

Тогда по формуле (1.4)

$$z_1 = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right).$$

$$z_2 = -1 + i;$$
 $|z_2| = \sqrt{1+1} = \sqrt{2};$ $z_2 \in \mathbf{II}$ четверти,

поэтому по формуле (1.3)

$$\arg z_2 = \pi + \operatorname{arctg} \frac{b}{a} = \pi + \operatorname{arctg} (-1) = \frac{3\pi}{4}.$$

Тогда
$$z_2 = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right).$$

$$z_3 = \sqrt{3} - i; \ \left| z_3 \right| = 2; \ z_3 \in IV$$
 четверти,

поэтому по формуле (1.3)

$$\arg z_3 = \operatorname{arctg} \frac{b}{a} = \operatorname{arctg} \left(-\frac{1}{\sqrt{3}} \right) = -\frac{\pi}{6}.$$

Тогда по формуле (1.4)

$$z_3 = 2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right).$$

Из формул (1.5), (1.6) видно, что аргумент ϕ комплексного числа z при умножении, делении, возведении в степень ведет себя как показатель степени. Обозначим

$$e^{i\varphi} = \cos\varphi + i\sin\varphi - \phi$$
ормула Эйлера. (1.7)

Тогда из теоремы 1.2 следует, что

1)
$$e^{i\varphi_1} \cdot e^{i\varphi_2} = e^{i(\varphi_1 + \varphi_2)}$$
:

2)
$$\frac{e^{i\varphi_1}}{e^{i\varphi_2}} = e^{i(\varphi_1 - \varphi_2)};$$

3)
$$\left(e^{i\varphi_1}\right)^n = e^{in\varphi_1}$$
.

Учитывая (1.7), формулу (1.4) для z можно переписать в виде $z=\left|z\right|e^{i\phi}$ – показательная форма комплексного числа.

Пример 1.4

Вычислить
$$\frac{(1+\sqrt{3}i)^5(-1+i)^7}{(\sqrt{3}-i)^3}.$$

Решение

Согласно примеру 1.3

$$1 + \sqrt{3}i = 2e^{i\frac{\pi}{3}}; \quad -1 + i = \sqrt{2}e^{i\frac{3\pi}{4}}; \quad \sqrt{3} - i = 2e^{i\left(-\frac{\pi}{6}\right)}.$$

Поэтому

$$\frac{(1+\sqrt{3}i)^{5}(-1+i)^{7}}{(\sqrt{3}-i)^{3}} = \frac{\left(2e^{i\frac{\pi}{3}}\right)^{5}\left(\sqrt{2}e^{i\frac{3\pi}{4}}\right)^{7}}{\left(2e^{i\left(-\frac{\pi}{6}\right)}\right)^{3}} = \frac{2^{5}(\sqrt{2})^{7}}{2^{3}}e^{i\left(\frac{5\pi}{3} + \frac{21\pi}{4} + \frac{\pi}{2}\right)} = \\
= 2^{5}\sqrt{2}e^{i\frac{89}{12}\pi} = 32\sqrt{2}e^{i\frac{17}{12}\pi}.$$

Определение 1.5. Корнем n-й степени из числа $z \in C$ называется такое число $z_1 \in C$, что $z_1^n = z$, при этом z_1 обозначается $z_1 = \sqrt[n]{z}$. Таким образом

$$\left(\sqrt[n]{z}\right)^n = z. \tag{1.8}$$

Из формулы (1.8) видно что $\exists \, n \,$ корней n-й степени из числа z, при этом, если $z = r_0 e^{i \, \phi_0}$, то

$$\sqrt[n]{z} = \sqrt[n]{r_0} e^{i \cdot \frac{\varphi_0 + 2\pi k}{n}}, \qquad (1.9)$$

$$k = 0, 1, 2, ..., n-1$$
.

Пример 1.5

Найти $\sqrt[3]{1}$.

Решение

 $1 = 1 \cdot e^{i \cdot 0}$, тогда по формуле (1.9)

$$w = \sqrt[3]{1} = \sqrt[3]{1}e^{i\cdot\frac{0+2\pi k}{3}}, k = 0, 1, 2;$$

$$w_1 = 1 \cdot e^{\frac{0}{3}i}$$
; $w_2 = 1 \cdot e^{\frac{2\pi}{3}i}$; $w_3 = 1 \cdot e^{\frac{4\pi}{3}i}$.

$$w_1 = 1$$
; $w_2 = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$;

$$w_3 = \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$
.

Задания

Задание 1.1

Выполнить следующие действия:

1)
$$(2+3i)(2-i)$$
; 2) $(4+5i)(4-5i)$; 3) $(2-i)^2$;

4)
$$(3+2i)^3$$
; 5) $\frac{3-i}{3+i}$; 6) $\frac{6i}{7-i}$; 7) $\frac{2+5i}{1-i}$; 8) $\frac{(1+i)^2}{3+2i}$.

Задание 1.2

Решить уравнения.

1)
$$x^2 + 16 = 0$$
; 2) $x^2 + 4x + 8 = 0$;

3)
$$x^2 - 6x + 10 = 0$$
; 4) $x^2 + x + 3 = 0$.

Задание 1.3

Найти действительные решения уравнений.

1)
$$(3-i)x + (1+i)y = 10 + 2i$$
;

2)
$$(2+2i)x + (1+2i)y = 3+6i$$
;

3)
$$(5-3i)x + (2+i)y = 1-5i$$
;

4)
$$(1+5i)x + (3-i)y = -16i$$
.

Задание 1.4

Записать в тригонометрической и показательной форме следующие комплексные числа:

1)
$$z = -\sqrt{2} + \sqrt{2}i$$
; 2) $z = 1 + \sqrt{3}i$; 3) $z = 2 - 2i$;

4)
$$z = -2$$
; 5) $z = -4$; 6) $z = 3i$;

7)
$$z = \sin\frac{\pi}{5} + i\left(1 - \cos\frac{\pi}{5}\right);$$
 8) $z = \sin\frac{\pi}{5} + i\left(1 + \cos\frac{\pi}{5}\right);$

9)
$$z = \sin \frac{3\pi}{7} + i \cos \frac{3\pi}{7}$$
; 10) $z = \sin \frac{3\pi}{7} - i \cos \frac{3\pi}{7}$.

Задание 1.5

Вычислить

1)
$$\sqrt[6]{-1}$$
; 2) $\sqrt[3]{-i}$; 3) $\sqrt[3]{2-2i}$; 4) $\sqrt[4]{1+i}$; 5) $\sqrt[4]{-8+8\sqrt{3}i}$.

Задание 1.6

Решить уравнения

1)
$$z^4 + 4 = 0$$
; 2) $z^4 + 18z^2 + 81 = 0$; 3) $(z+1)^4 + 16 = 0$;

4)
$$z^3 + 8 = 0$$
; 5) $z^2 + (2i - 3)z + 5 - i = 0$;

6)
$$z^4 - (1+i)z^2 + 2(1+i) = 0$$
.

Задание 1.7

Изобразить множество точек, удовлетворяющих следующим неравенствам:

1)
$$|z| < 1$$
; 2) $|z + i| \le 2$; 3) $|z - i| > 4$; 4) $|z + \overline{z}| < 6$.

Задание 1.8

Найти
$$z + 2\overline{z}$$
; $\overline{z - 5z}$; $2z \cdot \overline{z}$; $\frac{z}{z}$, если
1) $z = 3 + 5i$: 2) $z = 1 - i$; 3) $z = 2 + i$; 4) $z = 4 - 2i$; 5) $z = 1 + 3i$.

Залание 1.9

Доказать следующие равенства:

1)
$$z - \overline{z} = 2i \operatorname{Im} z$$
; 2) $z + \overline{z} = 2 \operatorname{Re} z$; 3) $\overline{(\overline{z})} = z$; 4) $|\overline{z}| = |z|$;

5)
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$
; 6) $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$.

Ответы

1.1. 1)
$$7 + 4i$$
; 2) 41; 3) $3 - 4i$; 4) $-9 + 46i$;

5)
$$\frac{4}{5} - \frac{3}{5}i$$
; 6) $-\frac{3}{25} + \frac{21}{25}i$; 7) $-\frac{3}{2} + \frac{7}{2}i$; 8) $\frac{4}{13} + \frac{6}{13}i$.

1.2. 1)
$$\pm 4i$$
; 2) $-2 \pm 2i$; 3) $3 \pm i$; 4) $-\frac{1}{2} \pm \frac{\sqrt{11}}{2}i$.

1.4. 1)
$$z = 2\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right), z = 2e^{\frac{3\pi i}{4}};$$

2)
$$z = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right), z = 2e^{\frac{\pi i}{3}};$$

3)
$$z = 2\sqrt{2} \left(\cos \left(-\frac{\pi}{4} \right) + i \sin \left(-\frac{\pi}{4} \right) \right), z = 2\sqrt{2}e^{-\frac{\pi i}{4}};$$

4)
$$z = 2(\cos \pi + i \sin \pi), z = 2e^{\pi i}$$
;

5)
$$z = 4(\cos \pi + i \sin \pi), z = 4e^{\pi i};$$

6)
$$z = 3\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right), z = 3e^{\frac{\pi i}{2}};$$

7)
$$2\sin\frac{\pi}{10}\left(\cos\frac{\pi}{10} + i\sin\frac{\pi}{10}\right)$$
; $2\sin\frac{\pi}{10}e^{i\frac{\pi}{10}}$;

8)
$$2\cos\frac{\pi}{10}\left(\cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}\right)$$
; $2\cos\frac{\pi}{10}e^{i\frac{2\pi}{5}}$;

9)
$$\cos \frac{\pi}{14} + i \sin \frac{\pi}{14}$$
; $e^{i\frac{\pi}{14}}$;

10)
$$\cos\left(-\frac{3\pi}{7}\right) + i\sin\left(-\frac{3\pi}{7}\right); e^{-\frac{3\pi}{7}i}$$
.

1.5. 1)
$$\pm i$$
; $\pm \frac{\sqrt{3}}{2} \pm \frac{1}{2}i$; 2) i ; $\pm \frac{\sqrt{3}}{2} - \frac{1}{2}i$;

3)
$$\sqrt[6]{8} \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i \right); \quad \sqrt[6]{8} \left(\cos \frac{\pi}{12} - i \sin \frac{\pi}{12} \right); \quad \sqrt[6]{8} \left(\cos \frac{7\pi}{12} + i \sin \frac{7\pi}{12} \right);$$

4)
$$\sqrt[8]{2} \left(\cos \frac{\pi}{16} + i \sin \frac{\pi}{16} \right); \sqrt[8]{2} \left(-\cos \frac{\pi}{16} - i \sin \frac{\pi}{16} \right);$$

$$\sqrt[8]{2} \left(\cos \frac{9\pi}{16} + i \sin \frac{9\pi}{16} \right); \sqrt[8]{2} \left(-\cos \frac{9\pi}{16} - i \sin \frac{9\pi}{16} \right);$$

5)
$$\sqrt{3} + i$$
; $-\sqrt{3} - i$; $-1 + \sqrt{3}i$; $1 - \sqrt{3}i$.

1.6. 1)
$$\pm 1 \pm i$$
; 2) $z_{1,2} = z_{3,4} = \pm 3i$; 3) $(-1 \pm \sqrt{2}) \pm i\sqrt{2}$; 4) $1 \pm i\sqrt{3}$; -2;

5)
$$1+i$$
; $2-3i$; 6) $\pm (1+i)$; $\pm \sqrt[4]{2} \left(\cos \frac{\pi}{8} - i \sin \frac{\pi}{8}\right)$.

1.8. 1)
$$9-5i$$
; $-12-30i$; 68 ; $-\frac{8}{17}+\frac{15}{17}i$;

2)
$$3+i$$
; $-4+6i$; 4; $-i$;

3)
$$6-i$$
; $-8-6i$; 10 ; $\frac{3}{5}+\frac{4}{5}i$;

4)
$$12+2i$$
; $-16+12i$; 40 ; $\frac{3}{5}-\frac{4}{5}i$;

5)
$$3-3i$$
; $-4-18i$; 20 ; $-\frac{4}{5}+\frac{3}{5}i$.

2. ПРЕДЕЛЫ ЧИСЛОВЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

Определение 2.1. Пусть X и Y — множества произвольной природы и каждому элементу $x \in X$ поставлен в соответствие некоторый элемент $y \in Y$. Такое соответствие называется **функцией**. Обозначим его f, или $f: X \to Y$, или $x \to y = f(x)$. При этом множество X называется областью определения D(f) функции f , D(f) = X , а множество $f(X) \subset Y$, $f(X) = \{y | \exists x \in X, f(x) = y\}$ называется областью значений E(f) функции f: E(f) = f(X), рис. 2.1.

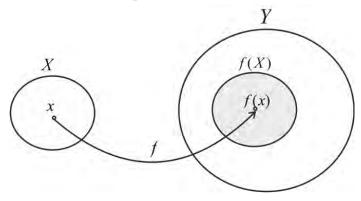


Рис. 2.1

Пример 2.1

 $f: R \to R, \ f: x \to x^2$ или $f(x) = x^2$. $D(f) = R, E(f) = R^{\geq 0}$ — множество всех неотрицательных чисел из R.

$$g: R \to R, \ g: x \to \frac{1}{x}$$
 или $g(x) = \frac{1}{x}$. $D(g) = R \setminus \{0\}; E(g) = R \setminus \{0\}.$

Определение 2.2. Числовой последовательностью называется произвольная функция $f: N \to R$. При этом числа f(1), f(2), ..., f(n) из области значений E(f) обозначаются: $a_1 = f(1)$, $a_2 = f(2)$, ..., $a_n = f(n)$. Число a_n называется n-м членом последовательности.

Для задания последовательности достаточно задать a_n .

Пример 2.2

 $a_n = (-1)^n \cdot \frac{n}{n+1}$. Подставив n = 1, 2, 3, ... получим

$$\left\{-\frac{1}{2}; \frac{2}{3}; -\frac{3}{4}; \dots; (-1)^n \cdot \frac{n}{n+1}\right\}.$$

Определение 2.3. Число a называется пределом числовой последовательности a_n , $a=\lim_{n\to\infty}a_n$, если $\forall \varepsilon>0$ существует число $N=N(\varepsilon)$, такое что $\forall n>N$ выполняется неравенство $\left|a_n-a\right|<\varepsilon$. Более коротко будем записывать это определение в виде

$$\forall \varepsilon > 0 \; \exists N = N(\varepsilon) : \forall n > N \Longrightarrow |a_n - a| < \varepsilon.$$
 (2.1)

Последовательности, имеющие предел, называются сходящимися, а не имеющие предела – расходящимися.

Пример 2.3

Доказать, что $\lim_{n\to\infty} \frac{2n}{n+1} = 2$.

Доказательство

Пусть $\varepsilon > 0$. Рассмотрим цепочку эквивалентных неравенств

$$\left| \frac{2n}{n+1} - 2 \right| < \varepsilon \Leftrightarrow \frac{2}{n+1} < \varepsilon \Leftrightarrow n+1 > \frac{2}{\varepsilon} \Leftrightarrow n > \frac{2}{\varepsilon} - 1.$$

Пусть N — натуральное число, большее $\frac{2}{\epsilon}-1$, например $N = \left[\frac{2}{\epsilon}-1\right]+1$, тогда N удовлетворяет соотношению (2.1), что и требовалось доказать.

V n p a ж н е н и е 2.1. Доказать, что $\lim_{n \to \infty} \sqrt[n]{10} = 1$.

Геометрически равенство $a=\lim_{n\to\infty}a_n$ означает, что $\forall \varepsilon>0$ все члены последовательности a_n , начиная с номера $N(\varepsilon)+1$, попадают в ε – окрестность $(a-\varepsilon,a+\varepsilon)$ точки a (рис. 2.2).

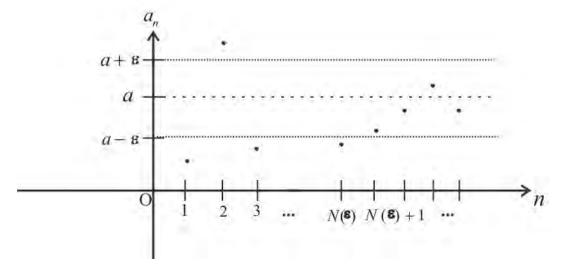


Рис. 2.2

Например, для последовательности $a_n = \frac{2n}{n+1}$ из примера 2.3, если $\varepsilon = 0,01$, то N = 200, если $\varepsilon = 0,001$, то N = 2000.

Определение 2.4. Последовательность a_n называется ограниченной, если $\exists \ M \in R$, такое что $\forall n \in N \Rightarrow \left|a_n\right| \leq M$.

Теорема 2.1. (необходимый признак сходимости последовательности). Если последовательность сходится, то она ограничена.

Доказательство

Из соотношений (2.1) следует, что все члены сходящейся последовательности после номера N лежат в интервале $(a - \varepsilon, a + \varepsilon)$, далее доказательство очевидно.

Определение 2.5. Последовательность a_n называется бесконечно большой, если $\forall \ M>0 \ , \ \exists \ N=N(M) : n>N \Rightarrow |a_n|>M \ .$

Говорят, что бесконечно большая последовательность имеет предел ∞ , и пишут $\lim_{n\to\infty} a_n = \infty$.

Если все члены бесконечно большой последовательности, начиная с некоторого номера, становятся положительными, то есть

$$\forall M > 0, \exists N = N(M): n > N \Longrightarrow a_n > M,$$

то пишут $\lim_{n\to\infty} a_n = +\infty$.

Если все члены бесконечно большой последовательности, начиная с некоторого номера, становятся отрицательными, то есть

$$\forall M < 0, \exists N = N(M): n > N \Longrightarrow a_n < M$$

то пишут $\lim_{n\to\infty} a_n = -\infty$.

Пример 2.4

$$a_n = n^2$$
, $\lim_{n \to \infty} n^2 = +\infty$, $a_n = (-1)^n n^2$, $\lim_{n \to \infty} (-1)^n \cdot n^2 = \infty$.

Бесконечно большие последовательности не являются сходящимися и отличаются по своим свойствам от свойств сходящихся последовательностей.

Определение 2.6. Числовая последовательность называется возрастающей (убывающей), если $a_1 < a_2 < ... < a_n < a_{n+1} < ...$ ($a_1 > a_2 > ... > a_n > a_{n+1} > ...$).

Возрастающие (убывающие) последовательности называются строго монотонными.

Числовая последовательность называется неубывающей (невозрастающей), если

$$a_1 \le a_2 \le ... \le a_n \le a_{n+1} \le ... \ (a_1 \ge a_2 \ge ... \ge a_n \ge a_{n+1} \ge ...).$$

Неубывающие (невозрастающие) последовательности называются монотонными.

Пример 2.5

1.
$$a_n = \frac{n}{n+1}$$
. При $n = 1, 2, 3, ..., n, n+1$ имеем

$$\frac{1}{2} < \frac{2}{3} < \frac{3}{4} < \dots < \frac{n}{n+1} < \frac{n+1}{n+2} < \dots$$
 — возрастающая последовательность.

2. Последовательность

$$3 \le 3, 1 \le 3, 14 \le 3, 141 \le 3, 1415 \le \dots$$

последовательных приближений к числу π — неубывающая последовательность.

Теорема 2.2. (достаточный признак сходимости последовательности). Монотонная ограниченная последовательность сходится.

Пример 2.6

Рассмотрим последовательность $a_n = \left(1 + \frac{1}{n}\right)^n$. Она монотонно возрастает и ограничена, следовательно – сходится:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e = 2,718281... \tag{2.2}$$

e — трансцендентное число, служащее основанием натурального логарифма: $\ln a = \log_e a$.

Определение 2.7. Суммой, разностью, произведением, частным последовательностей $\{a_n\}$ и $\{b_n\}$ будем называть последовательности, n-й член которых равен соответственно:

$$a_n + b_n$$
; $a_n - b_n$; $a_n \cdot b_n$; $\frac{a_n}{b_n}$ $(b_n \neq 0, \forall n \in N)$.

Теорема 2.3. Пусть последовательности a_n и b_n сходятся и $\lim_{n\to\infty}a_n=a$; $\lim_{n\to\infty}b_n=b$; c — постоянное число. Тогда

$$\lim_{n\to\infty}(a_n\pm b_n)=a\pm b; \ \lim_{n\to\infty}c\cdot a_n=c\cdot a; \ \lim_{n\to\infty}(a_n\cdot b_n)=a\cdot b; \ \lim_{n\to\infty}\frac{a_n}{b_n}=\frac{a}{b}(b\neq 0).$$

Доказательство

Докажем, например, формулу $\lim_{n\to\infty}(a_n\cdot b_n)=a\cdot b$. Так как последовательность a_n сходится, то она ограничена, то есть \exists число M>0, такое что $|a_n|< M$. Пусть

$$\varepsilon > 0, |a_n b_n - ab| = |a_n b_n - ab - a_n b + a_n b| =$$

$$= |a_n (b_n - b) + b(a_n - a)| \le M |b_n - b| + |b| \cdot |a_n - a|. \tag{2.3}$$

Так как последовательность b_n сходится, то $\exists N_1$, такой что при

$$n > N_1 \Longrightarrow |b_n - b| < \frac{\varepsilon}{2M}$$
.

Так как последовательность a_n сходится, то $\exists N_2$, такой что при $n>N_2\Rightarrow |a_n-a|<\frac{\varepsilon}{2|b|}$ (считаем, что $b\neq 0$; если b=0, то второго слагаемого в формуле (2.3) нет).

Пусть $N = \max\{N_1, N_2\}$. Тогда из (2.3) при n > N следует

$$|a_n b_n - ab| \le M |b_n - b| + |b| \cdot |a_n - a| < M \cdot \frac{\varepsilon}{2M} + |b| \cdot \frac{\varepsilon}{2|b|} = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

что и требовалось доказать.

 $y \, n \, p \, a \,$ ж $e \, h \, e \, h \, u \, e \, 2.2$. Доказать формулу $\lim_{n \to \infty} (a_n + b_n) = a + b \,$ в условиях теоремы 2.3.

Определение 2.8. Пусть $\lim_{n\to\infty} a_n = 0$, тогда последовательность a_n называется бесконечно малой. Пусть $\{a_n\}$ и $\{b_n\}$ – бесконечно малые последовательности. Тогда $\lim_{n\to\infty} \frac{a_n}{b_n}$ называется неопределенностью вида $\left(\frac{0}{0}\right)$. Вычисление таких пределов называется раскрытием неопределенности. Аналогично определяются неопределенности вида $\left(\frac{\infty}{\infty}\right)$, $(\infty-\infty)$, $(0\cdot\infty)$, (1^∞) .

Пример 2.7

$$\lim_{n\to\infty} \frac{2n^3 + 5n + 1}{n + 3n^3} = \left(\frac{\infty}{\infty}\right) = \left|\text{делим почленно на } n^3\right| = \lim_{n\to\infty} \frac{2 + \frac{5}{n^2} + \frac{1}{n^3}}{\frac{1}{n^2} + 3} = \frac{2}{3}.$$

Пример 2.8

$$\lim_{n\to\infty} \frac{3n^2+1}{\sqrt{n^2+5}\cdot\sqrt[3]{2n^3+1}} = \left(\frac{\infty}{\infty}\right) = \lim_{n\to\infty} \frac{3n^2+1}{n\cdot\sqrt{1+\frac{5}{n^2}\cdot n\cdot\sqrt[3]{2+\frac{1}{n^3}}}} =$$

$$= \left|\text{делим числитель и знаменатель на } n^2\right| = \lim_{n\to\infty} \frac{3+\frac{1}{n^2}}{\sqrt{1+\frac{5}{n^2}\cdot\sqrt[3]{2+\frac{1}{n^3}}}} = \frac{3}{\sqrt[3]{2}}.$$

Пример 2.9

$$\lim_{n \to \infty} (\sqrt{n^2 + 3n} - n) = (\infty - \infty) = \lim_{n \to \infty} \frac{(\sqrt{n^2 + 3n} - n)(\sqrt{n^2 + 3n} + n)}{(\sqrt{n^2 + 3n} + n)} = \lim_{n \to \infty} \frac{3n}{(\sqrt{n^2 + 3n} + n)} = \lim_{n \to \infty} \frac$$

Пример 2.10

$$= \lim_{n \to \infty} \left(1 + \frac{2}{n+1} \right)^{3n} = \lim_{n \to \infty} \left(\left(1 + \frac{2}{n+1} \right)^{\frac{n+1}{2}} \right)^{\frac{2}{n+1} \cdot 3n} = \lim_{n \to \infty} \left(\left(1 + \frac{2}{n+1} \right)^{\frac{6}{1+\frac{1}{n}}} \right)^{\frac{6}{1+\frac{1}{n}}} = e^6.$$

Теорема 2.4. а. Пусть последовательность $\{a_n\}$ – бесконечно малая $(\lim_{n\to\infty}a_n=0)$ и $a_n\neq 0,\ \forall n$. Тогда последовательность $\left\{\frac{1}{a}\right\}$ – бесконечно большая $\left(\lim_{n\to\infty}\frac{1}{a_n}=\infty\right)$.

б. Пусть последовательность $\left\{a_n\right\}$ – бесконечно большая ($\lim a_n=\infty$), тогда последовательность $\left\{\frac{1}{a_n}\right\}$ – бесконечно малая.

Пример 2.11

$$\lim_{n\to\infty} \frac{2n^3 + 5n + 1}{\sqrt{n^4 + 1}} = \left| \text{делим почленно на } n^3 \right| = \lim_{n\to\infty} \frac{2 + \frac{5}{n^2} + \frac{1}{n^3}}{\sqrt{\frac{1}{n^2} + \frac{1}{n^6}}} = \infty.$$

 $\lim_{n\to\infty} a_n \neq 0$; последовательность $\{b_n\}$ – бесконечно малая. Найти $\lim_{n\to\infty} \frac{a_n}{b_n}$.

Y n p a ж нение 2.4. Пусть $a_n = n^2, b_n = (-1)^n n^2.$

Найти $\lim_{n\to\infty} a_n$; $\lim_{n\to\infty} b_n$; $\lim_{n\to\infty} (a_n+b_n)$.

V n p a ж н е н и е 2.5. Пусть $a_n = (-1)^n \cdot n$, $b_n = (-1)^{n+1} n$.

Найти $\lim_{n\to\infty} a_n$; $\lim_{n\to\infty} b_n$; $\lim_{n\to\infty} (a_n + b_n)$.

Теорема 2.5. (о трех последовательностях).

 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = a$ и $a_n \le c_n \le b_n, \, \forall n$, тогда c_n сходится $\operatorname{Iim}_{n\to\infty}c_n=a.$

 $V \, n \, p \, a \, ж \, n \, e \, n \, u \, e \, 2.6$. Рассмотрим последовательность $a_n = \frac{3^n}{n!}, \, n > 3$. Тогда

$$0 \le \frac{3^n}{n!} = \frac{3}{1} \cdot \frac{3}{2} \cdot \frac{3}{3} \cdot \frac{3}{4} \cdot \dots \cdot \frac{3}{n} \le \frac{3}{1} \cdot \frac{3}{2} \cdot \frac{3}{3} \cdot \left(\frac{3}{4}\right)^{n-3}.$$

Используя теорему о трех последовательностях, найти $\lim_{n\to\infty} \frac{3^n}{n!}$.

 $V\, n\, p\, a\,$ ж $e\, n\, e\, n\, u\, e\, 2.7.$ Рассмотрим последовательность $a_n=\frac{n^\alpha}{3^n},\, \alpha>0$.

Тогда

$$a_{n+1} = \frac{(n+1)^{\alpha}}{3^{n+1}} = \frac{(n+1)^{\alpha}}{n^{\alpha}3} \cdot \frac{n^{\alpha}}{3^n} = \frac{\left(1 + \frac{1}{n}\right)^{\alpha}}{3} \cdot \frac{n^{\alpha}}{3^n} < \frac{n^{\alpha}}{3^n} = a_n$$

при $n > \alpha$, поэтому по теореме 2.2 a_n сходится.

- 1. Доказать, что $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = 3$.
- 2. Доказать, что $\lim_{n\to\infty} a_n = 0$.

Необходимо помнить, что $\lim_{n\to\infty}\frac{a^n}{n!}=0; \lim_{n\to\infty}\frac{n^\alpha}{a^n}=0 \ (a>1, \alpha>0);$

$$\lim_{n\to\infty}\frac{\log_a n}{n^\alpha}=0, \,\alpha>0.$$

Упражнение 2.8.

а. Пусть a_n , b_n – сходящиеся последовательности, $a_n > 0$; $b_n > 0$; $\forall n$,

$$\lim_{n\to\infty}a_n=a,\quad \lim_{n\to\infty}b_n=b \ . \ {\rm Ha\"{u}}{\rm Tu}\ \lim_{n\to\infty}\frac{1}{2}(a_n+b_n) \ .$$

б. Пусть $a_1, a_2 > 0$ — основания трапеции. Рассмотрим последовательность средних линий:

$$a_3 = \frac{1}{2}(a_2 + a_1), \quad a_4 = \frac{1}{2}(a_3 + a_2), \dots, \quad a_{n+1} = \frac{1}{2}(a_n + a_{n-1}).$$

Найти $\lim_{n\to\infty} a_n$.

Otbet: $\lim_{n \to \infty} a_n = \frac{1}{3}(a_1 + 2a_2).$

Определение 2.9. Последовательность a_n имеет предел при $n \to \infty$, если $\exists a \in R$, $\forall \varepsilon > 0$ $\exists N = N(\varepsilon) : \forall n > N \Rightarrow |a_n - a| < \varepsilon$.

Легко видеть, что число a в определении 2.9 единственно, поэтому определения 2.3 и 2.9 эквивалентны.

Из определения 2.9 следует, что последовательность a_n – расходящаяся (не имеет предела), если

$$\forall a \in R, \exists \varepsilon > 0 \ \forall N, \exists n > N \Rightarrow |a_n - a| \ge \varepsilon.$$
 (2.4)

У n p a ж e e u e 2.9. Рассмотрим последовательность $a_n = n$; a_n — бесконечно большая, $\lim_{n\to\infty} a_n = +\infty$.

Используя (2.4) доказать, что a_n – расходящаяся.

Задания

Задание 2.1

Доказать, что заданные последовательности являются бесконечно малыми.

1)
$$x_n = n^k (k < 0)$$
; 2) $x_n = (-1)^n \cdot 0.999^n$;

3)
$$x_n = \frac{1}{n!}$$
; 4) $x_n = \frac{n}{2n^3 + 1}$.

Задание 2.2

Доказать, что заданные последовательности – бесконечно большие.

1)
$$x_n = n^k (k > 0)$$
; 2) $x_n = n \cdot (-1)^n$;

3)
$$x_n = 2^{\sqrt{n}}$$
; 4) $x_n = \log_2(\log_2 n), n \ge 2$.

Доказать, что последовательность $\left\{ n + (-1)^n n \right\}$ неограниченная, однако не является бесконечно большой.

Залание 2.4

Найти наименьший член последовательности $\{x_n\}$, если:

1)
$$x_n = n^2 - 9n - 100$$
; 2) $x_n = n + \frac{100}{n}$;

3)
$$x_n = n^2 - 5n + 1$$
; 4) $x_n = n + \frac{1}{n}$;

5)
$$x_n = \frac{1}{2^{-n} + 1}$$
; 6) $x_n = n^2 - 4n$.

Задание 2.5

Найти наибольший член последовательности.

1)
$$x_n = \frac{2^n}{n!}$$
; 2) $x_n = \frac{2n^3 + 3}{n^3 + 1}$;

3)
$$x_n = -n^2 + 6n - 8$$
; 4) $x_n = \frac{n^2}{2^n}$.

Задание 2.6

Доказать, что последовательность $\{x_n\}$ ограничена.

1)
$$x_n = \frac{(-1)^n \cdot n + 1}{\sqrt{n^2 + 2}}$$
; 2) $x_n = \sin n$;

3)
$$x_n = \left[1 - (-1)^n\right]$$
; 4) $x_n = \frac{n^2 + 1}{n^2 + 2}$.

Задание 2.7

Найти формулу общего члена последовательности x_n .

1)
$$x_1 = a$$
, $x_n = x_{n-1} + d$; 2) $x_1 = b$, $x_{n+1} = x_n \cdot q$ $(q = \text{const}, q \neq 0)$.

Доказать, что последовательность не является ограниченной.

1)
$$x_n = n^{(-1)^n}$$
; 2) $x_n = (-1)^n \cdot n$; 3) $x_n = n \cdot \log_{1/2} n$; 4) $x_n = \lg n$.

Доказать, что последовательность монотонна.

1)
$$x_n = 3^n - 2^n$$
; 2) $x_n = \sqrt{n^2 - 1}$; 3) $x_n = \sum_{k=1}^n k$.

Задание 2.10

Пользуясь определением, доказать следующие равенства:

1)
$$\lim_{n\to\infty} \frac{n+1}{n} = 1; 2$$
) $\lim_{n\to\infty} \frac{5n+3}{2n-1} = \frac{5}{2};$

3)
$$\lim_{n\to\infty} \frac{2+(-1)^n}{n} = 0; 4$$
) $\lim_{n\to\infty} \frac{n^2+4}{5n^2-2} = \frac{1}{5};$

5)
$$\lim_{n \to \infty} a^n = \infty \ (a > 1); 6) \ \lim_{n \to \infty} (\sqrt{n^2 + 1} - n) = 0;$$

7)
$$\lim_{n \to \infty} (n^3 - n) = \infty.$$

Задание 2.11

Используя основные теоремы о пределах, вычислить следующие пределы:

1)
$$\lim_{n \to \infty} \frac{n!}{(2n-1)!}$$
; 2) $\lim_{n \to \infty} \left(\frac{n}{7n+3}\right)^n$; 3) $\lim_{n \to \infty} \left(\frac{9n}{2n-3}\right)^n$; 4) $\lim_{n \to \infty} \frac{\cos n}{n^2+1}$;

5)
$$\lim_{n\to\infty} \frac{(-1)^n \cdot n^2}{n^3 + 8}$$
; 6) $\lim_{n\to\infty} \frac{3^{2n}}{n!}$; 7) $\lim_{n\to\infty} \frac{n!}{3^{n^2}}$.

Задание 2.12

Упражнение 2.12. Вычислить пределы.

1)
$$\lim_{n\to\infty} \frac{4+7+10+...+(3n+1)}{1+6+11+...+(5n-4)}$$
; 2) $\lim_{n\to\infty} \frac{1+3+5+...+(2n-1)}{n\sqrt{n^2+1}}$;

3)
$$\lim_{n\to\infty} \frac{\log_a(n+1)!}{\log_a n!} (a>1);$$
 4) $\lim_{n\to\infty} \frac{(n+k)!+n!}{(n+k)!-n!};$ 5) $\lim_{n\to\infty} \frac{\ln(5^n+1)}{\ln(4^n+1)};$

6)
$$\lim_{n\to\infty} \frac{2^n+1}{3^n+1}$$
; 7) $\lim_{n\to\infty} \frac{\sqrt{n^2+n}+2n}{\sqrt{2n^2+1}+4}$; 8) $\lim_{n\to\infty} \frac{7n}{5n+\sqrt{9n^2+4n}}$;

9)
$$\lim_{n\to\infty} \frac{\sqrt{1+n^4}+2\sqrt[3]{1+n^6}}{(n+\sqrt{1+n^2})^2}$$
; 10) $\lim_{n\to\infty} \frac{\sqrt[3]{n-1}+\sqrt[3]{n^2-5n+7}}{n^2-6n+8}$;

11)
$$\lim_{n \to \infty} n^2 \cdot \ln \frac{\sqrt{n^2 + 1}}{n}; \quad 12) \lim_{n \to \infty} \sqrt{n} \left(\ln(n + 2\sqrt{n} + 2) - \ln n \right);$$

13)
$$\lim_{n \to \infty} 2^n \cdot \operatorname{tg} 2^{-n};$$
 14) $\lim_{n \to \infty} n^2 \left(\frac{1}{x^n} - x^{\frac{1}{n+1}} \right), x > 0;$

15)
$$\lim_{n\to\infty} (\sqrt{n^2 + 19n} - n)$$
; 16) $\lim_{n\to\infty} (\sqrt{n^4 - 3n + 1} - n^2)$;

17)
$$\lim_{n\to\infty} (\sqrt{2+4+6+...+2n} - \sqrt{1+3+5+...+(2n-1)});$$

18)
$$\lim_{n\to\infty} (\ln(5n + \sqrt{n^2 + 3n + 9}) - \ln(n + \sqrt{4n^2 - 7n + 1}));$$

19)
$$\lim_{n\to\infty} \left(\frac{n^2+4n+9}{n^2+3n+5}\right)^{6n}$$
; 20) $\lim_{n\to\infty} \left(\frac{n^3-2n^2+3n+4}{n^3+1}\right)^n$;

21)
$$\lim_{n\to\infty} \left(\cos\frac{\alpha}{n}\right)^{n^2}$$
; 22) $\lim_{n\to\infty} \ln\left(n+\sqrt{n^2+1}\right)^{\frac{3}{\ln n}}$;

23)
$$\lim_{n\to\infty} \frac{(n+2)! - (n+1)!}{n! + 2(n+2)!}$$
; 24) $\lim_{n\to\infty} \frac{(n+3)! + n \cdot (n+2)!}{n^2 \cdot (n+1)! - (n+2)!}$;

25)
$$\lim_{n \to \infty} \left(\frac{3n}{3n+1} \right)^n$$
; 26) $\lim_{n \to \infty} \left(\frac{3n}{3n-1} \right)^n$; 27) $\lim_{n \to \infty} \left(\frac{3n}{3n+1} \right)^{n^2}$;

28)
$$\lim_{n\to\infty} \left(\frac{3n}{3n-1}\right)^{n^2}$$
; 29) $\lim_{n\to\infty} \frac{\sqrt{n^3+1}-\sqrt{n^3-7}}{\sqrt{n+5}-\sqrt{n+3}}$;

30)
$$\lim_{n\to\infty} \frac{\sqrt{2n^3+1}-\sqrt{n^3-7}}{\sqrt{2n+5}-\sqrt{n+3}};$$
 31) $\lim_{n\to\infty} \frac{\sqrt{n^2+4}-n}{\sqrt{n^2+1}-n};$

32)
$$\lim_{n \to \infty} \frac{(2n-5)^3}{\sqrt[3]{5-n^3}} \cdot \sqrt{n^4+1}$$
.

Ответы

2.4. 1)
$$x_4 = x_5 = -120$$
; 2) $x_{10} = 20$; 3) $x_2 = x_3 = -5$; 4) $x_1 = 2$; 5) $x_1 = \frac{2}{3}$; 6) $x_2 = -4$.

2.5. 1)
$$x_1 = x_2 = 2$$
; 2) $x_1 = \frac{5}{2}$; 3) $x_3 = 1$; 4) $x_3 = \frac{8}{9}$.

2.7. 1)
$$x_n = a + (n-1)d$$
; 2) $x_n = bq^{n-1}$.

2.11. 1) 0; 2) 0; 3)
$$\infty$$
; 4) 0; 5) 0; 6) 0; 7) 0.

2.12. 1)
$$\frac{3}{5}$$
; 2) 1; 3) 1; 4) 1; 5) $\frac{\ln 5}{\ln 4}$; 6) 0; 7) $\frac{3}{\sqrt{2}}$; 8) $\frac{7}{8}$; 9) $\frac{3}{4}$;

10) 0; 11)
$$\frac{1}{2}$$
; 12) 2; 13) 1; 14) $\ln x$; 15) $\frac{19}{2}$; 16) 0; 17) $\frac{1}{2}$; 18) $\ln 2$;

19)
$$e^6$$
; 20) e^{-2} ; 21) $e^{-\frac{\alpha^2}{2}}$; 22) 3; 23) $\frac{1}{2}$; 24) 2; 25) $e^{-1/3}$;

26)
$$e^{1/3}$$
; 27) 0; 28) ∞ ; 29) 0; 30) ∞ ; 31) 4; 32) -8.

3. ПРЕДЕЛЫ ФУНКЦИЙ

Определение 3.1. δ -окрестностью точки $x_0 \in R$ называется множество $O_{\delta}(x_0) = \{x | |x - x_0| < \delta\}$, рис. 3.1.

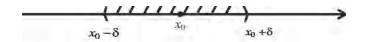


Рис. 3.1

Выколотой δ -окрестностью точки $x_0 \in R$ называется множество $O_\delta(x_0) = \left\{x \middle| 0 < \middle| x - x_0 \middle| < \delta \right\}$, рис 3.2.

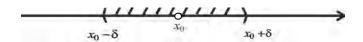
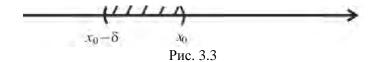
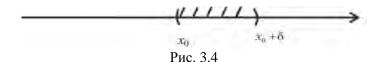


Рис. 3.2

Левой выколотой δ -окрестностью точки $x_0 \in R$ называется множество $O_\delta(x_0-0) = \{x | 0 < x_0-x < \delta\}$, рис. 3.3.



Правой выколотой δ -окрестностью точки $x_0 \in R$ называется множество $O_{\delta}(x_0+0) = \{x | 0 < x - x_0 < \delta\}$, рис. 3.4.



Окрестности точек необходимы для того, чтобы строго определить понятие близости точек и понятие предела функции.

Определение 3.2. Число A называется пределом функции y = f(x) при $x \to x_0$ (пишут $A = \lim_{x \to x_0} f(x)$), если

$$\forall \epsilon > 0, \exists \delta = \delta(\epsilon) > 0,$$

$$\forall x, 0 < |x - x_0| < \delta \Rightarrow |f(x) - A| < \varepsilon. \tag{3.1}$$

С учетом определения 3.1 вместо (3.1) можно записать

$$\forall \varepsilon > 0, \quad \exists \ \delta = \delta(\varepsilon) > 0: \ \forall x \in O_{\delta}(x_0) \Rightarrow |f(x) - A| < \varepsilon.$$
 (3.2)

Пример 3.1

Рассмотрим функцию $y = \begin{cases} 1 - x^2, & x \neq 0; \\ 2, & x = 0, \text{ рис. } 3.5. \end{cases}$

Докажем, что $\lim_{x\to 0} y = 1$.

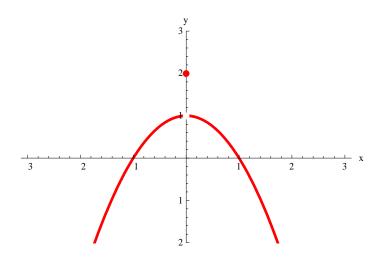


Рис. 3.5. Функция
$$y = \begin{cases} 1 - x^2, & x \neq 0; \\ 2, & x = 0 \end{cases}$$

Пусть $\varepsilon > 0$ и $x \neq 0$, тогда $|f(x) - 1| < \varepsilon \Leftrightarrow |1 - x^2 - 1| < \varepsilon \Leftrightarrow |x| < \sqrt{\varepsilon}$, поэтому при $\delta = \sqrt{\varepsilon}$ соотношение (3.2) будет выполняться.

V n p a ж н е н и е 3.1. Доказать, что $\lim_{x\to 2} (x^2 + 1) = 5$.

Определение 3.2 подразумевает, что функция y = f(x) определена в некоторой окрестности точки x_0 (или в выколотой окрестности точки x_0) и называется определением предела функции по Коши.

Определение 3.3 (предел функции по Гейне).

Число A называется пределом функции y=f(x) при $x \to x_0$ ($x \to \infty$; $x \to +\infty$; $x \to -\infty$), если \forall последовательности $\{x_n\}$ такой, что $x_n \ne x_0$; $\forall n$, и $\lim_{n \to \infty} x_n = x_0$ ($\lim_{n \to \infty} x_n = \infty$, $\lim_{n \to \infty} x_n = +\infty$, $\lim_{n \to \infty} x_n = -\infty$), последовательность $\{f(x_n)\}$ сходится и $\lim_{n \to \infty} f(x_n) = A$.

При этом пишут
$$A = \lim_{\substack{x \to x_0 \\ (x \to \infty; +\infty; -\infty)}} f(x_n)$$
 .

Пример 3.2

$$\lim_{x \to \infty} \frac{1}{x^2} = 0; \lim_{x \to \infty} \frac{1}{x} + 1 = 1, \text{ puc. 3.6.}$$

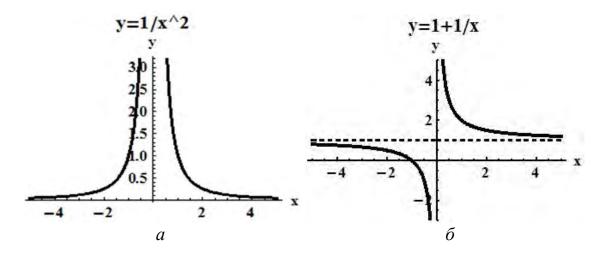


Рис. 3.6. Функции: $a - y = \frac{1}{x^2}$; $\delta - y = \frac{1}{x} + 1$; $-5 \le x \le 5$

По Коши $\lim_{x\to\infty} f(x) = A$ записывается в виде

$$\forall \varepsilon > 0, \exists M > 0: |x| > M \Rightarrow |f(x) - A| < \varepsilon.$$

У пражнение 3.2. Записать по Коши определения

$$\lim_{x \to +\infty} f(x) = A, \lim_{x \to -\infty} f(x) = A.$$

Теорема 3.1. Определения 3.2 и 3.3 эквивалентны.

Определение 3.4. Число A называется левым пределом функции y = f(x) при $x \to x_0$ (пишут $A = \lim_{x \to x_0 - 0} f(x)$ или $f(x_0 - 0) = \lim_{x \to x_0 - 0} f(x)$),

если

$$\forall \varepsilon > 0, \exists \delta = \delta(\varepsilon) > 0: \forall x \in O_{\delta}(x_0 - 0) \Rightarrow |f(x) - A| < \varepsilon.$$

Число A называется правым пределом функции y=f(x) при $x \to x_0$ ($A=\lim_{x\to x_0+0}f(x)$ или $f(x_0+0)=\lim_{x\to x_0+0}f(x)$), если

$$\forall \varepsilon > 0, \exists \delta = \delta(\varepsilon) > 0: \forall x \in O_{\delta}(x_0 + 0) \Rightarrow |f(x) - A| < \varepsilon.$$

Пример 3.3

Рассмотрим функцию сигнум (signum – знак):

sign
$$x = \begin{cases} \frac{|x|}{x}, & x \neq 0; \\ 0, & x = 0 \end{cases} = \begin{cases} 1, & x > 0; \\ -1, & x < 0; \\ 0, & x = 0, \text{ рис. 3.7.} \end{cases}$$

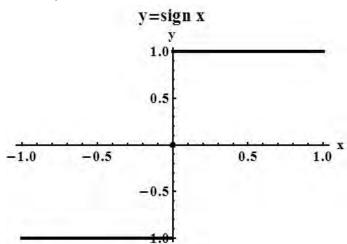


Рис. 3.7. Функция y = sign x, $-1 \le x \le 1$

Тогда
$$\lim_{x \to +0} \text{sign } x = 1$$
, $\lim_{x \to -0} \text{sign } x = -1$.

У пражнение 3. Записать по Гейне определение

$$\lim_{x \to x_0 - 0} f(x) = A \text{ u } \lim_{x \to x_0 + 0} f(x) = A.$$

Теорема 3.2. Пусть функция y=f(x) определена в некоторой окрестности $O_{\delta}(x_0)$ точки x_0 или в выколотой окрестности $O_{\delta}(x_0)$ и $\lim_{x\to x_0-0} f(x)=f(x_0-0), \ \lim_{x\to x_0+0} f(x)=f(x_0+0).$

Пусть
$$f(x_0 - 0) = f(x_0 + 0) = A$$
. Тогда $\exists \lim_{x \to x_0} f(x)$ и $\lim_{x \to x_0} f(x) = A$.

Доказательство

Пусть $\varepsilon > 0$, тогда по определению 3.4 $\exists \, \delta_1 \,$ и $\, \delta_2 \,$ такие, что

$$\forall x \in O_{\delta_1}(x_0 - 0) \Rightarrow |f(x) - A| < \varepsilon, \ \forall x \in O_{\delta_2}(x_0 + 0) \Rightarrow |f(x) - A| < \varepsilon.$$

Поэтому, если $\delta = \min\{\delta_1, \delta_2\}$, то $\forall x \in O_\delta(x_0) \Rightarrow \big| f(x) - A \big| < \epsilon$, что и требовалось доказать.

Теорема 3.3. Пусть $\lim_{x \to x_0} f(x) = A$ и $\lim_{x \to x_0} g(x) = B$, тогда

$$\lim_{x \to x_0} (f(x) \pm g(x)) = A \pm B; \quad \lim_{x \to x_0} f(x) \cdot g(x) = A \cdot B;$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{A}{B} (B \neq 0).$$

Доказательство

Следует из теоремы 2.3. Докажем, например, что $\lim_{x \to x_0} f(x) \cdot g(x) = A \cdot B$.

Пусть $\{x_n\}$ — произвольная последовательность, такая что $\forall n \ x_n \neq x_0$ и $\lim_{n \to \infty} x_n = x_0$. Тогда по определению 3.3

$$\lim_{n\to\infty} f(x_n) = A \quad \text{ii} \quad \lim_{n\to\infty} g(x_n) = B,$$

далее по теореме 2.3 $\lim_{n\to\infty} f(x_n)\cdot g(x_n) = A\cdot B \Rightarrow$ с учетом определения 3.3 $\lim_{x\to x_0} f(x)\cdot g(x) = A\cdot B$, что и требовалось доказать.

Теорема 3.4. Пусть функции $f_1(x)$, $f_2(x)$, g(x) определены в некоторой выколотой окрестности $O_\delta(x_0)$ точки x_0 и $f_1(x) \le g(x) \le f_2(x)$, $\forall x \in O_\delta(x_0)$. Предположим, что

$$\lim_{x \to x_0} f_1(x) = \lim_{x \to x_0} f_2(x) = A.$$

Тогда

$$\exists \lim_{x \to x_0} g(x)$$
 и $\lim_{x \to x_0} g(x) = A$.

Доказательство легко получается, если использовать определение предела по Гейне и теорему 2.5 о трех последовательностях (доказать самостоятельно).

 $y \, n \, p \, a \, ж \, n \, e \, n \, u \, e \, 3.4$. Найти $\lim_{x \to 0} x \cdot \sin \frac{1}{x}$; $\lim_{x \to 0} \sin \frac{1}{x}$, рис. 3.8.

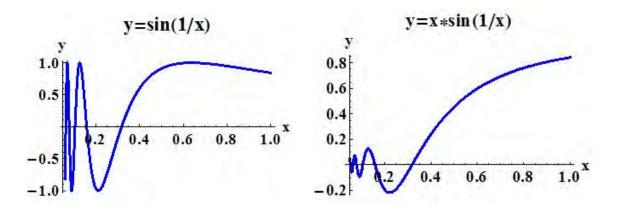


Рис. 3.8. Графики функции $y = \sin(1/x)$, $y = x\sin(1/x)$; $0.05 \le x \le 1$

Определение 3.5. Функция y = f(x) называется бесконечно большой в точке x_0 , если $\forall | M > 0, \exists \delta = \delta(M) > 0$ такое, что

$$\forall x, 0 < |x - x_0| < \delta \Rightarrow |f(x)| > M$$
.

При этом пишут $\lim_{x\to x_0} f(x) = \infty$. Аналогично определяются бесконечно-

большие функции при $x \to x_0 + 0$, $x \to x_0 - 0$ (справа и слева в точке x_0).

У пражнение 3.5. Дать определение по Коши для

$$\lim_{x \to x_0 + 0} f(x) = \infty, \quad \lim_{x \to x_0 - 0} f(x) = \infty, \quad \lim_{x \to x_0} f(x) = +\infty, \quad \lim_{x \to x_0} f(x) = -\infty,$$

$$\lim_{x \to x_0 + 0} f(x) = +\infty, \ \lim_{x \to x_0 - 0} f(x) = +\infty,$$

$$\lim_{x \to x_0 + 0} f(x) = -\infty, \ \lim_{x \to x_0 - 0} f(x) = -\infty.$$

Пример 3.4

$$\lim_{x \to 0} \frac{1}{x} = \infty, \lim_{x \to +0} \frac{1}{x} = +\infty, \lim_{x \to -0} \frac{1}{x} = -\infty, \lim_{x \to 0} \frac{1}{x^2} = +\infty.$$

 $Y \, n \, p \, a \,$ ж $h \, e \, h \, u \, e \, 3.7$. Рассмотрим функцию $y = (-1)^{\left[\frac{1}{x}\right]} \cdot \frac{1}{x}$ (рис. 3.9),

где [x] означает целую часть числа x. Найти $\lim_{x\to +0}(-1)^{\left[\frac{1}{x}\right]}\cdot\frac{1}{x}$

$$y=((-1)^{h}[1/x])1/x$$

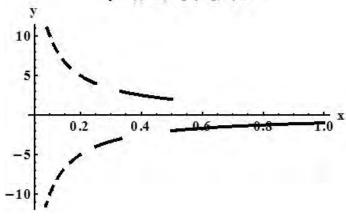


Рис. 3.9. Функция
$$y = (-1)^{\left[\frac{1}{x}\right]} \cdot \frac{1}{x}$$
; $0,05 \le x \le 1$

 $Y \ n \ p \ a \ ж \ n \ e \ n \ u \ e \ 3.8$. Рассмотрим функцию $y = (-1)^{\left[\frac{1}{x}\right]}$ (рис. 3.10).

Найти $\lim_{x \to +0} (-1)^{\left[\frac{1}{x}\right]}$.

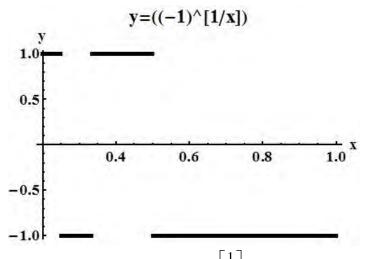


Рис. 3.10. Функция $y = (-1)^{\left[\frac{1}{x}\right]}$; $0, 2 \le x \le 1$

Бесконечно большая в точке x_0 функция не имеет предела в точке x_0 .

Определение 3.6. Функция y = f(x) называется бесконечно малой в точке x_0 , если $\lim_{x \to x_0} f(x) = 0$.

Пусть f(x) и g(x) — две бесконечномалые функции в точке x_0 . Тогда $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ называется неопределенностью типа $\left(\frac{0}{0}\right)$. Нахождение таких пределов называется раскрытием неопределенности.

Аналогично раскрываются неопределенности типа $\left(\frac{\infty}{\infty}\right)$, $\left(\infty-\infty\right)$, $\left(1^{\infty}\right)$.

Пример 3.5

$$\lim_{x \to \infty} \frac{2x^3 + 1}{3x^3 - x + 2} = \left(\frac{\infty}{\infty}\right) = \left|\text{разделим почленно на } x^3\right| = \lim_{x \to \infty} \frac{2 + \frac{1}{x^3}}{3 + \frac{1}{x^2} + \frac{2}{x^3}} = \frac{2}{3}.$$

Пример 3.6

$$\lim_{x \to \pm \infty} \frac{3x + 2}{\sqrt{x^2 + 4}} = \lim_{x \to \pm \infty} \frac{3x + 2}{|x| \cdot \sqrt{1 + \frac{4}{x^2}}}.$$

Пусть
$$x \to +\infty$$
, тогда $\lim_{x \to +\infty} \frac{3x+2}{x \cdot \sqrt{1+\frac{4}{x^2}}} = \lim_{x \to +\infty} \frac{3+\frac{2}{x}}{\sqrt{1+\frac{4}{x^2}}} = 3$.

Пусть
$$x \to -\infty$$
, тогда $\lim_{x \to -\infty} \frac{3x + 2}{-x \cdot \sqrt{1 + \frac{4}{x^2}}} = -\lim_{x \to +\infty} \frac{3 + \frac{2}{x}}{\sqrt{1 + \frac{4}{x^2}}} = -3$.

Пример 3.7

$$\lim_{x \to \infty} \frac{2x^3 + 1}{3x^4 + x^2 + 1} = \left| \text{разделим почленно на } x^4 \right| = \lim_{x \to \infty} \frac{\frac{2}{x} + \frac{1}{x^4}}{3 + \frac{1}{x^2} + \frac{1}{x^4}} = \frac{0}{3} = 0.$$

Рассмотрим дробно-рациональную функцию

$$R(x) = \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_{m-1} x + b_m}, \ a_0 \neq 0, \ b_0 \neq 0.$$

Тогда
$$\lim_{x \to \infty} R(x) = \begin{cases} 0, n < m \\ \frac{a_0}{b_0}, n = m. \\ \infty, n > m \end{cases}$$

Пример 3.8

$$\lim_{x \to +\infty} \frac{2x^2 + 1}{\sqrt{x^3 + x + 2}} = \left| \text{разделим почленно на } x^2 \right| = \lim_{x \to +\infty} \frac{2 + \frac{1}{x^2}}{\sqrt{\frac{1}{x} + \frac{1}{x^3} + \frac{2}{x^4}}} = +\infty.$$

Пример 3.9

$$\lim_{x \to \pm \infty} (\sqrt{x^2 + 5x + 5} - \sqrt{x^2 + 1}) = (\infty - \infty) =$$

$$= \lim_{x \to \pm \infty} \frac{(\sqrt{x^2 + 5x + 5} - \sqrt{x^2 + 1})(\sqrt{x^2 + 5x + 5} + \sqrt{x^2 + 1})}{\sqrt{x^2 + 5x + 5} + \sqrt{x^2 + 1}} =$$

$$= \lim_{x \to \pm \infty} \frac{5x + 4}{\sqrt{x^2 + 5x + 5} + \sqrt{x^2 + 1}} =$$

$$= \lim_{x \to \pm \infty} \frac{5x + 4}{|x| \left(\sqrt{1 + \frac{5}{x} + \frac{5}{x^2}} + \sqrt{1 + \frac{1}{x^2}}\right)} = \begin{cases} \frac{5}{2}, x \to +\infty; \\ -\frac{5}{2}, x \to -\infty. \end{cases}$$

Пример 3.10

$$\lim_{x \to 1} \frac{x^2 - 4x + 3}{x^2 - 1} = \left(\frac{0}{0}\right) = \lim_{x \to 1} \frac{(x - 1)(x - 3)}{(x - 1)(x + 1)} =$$

= |сократим на x-1, так как $x \neq 1$; см. определение 3.2| = $\lim_{x\to 1} \frac{x-3}{x+1}$ = −1.

Пример 3.11

$$\lim_{x \to 3} \frac{\sqrt{x+1} - 2}{\sqrt{x+6} - 3} = \left(\frac{0}{0}\right) = \lim_{x \to 3} \frac{(\sqrt{x+1} - 2)(\sqrt{x+1} + 2)(\sqrt{x+6} + 3)}{(\sqrt{x+6} - 3)(\sqrt{x+1} + 2)(\sqrt{x+6} + 3)} =$$

$$= \lim_{x \to 3} \frac{(x-3)(\sqrt{x+6} + 3)}{(x-3)(\sqrt{x+1} + 2)} = \lim_{x \to 3} \frac{\sqrt{x+6} + 3}{\sqrt{x+1} + 2} = \frac{6}{4} = \frac{3}{2}.$$

 $Y \, n \, p \, a \,$ ж $\, n \, e \, n \, u \, e \, \, 3.9. \,$ Пусть $\lim_{x \to x_0} f(x) = A \, , \, \lim_{x \to x_0} g(x) = \infty \, .$

Найти $\lim_{x \to x_0} \frac{f(x)}{g(x)}$; $\lim_{x \to x_0} \frac{g(x)}{f(x)}$.

 $V \, n \, p \, a \,$ же н e н $u \, e \, 3.10$. Пусть $\lim_{x \to x_0} f(x) = A, \, A \neq 0, \, \lim_{x \to x_0} g(x) = 0$.

Найти $\lim_{x \to x_0} \frac{f(x)}{g(x)}$.

Определение 3.7. Функция y = f(x) имеет предел при $x \to x_0$, если $\exists A \in R$ такое что $\forall \varepsilon > 0, \exists \delta = \delta(\varepsilon) > 0$, такое что

$$\forall x, 0 < |x - x_0| < \delta \Rightarrow |f(x) - A| < \varepsilon$$
.

Легко видеть, что A в определении 3.7 единственно, поэтому определения 3.2 и 3.7 эквивалентны.

Из определения 3.7 следует, что функция y = f(x) не имеет предела при $x \to x_0$, если

$$\forall A \in R, \exists \varepsilon > 0, \forall \delta > 0, \exists x,$$

удовлетворяющий условию $0<\left|x-x_{0}\right|<\delta$, для которого выполнено условие $\left|f\left(x\right)-A\right|\geq \varepsilon$.

Y *п* p a ж h e h u e 3.11. Сформулировать отрицание определения предела по Гейне (см. определение 3.3).

 $y \, n \, p \, a \, ж \, n \, e \, n \, u \, e \, 3.12$. Рассмотрим функцию $y = \frac{1}{x}$ бесконечно большую в точке $x_0 = 0$.

Доказать, что $\lim_{x\to 0} \frac{1}{x}$ не существует.

Также определить, имеет ли функция предел при $x \to x_0$, можно используя критерий Коши.

Теорема 3.5. (критерий Коши). Для того чтобы y = f(x) имела предел при $x \to x_0$, необходимо и достаточно, чтобы

$$\forall \varepsilon > 0, \exists \delta = \delta(\varepsilon) > 0,$$

такое что

$$\forall x_1, x_2, x_1 \in O_{\delta}(x_0), x_2 \in O_{\delta}(x_0) \Rightarrow |f(x_1) - f(x_2)| < \varepsilon.$$

Из теоремы следует, что функция y = f(x) не имеет предела при $x \rightarrow x_0$, если

$$\exists \varepsilon > 0, \, \forall \, \delta > 0,$$

$$\exists x_1, x_2, x_1 \in O_{\delta}(x_0), x_2 \in O_{\delta}(x_0) \Rightarrow |f(x_1) - f(x_2)| \ge \varepsilon.$$
 (3.3)

Задания

Задание 3.1

Пользуясь определением предела функции, доказать, что:

1)
$$\lim_{x \to 0} (x^2 + 2x + 3) = 3$$
; 2) $\lim_{x \to 3} (x^2 + x + 1) = 13$; 3) $\lim_{x \to 1} \frac{2x + 1}{x} = 3$;

4)
$$\lim_{x \to 4} \frac{3x+7}{9x+2} = \frac{1}{2}$$
; 5) $\lim_{x \to 1} \sqrt[3]{x+7} = 2$; 6) $\lim_{x \to 0} 3^x = 1$;

7)
$$\lim_{x \to 1} \frac{x^2 - x + 1}{x^2 + x + 1} = \frac{1}{3}$$
; 8) $\lim_{x \to -1} \frac{x}{x + 1} = \infty$; 9) $\lim_{x \to +\infty} (x^2 - 4x) = +\infty$;

10)
$$\lim_{x \to +\infty} \frac{4x+1}{x} = 4$$
.

Задание 3.2

Доказать следующие равенства:

1)
$$\lim_{x \to 2-0} \frac{x}{[x]} = 2$$
, $\lim_{x \to 2+0} \frac{x}{[x]} = 1$; 2) $\lim_{x \to -\infty} \frac{x+1}{x^2} = 0$;

3)
$$\lim_{x \to \infty} \frac{x \sin x}{x^2 + 1} = 0$$
; 4) $\lim_{x \to -2} \frac{1}{2x + 4} = \infty$.

Задание 3.3

Используя основные теоремы о пределах, вычислить следующие пределы:

1)
$$\lim_{x \to 1} (x^2 - x + 2)$$
; 2) $\lim_{x \to -1} \left(2^x - \frac{x^2 + 1}{3x - 1} \right)$;

3)
$$\lim_{x \to \frac{1}{2}} \frac{3\arcsin x + \pi x}{\lg 2x + 3x}$$
; 4) $\lim_{x \to -3} (x^2 - 5x + 6 + 3^{-x})$;

5)
$$\lim_{x \to \frac{\pi}{2}} \frac{2\sin x + 3\cos x - 4}{\cot x - \cos 2x}$$
; 6) $\lim_{x \to 0} \frac{2e^{4x} + 4\ln(x + e)}{x^2 - 2\cos x}$.

Задание 3.4

Вычислить пределы:

1)
$$\lim_{x \to \infty} \frac{3x^3 - 5x^2 + 1}{4x^3 + 6x + 2}$$
; 2) $\lim_{x \to \infty} \frac{2x^3 + x^2 + \sqrt{x^2 + 1} + 2x + 1}{\sqrt[3]{8x^9 + 9x^2 + 5} + 3x^3 + 4}$;

3)
$$\lim_{x \to +\infty} \frac{\sqrt{x^2 + x + 1} + 2x}{4x + 9}$$
; 4) $\lim_{x \to \infty} \frac{(x^2 + 3)^{12} - (5x^{12} + 1)^2}{(2x^4 - x^2 - 1)^6}$;

5)
$$\lim_{x \to +\infty} \frac{\sqrt{1+x^4+2\sqrt[3]{1+x^6}}}{\left(x+\sqrt{1+x^2}\right)^2}$$
; 6) $\lim_{x \to +\infty} \arctan \frac{x}{\sqrt{x^2+1}}$;

7)
$$\lim_{x \to +\infty} \frac{2^x + 1}{3^x + 1}$$
; 8) $\lim_{x \to \infty} \frac{(x - 3)^{40} (5x + 10)^{10}}{(3x^2 - 2)^{25}}$; 9) $\lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + 1}}$;

10)
$$\lim_{x \to +\infty} \frac{\sqrt[5]{x} + \sqrt[4]{x} + \sqrt[3]{x}}{\sqrt[3]{2x+1}}$$
; 11) $\lim_{x \to 2} \frac{x^2 - 4}{x^3 - 2x^2 + x - 2}$; 12) $\lim_{x \to 1} \frac{x^4 - 3x + 2}{x^5 - 4x + 3}$;

13)
$$\lim_{x \to 3} \frac{x^2 - 5x + 6}{x^2 - 8x + 15}$$
; 14) $\lim_{x \to -3} \frac{x^2 + 2x - 3}{3x^2 + 14x + 15}$;

15)
$$\lim_{x \to 1} \frac{3x - 2 - \sqrt{4x^2 - x - 2}}{x^2 - 3x + 2}$$
; 16) $\lim_{x \to 0} \frac{\sqrt{x + 1} - \sqrt{x^2 + x + 1}}{x^2}$;

17)
$$\lim_{x \to 2} \frac{x - \sqrt{x+2}}{\sqrt{4x+1} - 3}$$
; 18) $\lim_{x \to 4} \frac{\sqrt{1+2x} - 3}{\sqrt{x} - 2}$; 19) $\lim_{x \to -8} \frac{\sqrt{1-x} - 3}{2 + \sqrt[3]{x}}$;

20)
$$\lim_{x \to 16} \frac{\sqrt[4]{x} - 2}{\sqrt{x} - 4}$$
; 21) $\lim_{x \to 1} \frac{x^2 + x - 2}{x^3 - 1}$; 22) $\lim_{x \to \infty} \frac{2x^3 + 1}{3x^2 + x + 2}$;

23)
$$\lim_{x \to \infty} \frac{3x - x^5}{2x^5 + 7}$$
; 24) $\lim_{x \to \infty} \frac{2x^3 + 1}{3x^4 + x^2 + 1}$; 25) $\lim_{x \to \pm \infty} \frac{2x^2 + 1}{\sqrt{x^2 + 5} \cdot \sqrt[3]{3x^3 + 7}}$;

26)
$$\lim_{x \to \infty} \left(\sqrt{x^2 + 5} - \sqrt{x^2 + 1} \right)$$
; 27) $\lim_{x \to \infty} \frac{(2x+1)^2 - 4x^2}{(1+x)^3 - x^3}$;

28)
$$\lim_{x \to +\infty} \left(\sqrt{x^2 + 3x + 5} - \sqrt{x^2 + 1} \right)$$
; 29) $\lim_{x \to \infty} \left(\frac{x^3}{3x^2 + 1} - \frac{x^2 + 1}{3x + 2} \right)$;

30)
$$\lim_{x\to 2} \left(\frac{1}{3(x-2)} - \frac{1}{x^2 - x - 2} \right);$$
 31) $\lim_{x\to 1} \left(\frac{1}{x-1} - \frac{3}{2x^2 - x - 1} \right);$

32)
$$\lim_{x \to +\infty} \frac{3^{x+1} + 2^x}{3^x - 2^{x+1}}$$
; 33) $\lim_{x \to -\infty} \frac{3^{x+1} + 2^x}{3^x - 2^{x+1}}$.

Задание 3.5

Пусть $\lim_{x\to a} f(x) = b$, $\lim_{x\to a} g(x) = +\infty$.

Доказать, что:

1)
$$\lim_{x \to a} (f(x) - g(x)) = -\infty$$
; 2) $\lim_{x \to a} \frac{g(x)}{f(x)} = \infty$ (при $b \neq 0$);

3)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = 0$$
; 4) $\lim_{x \to a} f(x) \cdot g(x) = \infty$ (при $b \neq 0$).

Ответы

3.3. 1) 2; 2) 1; 3)
$$\frac{2\pi}{3}$$
; 4) 57; 5) -2; 6) -3.

3.4. 1)
$$\frac{3}{4}$$
; 2) $\frac{2}{5}$; 3) $\frac{3}{4}$; 4) $-\frac{3}{8}$; 5) $\frac{3}{4}$; 6) $\frac{\pi}{4}$; 7) 0; 8) $\frac{5^{10}}{3^{25}}$; 9) 1; 10) $\frac{1}{\sqrt[3]{2}}$;

11)
$$\frac{4}{5}$$
; 12) 1; 13) $-\frac{1}{2}$; 14) 1; 15) $\frac{1}{2}$; 16) $-\frac{1}{2}$; 17) $\frac{9}{8}$; 18) $\frac{4}{3}$; 19) -2;

20)
$$\frac{1}{4}$$
; 21) 1; 22) ∞ ; 23) $-\frac{1}{2}$; 24) 0; 25) $\pm \frac{2}{\sqrt[3]{3}}$; 26) 0; 27) 0; 28) $\frac{3}{2}$; 29) $\frac{2}{9}$;

30)
$$\frac{1}{9}$$
; 31) $\frac{2}{3}$; 32) 3; 33) $-\frac{1}{2}$.

4. ТЕОРЕМЫ О ПРЕДЕЛАХ

Теорема 4.1.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 - \text{первый замечательный предел.}$$
 (4.1)

Доказательство

Докажем, что $\lim_{x\to+0} \frac{\sin x}{x} = 1$. Пусть x>0. Рассмотрим круг единичного радиуса и центральный угол в x радиан, рис. 4.1.

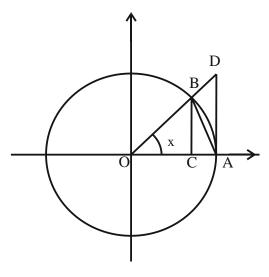


Рис. 4.1

Тогда

$$\sin x = BC < BA < \cup BA < AD = \operatorname{tg} x.$$

Так как радиус круга равен 1, то

$$\bigcirc BA = \frac{2\pi R}{2\pi} \cdot x = x,$$

поэтому

$$\sin x < x < \operatorname{tg} x \Longrightarrow 1 < \frac{x}{\sin x} < \frac{1}{\cos x},$$

$$\cos x < \frac{\sin x}{x} < 1 \Rightarrow \lim_{x \to +0} \cos x \le \lim_{x \to +0} \frac{\sin x}{x} \le \lim_{x \to +0} 1.$$

Так как $\lim_{x\to+0}\cos x=1$, то по теореме $\lim_{x\to+0}\frac{\sin x}{x}=1$.

Аналогично

$$\lim_{x \to -0} \frac{\sin x}{x} = 1 \Rightarrow \lim_{x \to 0} \frac{\sin x}{x} = 1 \text{ (по теореме 3.2)}.$$

Пример 4.1

$$\lim_{x \to 0} \frac{\sin 7x}{\tan 8x} = \left(\frac{0}{0}\right) = \lim_{x \to 0} \frac{\sin 7x}{\sin 8x} \cdot \cos 8x = \lim_{x \to 0} \frac{\sin 7x}{7x} \cdot \frac{7x}{8x} \cdot \frac{8x}{\sin 8x} \cdot \cos 8x = \frac{7}{8} \cdot \lim_{x \to 0} \frac{\sin 7x}{7x} \cdot \lim_{x \to 0} \frac{8x}{\sin 8x} \cdot \lim_{x \to 0} \cos 8x = \frac{7}{8}.$$

Из (4.1) следует, что

$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = 1; \quad \lim_{x \to 0} \frac{\arcsin x}{x} = 1; \quad \lim_{x \to 0} \frac{\operatorname{arc} \operatorname{tg} x}{x} = 1.$$

При этом если g(x) – бесконечно малая функция при $x \to 0$, то

$$\lim_{x\to 0} \frac{\sin(g(x))}{g(x)} = 1.$$

Пример 4.2

$$\lim_{x \to \pi} \frac{\sin 7x}{\operatorname{tg} 8x} = \left(\frac{0}{0}\right) = \lim_{x \to \pi} \frac{\sin(7(x-\pi)+7\pi)}{\operatorname{tg}(8(x-\pi)+8\pi)} = \left|\text{по формулам приведения}\right| =$$

$$= \lim_{x \to \pi} -\frac{\sin 7(x-\pi)}{\operatorname{tg} 8(x-\pi)} = -\lim_{x \to \pi} \frac{\sin 7(x-\pi)}{7(x-\pi)} \cdot \frac{7(x-\pi)}{8(x-\pi)} \cdot \frac{8(x-\pi)}{\operatorname{tg} 8(x-\pi)} = -\frac{7}{8}.$$

Пример 4.3

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \left(\frac{0}{0}\right) = \left|\text{по формуле } 1 - \cos x = 2\sin^2 \frac{x}{2}\right| =$$

$$= \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{x^2} = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{\left(\frac{x}{2}\right)^2} \cdot \frac{\left(\frac{x}{2}\right)^2}{x^2} = 2\lim_{x \to 0} \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^2 \cdot \frac{1}{4} = \frac{1}{2}.$$

Пример 4.4

$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{4x - \pi} = \left(\frac{0}{0}\right) =$$

$$= \left| \text{по формуле } \sin x - \cos x = \sqrt{2} \left(\frac{1}{\sqrt{2}} \cdot \sin x - \frac{1}{\sqrt{2}} \cdot \cos x\right) = \sqrt{2} \sin \left(x - \frac{\pi}{4}\right) \right| =$$

$$= \lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} \sin\left(x - \frac{\pi}{4}\right)}{4\left(x - \frac{\pi}{4}\right)} = \frac{\sqrt{2}}{4}.$$

Теорема 4.2.

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e - \text{второй замечательный предел.}$$
 (4.2)

Формула (4.2) аналогична формуле (2.2). Верны также формулы

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e; (4.3)$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1; \tag{4.4}$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a. \tag{4.5}$$

Формулы (4.4) и (4.5) следуют из (4.3). Докажем, например, (4.4):

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{1}{x} \cdot \ln(1+x) = \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}} = \left| \text{по формуле (4.3)} \right| = \ln e = 1.$$

Пример 4.5

$$\lim_{x \to \infty} \left(\frac{x^2 + 4}{x^2 - 3} \right)^{x^2} = \left(1^{\infty} \right) = \lim_{x \to \infty} \left(1 + \left(\frac{x^2 + 4}{x^2 - 3} - 1 \right) \right)^{x^2} = \lim_{x \to \infty} \left(1 + \frac{7}{x^2 - 3} \right)^{x^2} =$$

$$= \left| \frac{7}{x^2 - 3} - \text{бесконечно малая функция при } x \to \infty \Rightarrow \text{по формуле (4.2)} \right| =$$

$$= \lim_{x \to \infty} \left(\left(1 + \frac{7}{x^2 - 3} \right)^{\frac{x^2 - 3}{7}} \right)^{\frac{7}{x^2 - 3} \cdot x^2} = \lim_{x \to \infty} \left(\left(1 + \frac{7}{x^2 - 3} \right)^{\frac{x^2 - 3}{7}} \right)^{\frac{1 \text{im}}{x^2 - 3}} = e^7.$$

Пример 4.6

$$\lim_{x \to 0} (\cos x)^{\frac{1}{x^2}} = (1^{\infty}) = \lim_{x \to 0} (1 + (\cos x - 1))^{\frac{1}{x^2}} =$$

 $= \left| (\cos x - 1) -$ бесконечно малая функция при $x \to 0 \Rightarrow$ по формуле (4.2) $\right| =$

$$= \lim_{x \to 0} \left((1 + (\cos x - 1)) \frac{1}{\cos x - 1} \right)^{\frac{\cos x - 1}{x^2}} = \lim_{x \to 0} \left((1 + (\cos x - 1)) \frac{1}{\cos x - 1} \right)^{\frac{\lim \cos x - 1}{x^2}} = e^{-\frac{1}{2}},$$

так как $\lim_{x\to 0} \frac{\cos x - 1}{x^2} = -\frac{1}{2}$ (смотри пример 4.3).

Пример 4.7

$$\lim_{x \to 0} \frac{e^{5x} - e^{2x}}{x} = \lim_{x \to 0} \frac{\left(e^{5x} - 1\right) - \left(e^{2x} - 1\right)}{x} =$$

$$= \lim_{x \to 0} \left(\frac{e^{5x} - 1}{5x} \cdot 5 - \frac{e^{2x} - 1}{2x} \cdot 2\right) = \left|\text{по формуле (4.5)}\right| = 5 - 2 = 3.$$

Пример 4.8

$$\lim_{x \to \infty} \left(\frac{x^2 + 4}{2x^2 - 3} \right)^{x^2} = \left(\frac{1 + \frac{4}{x^2}}{2 - \frac{3}{x^2}} \right)^{x^2} = \left(\frac{1}{2} \right)^{+\infty} = 0.$$

Определение 4.1. Пусть f(x) и g(x) – бесконечно малые функции при $x \to x_0$. Пусть $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$, тогда f(x) называется бесконечно малой более высокого порядка малости, чем g(x) при $x \to x_0$. При этом пишут f(x) = o(g(x)), (о – «о – малое»).

Пусть $\lim_{x \to x_0} \frac{f(x)}{g(x)} = c$; $c \neq 0$, $c \neq \infty$, тогда f(x) и g(x) – бесконечно малые одного порядка малости при $x \to x_0$. А если $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$, то f(x) и g(x) – эквивалентные бесконечно малые при $x \to x_0$. При этом пишут $f(x) \sim g(x)$ при $x \to x_0$.

Пример 4.9

$$f(x) = x^2, g(x) = x, \lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} x = 0 \Rightarrow$$
$$x^2 = o(x) \text{ при } x \to 0;$$
$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \Rightarrow \sin x \sim x \text{ при } x \to 0.$$

Аналогично $\operatorname{tg} x \sim x$, $\operatorname{arctg} x \sim x$, $\operatorname{arcsin} x \sim x$, $\ln(1+x) \sim x$, $\sqrt{1+x} - 1 \sim \frac{1}{2}x$, $(1+x)^{\alpha} - 1 \sim \alpha x$. Все эквивалентности при $x \to 0$. Пусть $f(x) \sim g(x)$ при $x \to x_0 \Rightarrow$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1 \Leftrightarrow \lim_{x \to x_0} \left(\frac{f(x)}{g(x)} - 1 \right) = 0 \Leftrightarrow \lim_{x \to x_0} \frac{f(x) - g(x)}{g(x)} = 0 \Leftrightarrow$$

$$\Leftrightarrow f(x) - g(x) = o(g(x)) \Leftrightarrow$$

 $\Leftrightarrow f(x) = g(x) + o(g(x))$. Поэтому, согласно примеру 4.9:

$$\sin x = x + o(x), \quad \text{tg } x = x + o(x), \dots, \quad \sqrt{1+x} = 1 + \frac{1}{2}x + o(x),$$
$$(1+x)^{\alpha} = 1 + \alpha x + o(x).$$

Все равенства при $x \rightarrow 0$.

Y n p a ж н е н и е 4.1. Используя формулу (4.5) доказать, что $a^x = 1 + x \ln a + o(x)$ при $x \to 0$.

У п р а ж н е н и е 4.2. Рассмотрим функции (рис. 4.2, 4.3):

$$sh x = \frac{e^x - e^{-x}}{2} - гиперболический синус;$$

$$\operatorname{ch} x = \frac{e^x + e^{-x}}{2} - \operatorname{гиперболический косинус};$$

$$th x = \frac{sh x}{ch x}$$
 – гиперболический тангенс;

$$cth x = \frac{ch x}{sh x}$$
 – гиперболический котангенс.

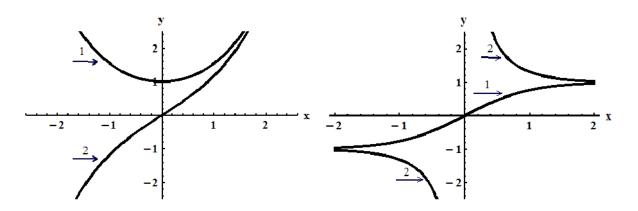


Рис. 4.2. Графики: 1 - y = ch(x); 2 - y = sh(x)

Рис. 4.3. Графики: 1 - y = th(x); 2 - y = cth(x)

Проверить свойства гиперболических функций:

- 1) $\cosh^2 x \sinh^2 x = 1$;
- 2) th $x \cdot \text{cth} x = 1$;
- 3) $\operatorname{sh} 2x = 2\operatorname{sh} x \cdot \operatorname{ch} x$;
- 4) $\cosh 2x = \cosh^2 x + \sinh^2 x$.

Если закрепить концы однородной нерастяжимой нити, то форма, которую она принимает под действием силы тяжести:

$$y = a \operatorname{ch} \frac{x}{a}$$
 – цепная линия.

V n p a ж н е н и е 4.3. Доказать, что $\lim_{x\to 0} \frac{\sinh x}{x} = 1$,

 $\lim_{x\to 0} \frac{\operatorname{th} x}{x} = 1$ и верны разложения:

 $\operatorname{sh} x = x + o(x) \operatorname{при} x \to 0,$

th x = x + o(x) при $x \to 0$.

Теорема 4.3. Пусть $f(x) \sim g(x)$ при $x \to x_0$, h(x) — произвольная функция и пусть $\exists \lim_{x \to x_0} \frac{f(x)}{h(x)}$, тогда $\exists \lim_{x \to x_0} \frac{g(x)}{h(x)}$ и эти пределы равны.

Действительно, $\lim_{x \to x_0} \frac{g(x)}{h(x)} = \lim_{x \to x_0} \frac{g(x)}{f(x)} \cdot \frac{f(x)}{h(x)} = \lim_{x \to x_0} \frac{g(x)}{f(x)} \cdot \lim_{x \to x_0} \frac{f(x)}{h(x)} = \lim_{x \to x_0} \frac{f(x)}{h(x)}.$

Пример 4.10

Найти
$$\lim_{x\to 0} \frac{\arcsin(3x^3)}{\sin^2(2x)\cdot \ln(1+5x)}$$
.

Решение

 $\arcsin(3x^3) \sim 3x^3 \text{ при } x \to 0,$

 $\sin^2(2x) \sim (2x)^2 \text{ при } x \to 0,$

 $ln(1+5x) \sim 5x при x \rightarrow 0.$

Тогда, согласно теореме 3.3:

$$\lim_{x \to 0} \frac{\arcsin(3x^3)}{\sin^2(2x) \cdot \ln(1+5x)} = \frac{3x^3}{(2x)^2 \cdot 5x} = \frac{3}{20}.$$

Задания

Задание 4.1

Раскрыть неопределенность $\frac{0}{0}$:

1)
$$\lim_{x\to 0} \frac{1-\cos x}{7x \cdot \sin 3x}$$
; 2) $\lim_{x\to 0} \frac{\tan 2x - \sin 2x}{x^2 \sin^2 x}$; 3) $\lim_{x\to 1} \frac{\sin(2x-2)}{3x^2-3}$;

4)
$$\lim_{x \to 0} \frac{x \operatorname{tg} 3x}{1 - \cos 6x}$$
; 5) $\lim_{x \to 0} \frac{\sin 4x + \sin 2x}{6x}$; 6) $\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{\cos \frac{x}{2} - \sin \frac{x}{2}}$;

7)
$$\lim_{x \to \frac{\pi}{3}} \frac{1 - 2\cos x}{\pi - 3x}$$
; 8) $\lim_{x \to \pi} \frac{1 - \sin \frac{x}{2}}{\pi - x}$; 9) $\lim_{x \to 3} \frac{\sin(2x - 6)}{\sqrt{x + 6} - 3}$;

10)
$$\lim_{x\to 0} \frac{e^{5x} - e^{-5x}}{8x}$$
; 11) $\lim_{x\to 0} \frac{\ln(1+2x)}{4x}$; 12) $\lim_{x\to 2} \frac{\arctan(2-x)}{4x-8}$;

13)
$$\lim_{x\to 0} \frac{\arctan 3x}{\sin 6x}$$
; 14) $\lim_{x\to 0} \frac{\sqrt{x+1}-1}{\sin 3x}$; 15) $\lim_{x\to 0} \frac{3^x-1}{5^x-1}$; 16) $\lim_{x\to 0} \frac{5^x-3^x}{7^x-4^x}$;

17)
$$\lim_{x \to 0} \frac{2^x - 3^x}{x}$$
; 18) $\lim_{x \to 0} \frac{\ln \cos 2x}{x^2}$; 19) $\lim_{x \to 0} \frac{3^{2x} - 3^{8x}}{\lg 2x + x}$;

20)
$$\lim_{x\to 0} \frac{e^{4x} - e^{2x}}{\sin 3x - \sin 7x}$$
; 21) $\lim_{x\to 0} \frac{1 - \cos 2x}{1 - \cos 7x}$; 22) $\lim_{x\to \pi} \frac{\sin 6x}{\tan 7x}$;

23)
$$\lim_{x \to -2} \frac{\arcsin(x^2 + 2x)}{\cos \frac{\pi x}{4}}.$$

Задание 4.2

Раскрыть неопределенности $0 \cdot \infty (\infty \cdot 0), \infty - \infty$:

1)
$$\lim_{x\to 0} \frac{1}{x} (\sqrt{1+x} - 1)$$
; 2) $\lim_{x\to 0} x^2 \cdot \frac{1}{\sqrt{x^2 + 2} - \sqrt{2}}$; 3) $\lim_{x\to \frac{\pi}{2}} \operatorname{tg} x \cdot \operatorname{tg} 2x$;

4)
$$\lim_{x \to \frac{\pi}{4}} (1 - \operatorname{tg} x) \cdot \operatorname{tg} 2x$$
; 5) $\lim_{x \to \infty} x \cdot \left(2^{\frac{1}{x}} - 1 \right)$; 6) $\lim_{x \to 0} x \cdot \operatorname{ctg} 2x$;

7)
$$\lim_{x \to +\infty} 2^x \cdot \lg 2^{-x}$$
; 8) $\lim_{x \to +\infty} (\sqrt{x^2 + 9x} - x)$; 9) $\lim_{x \to -\infty} (\sqrt{x^2 - x} + x)$;

10)
$$\lim_{x \to \infty} \left(\sqrt[3]{x^3 + 5x^2} - \sqrt[3]{x^3 + 8x} \right);$$
 11) $\lim_{x \to 2} \left(\frac{1}{x - 2} + \frac{1}{(x - 2)(x - 3)} \right);$

12)
$$\lim_{x\to 0} \left(\frac{1}{\sqrt{x^2+1}-1} - \frac{2}{x^2} \right)$$
; 13) $\lim_{x\to 0} (\csc^2 x - 4\csc^2 2x)$;

14)
$$\lim_{x \to 0} \left(\frac{\sqrt{2}}{\sin x} - \frac{1}{\sqrt{1 - \cos x}} \right);$$
 15) $\lim_{x \to \frac{\pi}{4}} \left(\frac{1}{1 - \lg x} - \lg 2x \right);$

16)
$$\lim_{x \to \infty} \left(\frac{x^3}{x^2 + 5} - x \right)$$
; 17) $\lim_{x \to 0} \left(\frac{1}{\sqrt[3]{x^2 + 1} - 1} - \frac{3}{x^2} \right)$.

Задание 4.3

Раскрыть неопределенность 1^{∞} :

1)
$$\lim_{x \to \infty} \left(\frac{x-2}{x+5} \right)^{2x}$$
; 2) $\lim_{x \to 0} (\cos x)^{\frac{1}{2x}}$; 3) $\lim_{x \to 0} (1-2x)^{\frac{1}{x}}$; 4) $\lim_{x \to \infty} \left(\frac{3x}{1+3x} \right)^{4x}$;

5)
$$\lim_{x\to 0} (\cos 2x) \frac{1}{\sin^2 x}$$
; 6) $\lim_{x\to \infty} \left(\frac{x^2 + 7x + 10}{x^2 + 15x + 1} \right)^{\frac{x}{2}}$;

7)
$$\lim_{x \to +\infty} (2x-3)(\ln(x+2) - \ln x)$$
;

8)
$$\lim_{x \to +\infty} (3x+2)(\ln(x+3) - \ln(x-4));$$
 9) $\lim_{x \to 0} (1 + \operatorname{tg} x)^{\frac{3}{x}};$

10)
$$\lim_{x \to 2} (2x-3) \frac{3x}{x-2}$$
; 11) $\lim_{x \to 1} (3x-2) \frac{5x}{x^2-1}$; 12) $\lim_{x \to \infty} \left(\frac{4x-8}{4x+5}\right)^{\frac{4}{x}}$;

13)
$$\lim_{x \to \frac{\pi}{2}} (1 + \cos x) \frac{1}{x^2 - \pi^2/4};$$
 14) $\lim_{x \to 0} (1 + \sin^2 x) \frac{1}{\ln(1 - x^2)}.$

Ответы

4.1. 1)
$$\frac{6}{7}$$
; 2) ∞ ; 3) $\frac{1}{3}$; 4) $\frac{1}{6}$; 5) 1; 6) $\sqrt{2}$; 7) $-\frac{1}{\sqrt{3}}$; 8) 0;

9) 12; 10)
$$\frac{5}{4}$$
; 11) $\frac{1}{2}$; 12) $-\frac{1}{4}$; 13) $\frac{1}{2}$; 14) $\frac{1}{6}$; 15) $\frac{\ln 3}{\ln 5}$; 16) $\frac{\ln \frac{5}{3}}{\ln \frac{7}{4}}$;

17)
$$\ln \frac{2}{3}$$
; 18) - 2; 19) - $\ln 9$; 20) $-\frac{1}{2}$; 21) $\frac{4}{49}$; 22) $\frac{6}{7}$; 23) $\frac{4}{\pi}$.

4.2. 1)
$$\frac{1}{2}$$
; 2) $2\sqrt{2}$; 3) -2; 4) 1; 5) ln 2; 6) $\frac{1}{2}$; 7) 1; 8) $\frac{9}{2}$;

9)
$$\frac{1}{2}$$
; 10) $\frac{5}{3}$; 11) -1; 12) $\frac{1}{2}$; 13) -1; 14) $\frac{1}{\sqrt{2}}$; 15) $\frac{1}{2}$; 16) 0; 17) 1.

4.3. 1)
$$\frac{1}{e^{14}}$$
; 2) 1; 3) $\frac{1}{e^2}$; 4) $\frac{1}{\sqrt[3]{e^4}}$; 5) $\frac{1}{e^2}$; 6) $\frac{1}{e^4}$; 7) 4; 8) 21;

9)
$$e^3$$
; 10) e^{12} ; 11) $e^{\frac{15}{2}}$; 12) $\frac{1}{e^{\frac{16}{13}}}$; 13) $e^{-1/\pi}$; 14) e^{-1} .

5. НЕПРЕРЫВНОСТЬ ФУНКЦИИ

Определение 5.1. Пусть функция y = f(x) определена в некоторой окрестности $O_{\delta}(x_0)$ точки x_0 ; y = f(x) непрерывна в точке x_0 , если

- $1) \exists \lim_{x \to x_0} f(x);$
- 2) $\lim_{x \to x_0} f(x) = f(x_0)$.

Функция y = f(x) непрерывна на множестве X, если она непрерывна в каждой точке этого множества.

Точка, в которой функция не является непрерывной, называется точкой разрыва.

Пример 5.1

Функция

$$y = \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_{m-1} x + b_m} -$$

дробно-рациональная функция, непрерывная во всех точках из области определения (кроме точек, где знаменатель равен 0).

y n p a ж h e h u e 5.1. Найти точки разрыва функции $y = \frac{x^2 + 1}{x - 1}$ (рис. 5.1).

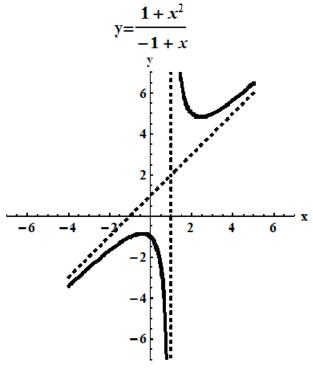


Рис. 5.1. Функция $y = \frac{x^2 + 1}{x - 1}$

y n p a ж h e h u e 5.2. Найти точки разрыва функции $y = \frac{x^2 - 1}{x - 1}$ (рис. 5.2).

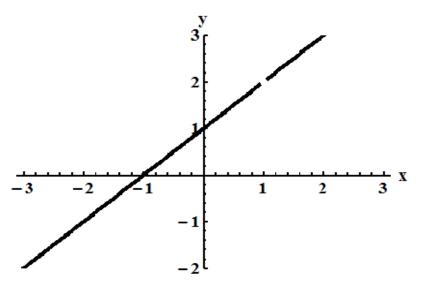
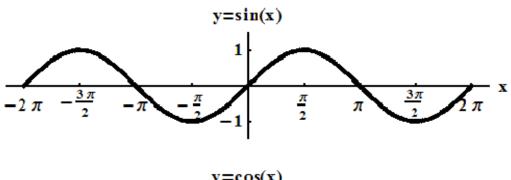


Рис. 5.2. График функции $y = \frac{x^2 - 1}{x - 1}$

Пример 5.2

Функции $y = \sin x$, $y = \cos x$ непрерывны $\forall x \in R$.



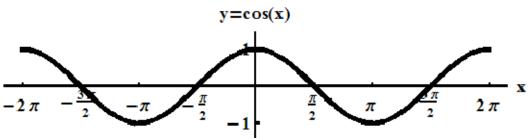
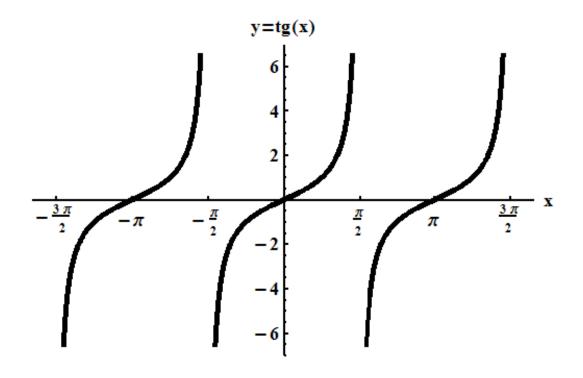


Рис. 5.3. Функции $y = \sin x$, $y = \cos x$

Функция $y = \operatorname{tg} x$ непрерывна $\forall x \neq \frac{\pi}{2} + \pi n, n \in \mathbb{Z}$.

Функция $y = \operatorname{ctg} x$ непрерывна $\forall x \neq \pi n$.



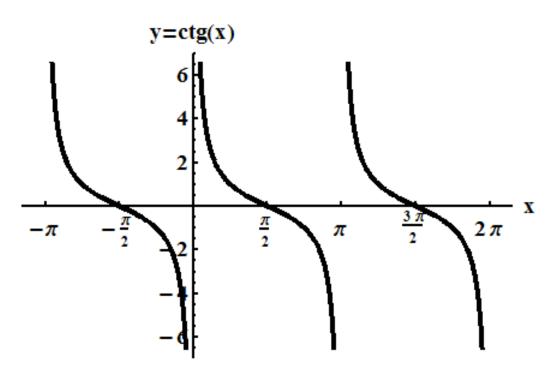


Рис. 5.4. Функции $y = \operatorname{tg} x$, $y = \operatorname{ctg} x$

Функция $y = a^x$ непрерывна $\forall x \in R$, $y = \log_a x$ непрерывна $\forall x > 0$.

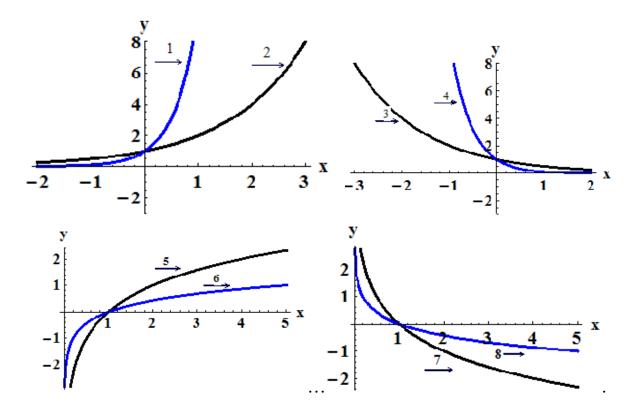


Рис. 5.5. Функции:
$$1-y=10^x$$
; $2-y=2^x$; $3-y=\left(\frac{1}{2}\right)^x$; $4-y=\left(\frac{1}{10}\right)^x$; $5-y=\log_2 x$; $6-y=\log_5 x$; $7-y=\log_{\frac{1}{2}} x$; $8-y=\log_{\frac{1}{2}} x$.

Функция $y = x^{\alpha}$ – непрерывна $\forall x$ из области ее определения.

Пример 5.3

Рассмотрим функцию Дирихле:

$$D(x) = egin{cases} 1, x \in \mathcal{Q}; \\ 0, x \in \mathbb{R} \setminus \mathcal{Q}, \end{cases}$$
 где \mathcal{Q} — множество рациональных чисел. Она разрывна $\forall x \in \mathbb{R}$.

Определение 5.2. Функция y = f(x) называется непрерывной слева (справа) в точке x_0 , если $\lim_{x \to x_0 = 0} f(x) = f(x_0)$, $\lim_{x \to x_0 = 0} f(x) = f(x_0)$.

Пример 5.4

Единичная функция Хевисайда:

$$\eta(x) = \begin{cases} 1, & x \ge 0; \\ 0, & x < 0 \end{cases}$$
 непрерывна справа в точке $x_0 = 0$.

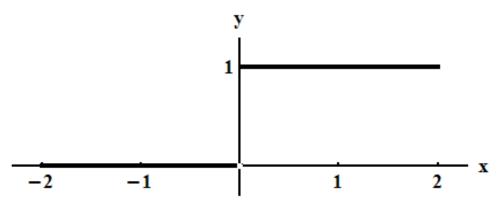
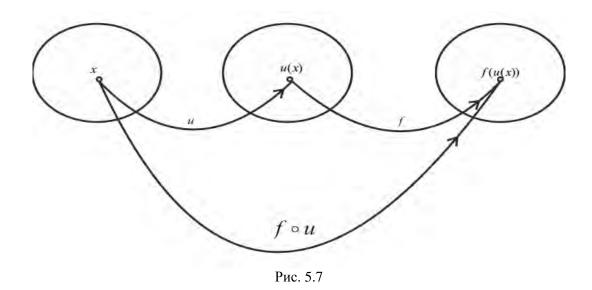


Рис. 5.6. Функции $\eta(x)$

Теорема 5.1. Пусть функции u = u(x) и $\upsilon = \upsilon(x)$ непрерывны в точке x_0 . Тогда и функции $u(x) \pm \upsilon(x), \ u(x) \cdot \upsilon(x)$ непрерывны в точке x_0 . Если $\upsilon(x_0) \neq 0$, то $\dfrac{u(x)}{\upsilon(x)}$ – также непрерывны в точке x_0 .

Доказательство следует из теоремы 3.3 и определения 5.1.

Определение 5.3. Пусть функция u = u(x) определена на множестве X со значениями во множестве U и функция y = f(u) определена на множестве U со значениями во множестве Y. Тогда функцию y = f(u(x)) будем называть сложной функцией $(f \circ u)(x)$ (композицией функций f и u), рис. 5.7.



Теорема 5.2. Пусть функция u = u(x) непрерывна в точке x_0 и функция y = f(u) непрерывна в точке u_0 . Тогда сложная функция y = f(u(x)) непрерывна в точке x_0 .

Доказательство следует из определения 3.2 и определения 5.1.

Пример 5.5

Исследовать на непрерывность функцию

$$y = \begin{cases} \frac{\sin(x^2)}{x}; & x \neq 0; \\ a; & x = 0, \end{cases}$$

в зависимости от значений a.

Решение

Функция $y = \sin(x^2)$ непрерывна $\forall x$ (как композиция двух непрерывных функций $u = x^2$ и $y = \sin u$ (см. теорему 5.2)).

По теореме 5.1 $y = \frac{\sin x^2}{x}$ непрерывна $\forall x \neq 0$. Найдем

$$\lim_{x \to 0} \frac{\sin(x^2)}{x} = \lim_{x \to 0} \frac{\sin(x^2)}{x^2} \cdot \frac{x^2}{x} = \lim_{x \to 0} \frac{\sin(x^2)}{x^2} \cdot \lim_{x \to 0} x = 0.$$

Поэтому при a = 0 функция непрерывна $\forall x$. При $a \neq 0$ разрывна в точке x = 0 и непрерывна $\forall x \neq 0$.

Определение 5.4. Пусть функция y=f(x) определена в некоторой окрестности $O_{\delta}(x_0)$ точки x_0 , кроме, может быть, самой точки x_0 . Пусть x_0 точка разрыва функции y=f(x) и при этом существуют конечные пределы $\lim_{x\to x_0-0} f(x)=f(x_0-0)$, $\lim_{x\to x_0+0} f(x)=f(x_0+0)$. Тогда точка x_0 называется точкой разрыва 1-го рода функции y=f(x). При этом $f(x_0+0)-f(x_0-0)$ называется скачком функции. Если скачок равен 0, то разрыв называется устранимым.

Пример 5.6

Для функции

$$y(x) = \begin{cases} 1 - x^2, & x \neq 0; \\ 2, & x = 0 \end{cases}$$

(см. пример 3.1), точка $x_0 = 0$ – точка устранимого разрыва.

Для функции $y = x \sin \frac{1}{x}$ (см. упражнение 3.4) $x_0 = 0$ — точка устранимого разрыва.

Для функции $y = \frac{\sin x}{x}$ (см. теорему 4.1) $x_0 = 0$ — точка устранимого разрыва.

Для функции $y = \frac{x^2 - 1}{x - 1}$ (см. упражнение 5.2) x = 1 точка устранимого разрыва.

Для функции $y = \operatorname{sign} x$ (см. пример 3.3) $x_0 = 0$ — точка разрыва 1-го рода. Разрыв — неустранимый. Скачок функции в точке $x_0 = 0$ равен 2.

Для единичной функции Хевисайда $\eta(x)$ (см. пример 5.4) $x_0=0$ — точка разрыва 1-го рода. Разрыв — неустранимый. Скачок функции в точке $x_0=0$ равен 1.

Определение 5.5. Пусть функция y = f(x) определена в некоторой окрестности $O_{\delta}(x_0)$ точки x_0 , кроме, может быть, самой точки x_0 . Точка x_0 называется точкой разрыва 2-го рода функции y = f(x), если хотя бы один из односторонних пределов $\lim_{x \to x_0 = 0} f(x)$ или $\lim_{x \to x_0 + 0} f(x)$ равен ∞ или не существует.

Пример 5.7

Для функций $y = \frac{1}{x^2}$; $y = \frac{1}{x} + 1$ (см. пример 3.2) $x_0 = 0$ — точка разрыва 2-го рода. Для функции $y = \sin\frac{1}{x}$ (см. упражнение 3.4) $x_0 = 0$ — точка разрыва 2-го рода.

Для функций $y = (-1)^{\left[\frac{1}{x}\right]} \frac{1}{x}$ и $y = (-1)^{\left[\frac{1}{x}\right]}$ (см. упражнения 3.7, 3.8) $x_0 = 0$ — точка разрыва 2-го рода. Точки $x_n = \frac{1}{n}$, n = 1, 2, ... — точки разрыва 1-го рода. Разрывы неустранимые.

Для функции $y = \frac{x^2 + 1}{x - 1}$ (см. упражнение 5.1) $x_0 = 1$ — точка разрыва 2-го рода. Для функции Дирихле D(x) (см. пример 5.3) любая точка $x_0 \in R$ — точка разрыва 2-го рода.

Пример 5.8

Исследовать на непрерывность и найти точки разрыва функции $y = \frac{x-2}{x^2-5x+6}$, рис. 5.8.

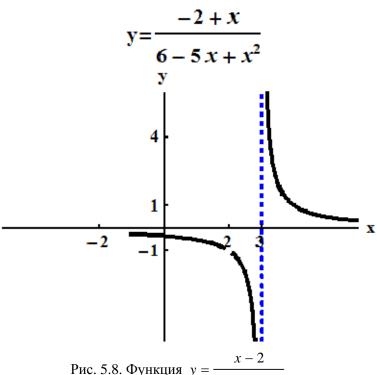


Рис. 5.8. Функция $y = \frac{x-2}{r^2 - 5r + 6}$

Решение

Функция – дробно-рациональная. Непрерывна везде, кроме точек, где знаменатель обращается в ноль: $x^2 - 5x + 6 = 0$, $x_1 = 2$, $x_2 = 3$.

Рассмотрим точку x = 2.

$$\lim_{x \to 2\pm 0} \frac{x-2}{x^2 - 5x + 6} = \lim_{x \to 2\pm 0} \frac{x-2}{(x-2)(x-3)} =$$

$$= \lim_{x \to 2\pm 0} \frac{1}{x-3} = -1;$$

$$f(2+0) = f(2-0) = -1 \Rightarrow x = 2$$
. – точка устранимого разрыва.

Рассмотрим точку x = 3.

$$\lim_{x \to 3+0} \frac{x-2}{(x-2)(x-3)} = \lim_{x \to 3+0} \frac{1}{x-3} = +\infty.$$

$$\lim_{x\to 3-0}\frac{x-2}{(x-2)(x-3)}=\lim_{x\to 3-0}\frac{1}{x-3}=-\infty \Rightarrow x=3$$
 — точка разрыва 2-го рода.

Пример 5.9

Исследовать на непрерывность и определить тип точек разрыва для функции:

$$y = \begin{cases} x; & x < -1; \\ 1 - x^2; -1 \le x \le 1; \\ x - 1; & x > 1. \end{cases}$$

Решение

Функции y = x, $y = 1 - x^2$, y = x - 1 непрерывны $\forall x \in R$, поэтому и наша функция непрерывна везде, кроме, может быть, точек x = -1 и x = 1. Слева и справа от точек $x = \pm 1$ функция задается различными аналитическими выражениями.

Пусть x = 1.

$$\lim_{x \to 1+0} y = \lim_{x \to 1+0} (x-1) = 0;$$

$$\lim_{x \to 1-0} y = \lim_{x \to 1-0} (1 - x^2) = 0, \quad y(1) = 0,$$

то есть

$$y(1-0) = y(1+0) = y(1) = 0$$
,

поэтому функция непрерывна в точке x = 1.

Пусть x = -1.

$$\lim_{x \to -1+0} y = \lim_{x \to -1+0} (1 - x^2) = 0; \lim_{x \to -1-0} y = \lim_{x \to -1-0} x = -1,$$

то есть

 $y(-1+0) \neq y(-1-0) \Rightarrow x = -1$ — точка разрыва 1-го рода (см. определение 5.3). Разрыв — неустранимый, скачок функции равен 1.

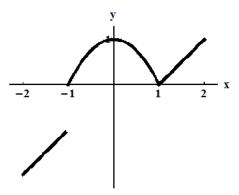


Рис. 5.9. Функция
$$y = \begin{cases} x; & x < -1; \\ 1 - x^2; & -1 \le x \le 1; \\ x - 1; & x > 1 \end{cases}$$

Пример 5.10

Исследовать на непрерывность функцию $y = \frac{2}{1 - 3^{\frac{x}{x-2}}}$, рис. 5.10.

x = 2, x = 0 — точки разрыва функции.

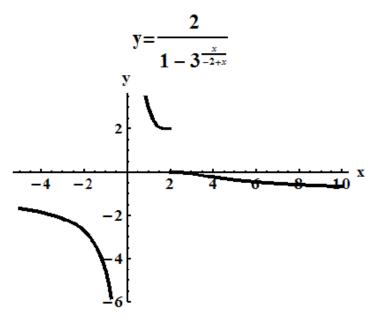


Рис. 5.10. Функция $y = \frac{2}{1-3^{\frac{x}{x-2}}}$

Решение

 $\lim_{x\to 2-0}y=2; \lim_{x\to 2+0}y=0 \Rightarrow x=2$ — точка разрыва 1-го рода. Разрыв неустранимый, скачок функции равен -2.

$$\lim_{x\to +0}y=+\infty;\ \lim_{x\to -0}y=-\infty \Longrightarrow x=0$$
 — точка разрыва 2-го рода.

У пражнение 5.1. Исследовать на непрерывность функцию

$$y=1-3^{\frac{x}{x-2}}.$$

Пример 5.11

Определить тип точек разрыва функции $y = \frac{x^2 + ax - 2}{x + 2}$ в зависимости от значений параметра a.

x = -2 – точка разрыва функции. Найдем $\lim_{x \to -2} (x^2 + ax - 2) = 2 - 2a$.

1. Если $a \ne 1$, то $\lim_{x \to -2} (x^2 + ax - 2) \ne 0 \Rightarrow \lim_{x \to -2} \frac{x^2 + ax - 2}{x + 2} = \infty \Rightarrow x = -2$ точка разрыва 2-го рода.

2. Если a = 1, то

$$\lim_{x \to -2} \frac{x^2 + x - 2}{x + 2} = \lim_{x \to -2} \frac{(x + 2)(x - 1)}{x + 2} = \lim_{x \to -2} (x - 1) = -3 \Rightarrow x = -2 \quad - \quad \text{точка}$$
 устранимого разрыва.

У пражнение 5.2. Исследовать функцию

$$y = \begin{cases} \frac{x^2 - (a-2)x + 7}{x - 1}; & x \neq 1; \\ b; & x = 1 \end{cases}$$

на непрерывность в зависимости от значений a и b.

$$y = \begin{cases} \frac{e^{3x} - e^{kx}}{x}; & x \neq 0; \\ 1; & x = 0. \end{cases}$$

Задания

Задание 5.1

Исследовать на непрерывность функцию f(x) в точке x_0 .

1)
$$f(x) = \frac{\sqrt{1+2x}-1}{x}$$
, $x_0 = 0$; 2) $f(x) = \frac{x^3-1}{|x-1|}$, $x_0 = 1$;

3)
$$f(x) = \frac{\ln(x+1)}{x}$$
, $x_0 = 0$; 4) $f(x) = \sin x \cdot \sin \frac{1}{x}$, $x_0 = 0$;

5)
$$f(x) = (1+x)^{\frac{1}{x^3}}, x_0 = 0;$$
 6) $f(x) = \frac{e^{2x} - e^{-2x}}{x}, x_0 = 0.$

Задание 5.2

Исследовать на непрерывность функцию f(x) и указать тип ее точек разрыва:

1)
$$f(x) = \frac{x^2 + 2}{x^3 + 1}$$
; 2) $f(x) = \arctan \left(\frac{1}{x}\right)$; 3) $f(x) = \frac{|2x - 3|}{2x - 3}$;
4) $f(x) = \frac{1}{\ln|x - 1|}$; 5) $f(x) = 2^{\frac{1}{1 - x}}$; 6) $f(x) = e^{-\frac{1}{x^2}}$;
7) $f(x) = \frac{\sqrt{1 - \cos 2x}}{x}$; 8) $f(x) = \frac{1}{1 + 3^{\frac{1}{x}}}$; 9) $f(x) = \frac{1}{1 + e^{\frac{1}{1 - x}}}$;
10) $f(x) = \begin{cases} -2x + 3 & \text{при } x < 1, \\ 3x + 2 & \text{при } x \ge 1; \end{cases}$ 11) $f(x) = \begin{cases} x^3 & \text{при } x < 1, \\ 2x - 1 & \text{при } 1 \le x \le 3, \\ \frac{1}{x} & \text{при } x > 3; \end{cases}$ 12) $f(x) = \begin{cases} e^{2x} & \text{при } x < 0, \\ 1 & \text{при } x < 0, \\ 2x - 2 & \text{при } x > 2; \end{cases}$ 13) $f(x) = \begin{cases} \frac{1}{x} & \text{при } 0 \le x \le 1, \\ x & \text{при } 1 < x \le 2, \\ 3 & \text{при } 2 < x \le 3; \end{cases}$ 14) $f(x) = \begin{cases} \sin \frac{\pi}{2}x & \text{при } x \le 0, \\ \frac{1}{x} & \text{при } 1 < x \le 2, \\ 3 & \text{при } 2 < x \le 3; \end{cases}$

Можно ли доопределить функцию f(x) в точке x_0 , чтобы она стала непрерывной в этой точке?

1)
$$f(x) = \frac{\sqrt{1+x}-1}{x}$$
, $x_0 = 0$; 2) $f(x) = x \cot x$, $x_0 = 0$;

3)
$$f(x) = \frac{1-\cos x}{x^2}$$
, $x_0 = 0$; 4) $f(x) = \frac{x^3+1}{x^2-1}$, $x_0 = -1$;

5)
$$f(x) = \frac{\sin^2 x}{1 - \cos x}$$
, $x_0 = 0$; 6) $f(x) = \arctan \frac{1}{x}$, $x_0 = 0$;

7)
$$f(x) = \lg \frac{\pi}{2-x}$$
, $x_0 = 0$.

Задание 5.4

При каких значениях a и b функция будет непрерывной?

1)
$$f(x) = \begin{cases} (x-1)^3 & \text{при } x \le 0, \\ ax + b & \text{при } 0 < x < 1, 2) \end{cases} f(x) = \begin{cases} x & \text{при } |x| \le 1, \\ x^2 + ax + b & \text{при } |x| > 1; \end{cases}$$

3)
$$f(x) = \begin{cases} \frac{(x-1)^2}{x^2 - 1} \operatorname{прu} |x| \neq 1, \\ a \operatorname{прu} x = -1, \\ b \operatorname{прu} x = 1; \end{cases}$$
 4)
$$f(x) = \begin{cases} ax^2 + 1 \operatorname{прu} x > 0, \\ -x \operatorname{прu} x \leq 0; \end{cases}$$

5)
$$f(x) = \begin{cases} \frac{1+x}{1+x^3} & \text{при } x \neq -1, \\ a & \text{при } x = -1. \end{cases}$$

Задание 5.5

Имеет ли уравнение хотя бы один корень?

1)
$$x^4 - 3x^2 + 2x - 1 = 0$$
 на отрезке [1, 2];

2)
$$8^x - 3 \cdot 2^x - 16 = 0$$
 на отрезке $[0; 2]$;

3)
$$\sin x - x + 1 = 0$$
 на отрезке $[0; \pi]$.

Задание 5.6

Будет ли ограничена функция

$$f(x) = 5^{x^2} \arctan \frac{x}{x+1} + (x^2 - x + 2) \sin \sqrt{3 + x^2}$$
 на отрезке [0; 100]?

Задание 5.7

Принимает ли функция

$$f(x) = \begin{cases} -x^2 + 1 & \text{при } -1 \le x < 0, \\ 0 & \text{при } x = 0, \\ x^2 - 1 & \text{при } 0 < x < 1 \end{cases}$$

наименьшее и наибольшее значение в области ее задания?

Показать, что функция

$$f(x) = \begin{cases} 3^x + 1 & \text{при } -1 \le x < 0, \\ 3^x & \text{при } x = 0, \\ 3^x - 1 & \text{при } 0 < x < 1 \end{cases}$$

не имеет ни наименьшего, ни наибольшего значений.

Исследовать на непрерывность функцию

$$f(x) = \begin{cases} x, & x \in \mathbb{Q}; \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q}, \end{cases}$$

где Q – множество рациональных чисел, и указать тип ее точек разрыва.

Ответы

- **5.1.** 1) $x_0 = 0$ точка устранимого разрыва 1-го рода;
- 2) $x_0 = 1$ точка неустранимого разрыва 1-го рода;
- 3) $x_0 = 0$ точка устранимого разрыва 1-го рода;
- 4) $x_0 = 0$ точка устранимого разрыва 1-го рода;
- 5) $x_0 = 0$ точка разрыва 2-го рода;
- 6) $x_0 = 0$ точка устранимого разрыва 1-го рода.
- **5.2.** 1) $x_0 = -1$ точка бесконечного разрыва 2-го рода;
- 2) $x_0 = 0$ точка неустранимого разрыва 1-го рода;
- 3) $x_0 = \frac{3}{2}$ точка неустранимого разрыва 1-го рода;

- 4) $x_0 = 1$ точка устранимого разрыва 1-го рода, $x_1 = 0$, $x_2 = 2$ точки бесконечного разрыва 2-го рода;
 - 5) $x_0 = 1$ точка бесконечного разрыва 2-го рода;
 - 6) $x_0 = 0$ точка устранимого разрыва 1-го рода;
 - 7) $x_0 = 0$ точка неустранимого разрыва 1-го рода;
 - 8) $x_0 = 0$ точка неустранимого разрыва 1-го рода;
 - 9) $x_0 = 1$ точка неустранимого разрыва 1-го рода;
 - 10) $x_0 = 1$ точка неустранимого разрыва 1-го рода;
 - 11) $x_0 = 3$ точка неустранимого разрыва 1-го рода;
 - 12) $x_0 = 1$ точка неустранимого разрыва 1-го рода;
- 13) $x_0 = 0$ точка бесконечного разрыва 2-го рода; справа в точке $x_0 = 0$ функция непрерывна; $x_0 = 2$ точка неустранимого разрыва 1-го рода;
 - 14) $x_0 = 0$ точка бесконечного разрыва 2-го рода.
 - **5.3.** 1) да, $f(0) = \frac{1}{2}$; 2) да, f(0) = 1; 3) да, $f(0) = \frac{1}{2}$; 4) да, $f(-1) = -\frac{3}{2}$;
- 5) да, f(0) = 2; 6) нельзя; 7) нельзя.
- **5.4.** 1) a = 2; b = -1; 2) a = 1; b = -1; 3) a и b не существуют; 4) a не существует; 5) $a = \frac{1}{3}$.
 - **5.5.** 1) да; 2) да; 3) да.
 - **5.6.** Да.
 - **5.7.** Het.
 - **5.9.** Непрерывна в точке x = 0. Точки разрыва 2-го рода $\forall x \neq 0$.

6. ПРОИЗВОДНАЯ ФУНКЦИИ

Определение 6.1. Пусть функция y = f(x) определена в некоторой окрестности $O_{\delta}(x_0)$ точки x_0 и существует $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$.

Этот предел называется производной функции в точке x_0 и обозначается $f'(x_0)$.

Таким образом:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$
 (6.1)

Обозначим $\Delta x = x - x_0 \Rightarrow x = x_0 + \Delta x$, тогда (6.1) перепишется в виде

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$
 (6.2)

Другие обозначения производной: $y'(x_0)$, $\frac{dy}{dx}(x_0)$, $\frac{df}{dx}(x_0)$.

Пример 6.1

 $y = \sin x$. Найти y'(x).

Решение

По формуле (6.2)

$$y'(x) = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\sin\frac{(x + \Delta x) - x}{2} \cdot \cos\frac{(x + \Delta x) + x}{2}}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{2\sin\frac{\Delta x}{2} \cdot \cos\left(x + \frac{\Delta x}{2}\right)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} \lim_{\Delta x \to 0} \cos\left(x + \frac{\Delta x}{2}\right) = \cos x.$$

Таким образом, $(\sin x)' = \cos x$. Аналогично $(\cos x)' = -\sin x$.

Пример 6.2

 $y = \ln x$. Найти y'(x).

Решение

$$y'(x) = \lim_{\Delta x \to 0} \frac{\ln(x + \Delta x) - \ln(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\ln\left(\frac{x + \Delta x}{x}\right)}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 + \frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \frac{1}{x} \ln\left(1 +$$

Таким образом, $(\ln x)' = \frac{1}{x}$. Аналогично $(\log_a x)' = \frac{1}{x \ln a}$.

 $y \ n \ p \ a \ ж \ n \ e \ n \ u \ e \ 6.1$. Для функций $y = |x|, \ y = \ln |x|, \ y = x \cdot |x|$ найти производные. Построить графики функций у и y'. Определить точки, в которых производные не существуют.

Определение 6.2. Функция y = f(x) называется дифференцируемой в точке x_0 , если ее приращение $\Delta y = f(x_0 + \Delta x) - f(x_0)$ представляется в виде

$$\Delta y = A\Delta x + o(\Delta x), \qquad (6.3)$$

где A – постоянное число, не зависящее от Δx ;

 $o(\Delta x)$ — бесконечно малая функция более высокого порядка малости, чем Δx , при $\Delta x \to 0$.

Теорема 6.1. Для того чтобы y = f(x) была дифференцируема в точке x_0 , необходимо и достаточно, чтобы в этой точке существовала производная $f'(x_0)$. При этом $A = f'(x_0)$ и формула (6.3) перепишется в виде

$$\Delta y = f'(x_0)\Delta x + o(\Delta x). \tag{6.4}$$

Доказательство

Рассмотрим цепочку эквивалентных утверждений:

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \Leftrightarrow \lim_{\Delta x \to 0} \left(\frac{\Delta y}{\Delta x} - f'(x_0) \right) = 0 \Leftrightarrow \lim_{\Delta x \to 0} \frac{\Delta y - f'(x_0) \Delta x}{\Delta x} = 0 \Leftrightarrow \Delta y - f'(x_0) \Delta x = o(\Delta x),$$

что и требовалось доказать.

Определение 6.3. Пусть функция y = f(x) дифференцируема в точке x_0 . Дифференциалом $\mathrm{d}f(x_0)$ функции y = f(x) в точке x_0 будем называть линейную относительно Δx функцию вида

$$df: \Delta x \to f'(x_0) \Delta x,$$
 (6.5)

то есть

$$df(x_0) = f'(x_0)\Delta x. (6.6)$$

Для функции $f(x) = x : dx = x' \Delta x = \Delta x$. Поэтому формулу (6.6) можно переписать в виде

$$df(x_0) = f'(x_0)dx$$
. (6.7)

Теорема 6.2. Если функция y = f(x) была дифференцируема в точке x_0 , то она непрерывна в этой точке.

Доказательство

Рассмотрим цепочку эквивалентных утверждений:

$$\lim_{x \to x_0} f(x) = f(x_0) \Leftrightarrow \lim_{x \to x_0} (f(x) - f(x_0)) = 0 \Leftrightarrow$$

$$\Leftrightarrow \lim_{\Delta x \to 0} (f(x_0 + \Delta x) - f(x)) = 0 \Leftrightarrow \lim_{\Delta x \to 0} (f'(x_0) \Delta x + o(\Delta x)) = 0,$$

что и требовалось доказать.

Теорема 6.3. Пусть функции u = u(x) и $\upsilon = \upsilon(x)$ – дифференцируемы, α_1 , $\alpha_2 \in R$.

Тогда:

1) $\alpha_1 u \pm \alpha_2 \upsilon$ также дифференцируема и

$$(\alpha_1 u \pm \alpha_2 \upsilon)' = \alpha_1 u' \pm \alpha_2 \upsilon'; \tag{6.8}$$

2) $u \cdot v$ дифференцируема и

$$(u \cdot \upsilon)' = u'\upsilon + u\upsilon'; \tag{6.9}$$

3) $\frac{u}{v}$ дифференцируема в точках, где $v(x) \neq 0$ и

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}.\tag{6.10}$$

Доказательство

Докажем, например, формулу (6.9).

$$(u\upsilon)' = \lim_{\Delta x \to 0} \frac{u(x + \Delta x)\upsilon(x + \Delta x) - u(x)\upsilon(x)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{(u(x + \Delta x) - u(x))\upsilon(x + \Delta x) + u(x)\upsilon(x + \Delta x) - u(x)\upsilon(x)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{u(x + \Delta x) - u(x)}{\Delta x}\upsilon(x + \Delta x) + u(x)\frac{\upsilon(x + \Delta x) - \upsilon(x)}{\Delta x} =$$

$$= u'(x)\upsilon(x) + u(x)\upsilon'(x),$$

что и требовалось доказать.

Из формул (6.8)–(6.10), с учетом (6.7), получим

$$d(\alpha_1 u + \alpha_2 v) = \alpha_1 du + \alpha_2 dv;$$

$$d(uv) = u dv + v du;$$

$$d\left(\frac{u}{v}\right) = \frac{v du - u dv}{v^2}.$$

Пример 6.3

 $y = \operatorname{tg} x$. Найти y'(x).

Решение

$$(\operatorname{tg} x)' = \left(\frac{\sin x}{\cos x}\right)' = \left|\operatorname{по} \, \operatorname{формулe} \, (6.10)\right| =$$

$$= \frac{(\sin x)' \cos x - \sin x (\cos x)'}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}.$$

Аналогично
$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$$
.

Теорема 6.4. Пусть функции y = f(u) и u = u(x) дифференцируемы. Тогда и сложная функция y = f(u(x)) дифференцируема и

$$(f(u(x)))' = f'(u(x))u'(x). (6.11)$$

Доказательство

Пусть $x_0 \in R$, $u_0 = u(x_0)$.

$$\begin{split} ((f \circ u)(x_0))' &= \lim_{\Delta x \to 0} \frac{f(u(x_0 + \Delta x)) - f(u(x_0))}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(u_0 + \Delta u) - f(u_0)}{\Delta u} \cdot \frac{\Delta u}{\Delta x} = \\ &= \lim_{\Delta u \to 0} \frac{f(u_0 + \Delta u) - f(u_0)}{\Delta u} \cdot \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} = f'(u_0)u'(x_0), \end{split}$$

что и требовалось доказать.

Пример 6.4

Найти производную $y = \sin(\ln(1+x^2))$.

Решение

Данная функция представляется как композиция функций

$$x \to 1 + x^2 \to \ln(1 + x^2) \to \sin(\ln(1 + x^2))$$
.

Тогда по формуле (6.11)

$$(\sin(\ln(1+x^2)))' = \cos(\ln(1+x^2)) \cdot \frac{1}{1+x^2} \cdot 2x$$
.

Найдем дифференциал функции y = f(u(x)). По формуле (6.7)

$$d(f \circ u)(x) = (f \circ u)'_{x} dx. \tag{6.12}$$

С другой стороны, с учетом формулы (6.11)

$$d(f \circ u)(x) = (f \circ u)'_{x} dx = f'(u(x)) \cdot u'(x) dx = f'(u(x)) \cdot du = f'_{u}(u) du. \quad (6.13)$$

Формулы (6.12) и (6.13) показывают инвариантность (неизменяемость) формы дифференциала. В формуле (6.12) $\mathrm{d}x = \Delta x$, в формуле (6.13) $\mathrm{d}u - \mathrm{д}u$ фференциал функции u = u(x). Например, для функции

$$y = \sin(\ln(1+x^2))$$
, $dy = \cos u du$,

где $u = \ln(1+x^2)$,

$$dy = \cos(\ln t) \cdot \frac{1}{t} \cdot dt$$
,

где
$$t = 1 + x^2$$
, $dy = \cos(\ln(1 + x^2)) \cdot \frac{1}{1 + x^2} \cdot 2x dx$.

Пример 6.5

Найти производную функции $y = x^{\alpha}$, x > 0.

Решение

$$\ln y = \ln(x^{\alpha}), \ln y = \alpha \ln x.$$

$$(\ln y)' = (\alpha \ln x)'; \quad \frac{1}{y}y' = \alpha \frac{1}{x} \Rightarrow y' = \alpha y \cdot \frac{1}{x} = \alpha x^{\alpha} \frac{1}{x} = \alpha x^{\alpha-1}.$$

Таким образом

$$(x^{\alpha})' = \alpha \cdot x^{\alpha - 1}. \tag{6.14}$$

Пример 6.6

$$y = \frac{5}{3\sqrt{x^3}} + \frac{\sqrt{x^3}}{3}$$
; $x > 0$. Найти y' .

Решение

По формуле (6.14)

$$y' = \left(\frac{5}{3}x^{-\frac{3}{2}} + \frac{1}{3}x^{\frac{3}{2}}\right)' = \frac{5}{3}\left(-\frac{3}{2}\right)x^{-\frac{5}{2}} + \frac{1}{3}\cdot\frac{3}{2}x^{\frac{1}{2}} = -2,5x^{-2,5} + 0,5x^{0,5}.$$

Пример 6.7

Найти производную функции $y = a^x$.

Решение

$$\ln y = \ln(a^x); \quad \ln y = x \ln a; \quad (\ln y)' = (x \ln a)'; \quad \frac{1}{y} y' = \ln a \Rightarrow$$
$$y' = y \ln a = a^x \ln a.$$

Таким образом,

$$(a^x)' = a^x \ln a,$$

в частности: $(e^x)' = e^x$.

Пример 6.8

 $y = \sin^5 x \cdot \ln(\operatorname{tg} x)$. Найти y'.

Решение

По формуле (6.9)

$$y' = (\sin^5 x)' \cdot \ln(\operatorname{tg} x) + \sin^5 x \cdot (\ln(\operatorname{tg} x))' = 5\sin^4 x \cdot \cos x \cdot \ln(\operatorname{tg} x) + \sin^5 x \cdot \frac{1}{\operatorname{tg} x} \cdot \frac{1}{\cos^2 x}.$$

Упражнение 6.2. $y = \operatorname{tg}^5 3x \cdot 5^{\cos^2 x}$. Найти y' .

 $y \, n \, p \, a \, ж \, h \, e \, h \, u \, e \, 6.3$. Найти производные функций $y = \sinh x; \quad y = \cosh x; \quad y = \cosh x; \quad y = \coth x$.

У пражнение 6.4. Проверить, что

a)
$$y = \frac{1}{2a} \ln \left| \frac{x-a}{x+a} \right| \Rightarrow y' = \frac{1}{x^2 - a^2};$$

6)
$$y = \ln \left| x + \sqrt{x^2 \pm a^2} \right| \Rightarrow y' = \frac{1}{\sqrt{x^2 \pm a^2}}$$
.

Определение 6.4. Пусть функция y = f(x) определена на множестве X со значениями во множестве Y и такова, что если $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$, рис. 6.1. Пусть $f(X) \subset Y$ — множество значений функции f . Для такой функции можно определить обратную функцию f^{-1} , определенную на множестве f(X) со значениями во множестве X по правилу

$$f^{-1}(f(x)) = x.$$

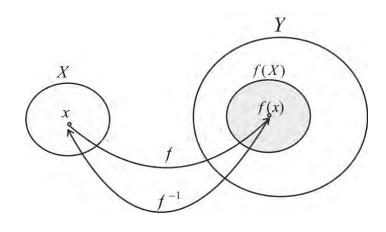


Рис. 6.1

Если y = f(x) строго монотонна на интервале (a,b), то f(x) удовлетворяет условиям определения 6.4 и для нее существует обратная f^{-1} , причем если f(x) непрерывна, то f^{-1} также непрерывна; если f(x) дифференцируема и $f'(x_0) \neq 0$, то f^{-1} также дифференцируема в точке $y_0 = f(x_0)$

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}, \tag{6.15}$$

или

$$f'(x_0) = \frac{1}{(f^{-1})'(y_0)}; \ (f^{-1})'(y_0) \neq 0.$$
 (6.16)

Пример 6.9

Для функции $y = \sqrt{x}$, x > 0, функция $x = y^2$, y > 0, обратная, и тогда по формуле (6.16)

$$(\sqrt{x})' = \frac{1}{(y^2)'\Big|_{y=\sqrt{x}}} = \frac{1}{2\sqrt{x}}.$$

Пример 6.10

Для функции $y = \arcsin x$, $x \in (-1; 1)$, функция $x = \sin y$, $y \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$, обратная, и тогда по формуле (6.16)

$$(\arcsin x)' = \frac{1}{(\sin y)'|_{y=\arcsin x}} = \frac{1}{\cos y|_{y=\arcsin x}} = \frac{1}{\cos(\arcsin x)} =$$

$$= \frac{1}{\sqrt{1-\sin^2(\arcsin x)}} = \frac{1}{\sqrt{1-x^2}}.$$

Таким образом,
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$
.

Аналогично

$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}; \quad (\arctan x)' = \frac{1}{1+x^2}; \quad (\arctan x)' = -\frac{1}{1+x^2}.$$

Сводка формул

1)
$$(\alpha_1 u \pm \alpha_2 v)' = \alpha_1 u' \pm \alpha_2 v', \quad \alpha_1, \alpha_2$$
 – константы;

2)
$$(\alpha \cdot u)' = \alpha \cdot u'$$
, α – константа;

3)
$$(u \cdot v)' = u'v + uv'$$
;

4)
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$
;

5)
$$(f(u(x)))' = f'(u(x))u'(x)$$
.

Таблица производных

y(x)	y'(x)	y(x)	y'(x)
<i>y(x)</i>	y (x)	<i>y(x)</i>	<i>y</i> (<i>x</i>)
$C(C-\mathrm{const})$	0	arcsin x	$=\frac{1}{\sqrt{1-x^2}}$
x^{α}	$\alpha x^{\alpha-1}$	arccos x	$-\frac{1}{\sqrt{1-x^2}}$
a^x	$a^x \ln a$	arctg x	$\frac{1}{1+x^2}$
e^x	e^x	arcctgx	$-\frac{1}{1+x^2}$
$\log_a x$	$\frac{1}{x \ln a}$	sh x	ch x
$\ln x$	$\frac{1}{x}$	ch x	sh x
$\sin x$	$\cos x$	th x	$\frac{1}{\cosh^2 x}$
$\cos x$	$-\sin x$	cth x	$-\frac{1}{\sinh^2 x}$
tg x	$\frac{1}{\cos^2 x}$	ctg x	$-\frac{1}{\sin^2 x}$

У пражнение 6.5. Проверить, что:

a)
$$y = \frac{1}{a} \arctan \frac{x}{a} \Rightarrow y' = \frac{1}{x^2 + a^2};$$

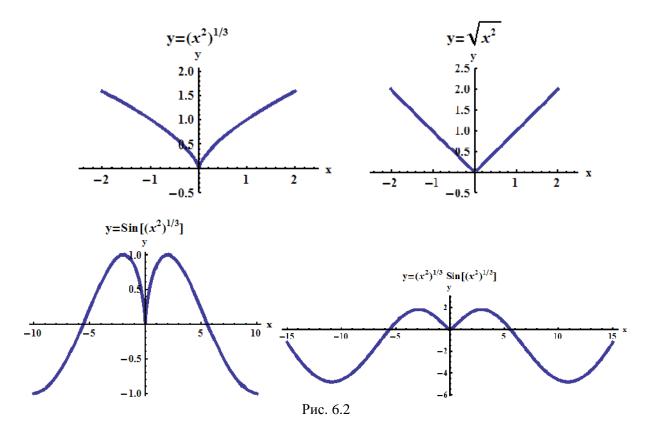
6)
$$y = \arcsin \frac{x}{a} \Rightarrow y' = \frac{1}{\sqrt{a^2 - x^2}}$$
.

Определение 6.5. Пусть функция y = f(x) непрерывна в точке x_0 и

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \infty,$$

тогда f(x) имеет в точке x_0 бесконечную производную.

a)
$$y = \sqrt[3]{x^2}$$
; б) $y = \sqrt{x^2}$; в) $y = \sin \sqrt[3]{x^2}$; г) $y = \sqrt[3]{x^2} \cdot \sin \sqrt[3]{x^2}$.



Найти y'(x). Построить графики функций y(x), y'(x).

Упражнение 6.8.
$$y = \begin{cases} 2x+2, & x \le -1; \\ 1-x^2, -1 < x \le 1; \\ -2x+2, & x > 1. \end{cases}$$

Найти y'(x). Построить графики функций y(x), y'(x).

Упражнение 6.9.
$$y = \begin{cases} x^2 \cdot \sin \frac{1}{x}; & x \neq 0; \\ 0; & x = 0. \end{cases}$$

Найти y'(x). Исследовать y(x), y'(x) на непрерывность.

y n p a ж e e u e 6.10. Показать, что функция $y = \sqrt{1 - x^2}$ недифференцируема в точке $x_0 = 1$ (условие (6.3) не выполняется).

Задания

Задание 6.1

Пользуясь определением, вычислить производные функций в указанных точках:

1)
$$y = x^3 + 2$$
 в точке $x = 2$;

2)
$$y = \sqrt{x}$$
 в точках $x = 1, x = 2$;

3)
$$y = \sqrt[3]{x-1}$$
 в точке $x = 1$;

4)
$$y = 3^x$$
 в точке $x = 3$;

5)
$$y = \arcsin x$$
 в точке $x = 0$;

6)
$$y = \operatorname{arctg} x$$
 в точке $x = 1$.

Задание 6.2

Вычислить
$$y'_+\left(\frac{\pi}{2}\right)$$
 и $y'_-\left(\frac{\pi}{2}\right)$, если $y = \left|\cos x\right|$.

Задание 6.3

Исследовать дифференцируемость функции в указанной точке:

1)
$$y = \sqrt[3]{x^2}$$
 в точке $x = 0$; 2) $y = x|x|$ в точке $x = 0$;

3)
$$y = \begin{cases} \sin x \text{ при } x \ge 0, \\ -x \text{ при } x < 0 \end{cases}$$
 в точке $x = 0$;

4)
$$y = |\ln x|$$
 в точке $x = 1$;

5)
$$y = \begin{cases} x^2 \sin \frac{1}{x} & \text{при } x \neq 0, \\ 0 & \text{при } x = 0 \end{cases}$$
 в точке $x = 0$;

6)
$$y = e^{|x|}$$
 в точке $x = 0$.

Задание 6.4

Пользуясь формулами дифференцирования и таблицей производных, найти производные следующих функций:

1)
$$y = 5x^2 - 2x + 3$$
; 2) $y = x^2 \ln x$; 3) $y = \frac{3^x}{\cos x}$;

4)
$$y = x\sqrt{x} - \frac{2}{x^2}$$
; 5) $y = \frac{x+1}{x-1}$; 6) $y = \ln x \cdot \arcsin x$;

7)
$$y = \frac{2x+3}{x^2-5x+5}$$
; 8) $y = x \arccos x$; 9) $y = 2^x \cot x$;

10)
$$y = \frac{\sin x - \cos x}{\sin x + \cos x}$$
; 11) $y = \frac{3}{x^4} + \frac{x^5}{5} + \frac{2}{x} + \frac{x}{2} + 3$;

12)
$$y = \frac{3}{\sqrt[3]{x^5}} + \frac{\sqrt{x^7}}{7} - 5x$$
; 13) $y = 5\sqrt{x} + \frac{3}{\sqrt[4]{x}} - \frac{2}{x} + 7$;

14)
$$y = \operatorname{tg} x \cdot \log_7 x$$
; 15) $y = \operatorname{arcctg} x \cdot \sqrt[3]{x^2}$; 16) $y = \sqrt{x(x^2 + x + 1)}$;

17)
$$y = \sqrt{x} \cdot \ln x \cdot \arctan x$$
; 18) $y = (x+1)2^x \sin x$; 19) $y = \frac{x^2+1}{2x^3-3x^2+1}$;

20)
$$y = \frac{3^x}{7} + \frac{7}{3x^3} + \frac{2}{3^{-x}}$$
; 21) $y = \log_3 x + \log_3 7$;

22)
$$y = \lg 5 \cdot \operatorname{arctg} x$$
; 23) $y = 2x^2 \ln x - x^2 + 5$;

24)
$$y = \frac{x^4 - 1}{x^2 - 1}$$
; 25) $y = \frac{x^5 - 1}{x - 1}$.

Задание 6.5

Найти производные сложных функций.

1)
$$y = \cos^2 x$$
; 2) $y = \sin 3x$; 3) $y = \arccos \sqrt{x}$; 4) $y = \sqrt{x^2 - 1}$;

5)
$$y = \ln^2 x - \ln \ln x$$
; 6) $y = \operatorname{tg} x \cdot \ln \cos x + \frac{\operatorname{tg} x}{x}$; 7) $y = 2^{\operatorname{ctg} \frac{1}{x}}$;

8)
$$y = \sqrt{\cos x} \cdot 2^{\sqrt{\cos x}}$$
; 9) $y = \ln(\sqrt{1 + e^x} - 1)$; 10) $y = \ln \arcsin x + \frac{1}{2} \ln^2 x$;

11)
$$y = \frac{x \arcsin x}{\sqrt{1 - x^2}} + \ln \sqrt{1 - x^2}$$
; 12) $y = \arctan x$;

13)
$$y = 2^{\arcsin 3x} - \arccos^2 3x$$
; 14) $y = \ln(x + \sqrt{x^2 + 3})$;

15)
$$y = \left(1 + x + \frac{1}{2}x^2\right)^5$$
; 16) $y = \sqrt{1 + \sqrt{1 + \sqrt{x}}}$; 17) $y = \sqrt{1 + \lg^3(3x)}$;

18)
$$y = \ln(1+\sqrt{x})$$
; 19) $y = \ln^3(1+\sqrt{x})$; 20) $y = \sqrt{\frac{1+x^2}{1-x^2}}$;

21)
$$y = \sqrt{3x^2 + 2} \cdot (x+3)^5$$
; 22) $y = \operatorname{tg}^7(5x)$; 23) $y = \sin^3(\ln x)$;

24)
$$y = \ln^3(\sin x)$$
; 25) $y = \sqrt{3x^2 + x^6}$; 26) $y = e^{\sin x}$; 27) $y = e^{\sin^3 x}$;

28)
$$y = e^{e^x}$$
; 29) $y = \sin^3 x + \sin^3 \frac{\pi}{5}$; 30) $y = \cos^5 x \cdot \ln^3 (2x)$;

31)
$$y = \sin(\arccos x)$$
; 32) $y = \arcsin(\sin x)$; 33) $y = 2^{\frac{1+x^2}{1-x^2}}$;

34)
$$y = 2^{x^2} \cos^3 x$$
; 35) $y = \sqrt[3]{1 + x^2} \cdot 3^{x^2}$; 36) $y = \cos^3 x \cdot \sqrt{\sin x}$;

37)
$$y = \frac{\sqrt{1+x^2}}{\ln(1+x^2)}$$
; 38) $y = x\sqrt{1-x^2} + \arcsin x$;

39)
$$y = x \ln(1+x^2) - 2x + 2 \arctan x$$
; 40) $y = x\sqrt{1+x^2} + \ln(x+\sqrt{1+x^2})$;

41)
$$y = \ln\left(\frac{x-1}{x+1}\right) - 2\arctan x$$
; 42) $y = \cos^3 x - 3\cos x$.

Задание 6.6

Найти производную заданной функции и вычислить ее значение в указанной точке.

1)
$$y = \frac{\cos t}{1 - \sin t}$$
 в точке $t = \frac{\pi}{6}$; 2) $y = (x^2 + x + 2)^{\frac{3}{2}}$ в точке $x = 1$;

3)
$$y = \sin^2 2x$$
 в точке $x = \frac{\pi}{8}$; 4) $y = \sqrt{\frac{x+1}{x-1}}$ в точке $x = 2$.

Задание 6.7

Найти дифференциалы заданных функций.

1)
$$y = x \ln x - x$$
; 2) $y = \arcsin\left(\frac{x}{a}\right)$; 3) $y = \arctan\frac{x}{a}$;

4)
$$y = \ln(1 + e^{10x}) + \operatorname{arctg} e^{5x}$$
;

5)
$$y = \sqrt{\arcsin x} + (\arctan x)^2$$
; 6) $y = \ln tg \left(\frac{\pi}{2} - \frac{x}{4}\right)$.

Ответы

6.1. 1) 12; 2)
$$\frac{1}{2}$$
; $\frac{1}{2\sqrt{2}}$; 3) + ∞ ; 4) 27 ln 3; 5) 1; 6) $\frac{1}{2}$.

6.2.
$$y'_{+}\left(\frac{\pi}{2}\right) = 1$$
, $y'_{-}\left(\frac{\pi}{2}\right) = -1$.

6.3. 1) недифференцируема (
$$y'_{+}(0) = +\infty$$
, $y'_{-}(0) = -\infty$);

- 2) дифференцируема (y'(0) = 0);
- 3) недифференцируема $y'_{+}(0) = 1$, $y'_{-}(0) = -1$);
- 4) недифференцируема ($y'_{+}(1) = 1$, $y'_{-}(1) = -1$);
- 5) дифференцируема (y'(0) = 0);
- 6) недифференцируема ($y'_{+}(0) = 1$, $y'_{-}(0) = -1$).

6.4. 1)
$$y' = 10x - 2$$
; 2) $y' = 2x \ln x + x$; 3) $y' = \frac{3^x (\ln 3 \cos x + \sin x)}{\cos^2 x}$;

4)
$$y' = \frac{3}{2}\sqrt{x} + \frac{4}{x^3}$$
; 5) $y' = \frac{-2}{(x-1)^2}$; 6) $y' = \frac{1}{x}\arcsin x + \frac{\ln x}{\sqrt{1-x^2}}$;

7)
$$y' = \frac{-2x^2 - 6x + 25}{(x^2 - 5x + 5)^2}$$
; 8) $y' = \arccos x - \frac{x}{\sqrt{1 - x^2}}$;

9)
$$y' = 2^x \ln 2 \cot x - \frac{2^x}{\sin^2 x}$$
; 10) $y' = \frac{2}{1 + \sin 2x}$.

6.5. 1)
$$-\sin 2x$$
; 2) $3\cos 3x$; 3) $-\frac{1}{2\sqrt{x-x^2}}$; 4) $\frac{x}{\sqrt{x-1}}$; 5) $\frac{2\ln^2 x - 1}{x\ln x}$;

6)
$$\frac{\ln \cos x - \sin^2 x}{\cos^2 x} + \frac{x - \sin x \cdot \cos x}{x^2 \cdot \cos^2 x}$$
; 7) $\frac{2^{\cot \frac{1}{x}} \cdot \ln 2}{x^2 \cdot \sin^2 \frac{1}{x}}$;

8)
$$-\frac{\sin x \cdot 2^{\sqrt{\cos x}}}{2\sqrt{\cos x}} (1 + \ln 2\sqrt{\cos x});$$
 9) $\frac{e^x}{2\sqrt{1 + e^x} \cdot \left(\sqrt{1 + e^x} - 1\right)};$

10)
$$\frac{1}{\arcsin x \cdot \sqrt{1-x^2}} + \frac{\ln x}{x}$$
; 11) $\frac{\arcsin x}{(1-x^2)^{\frac{3}{2}}}$; 12) $\frac{1}{x(1+\ln^2 x)}$;

13)
$$\frac{\ln 8 \cdot 2^{\arcsin 3x} + 6\arccos 3x}{\sqrt{1 - 9x^2}}; \quad 14) \frac{1 + \frac{x}{\sqrt{x^2 + 3}}}{x + \sqrt{x^2 + 3}}.$$
6.6. 1)
$$y' = \frac{1}{1 - \sin t}, \quad y'\left(\frac{\pi}{6}\right) = 2; \quad 2) \quad y' = \frac{3}{2}(x^2 + x + 2)^{\frac{1}{2}} \cdot (2x + 1), \quad y'(1) = 9;$$
3)
$$y' = 2\sin 4x, \quad y'\left(\frac{\pi}{8}\right) = 2; \quad 4) \quad y' = -\frac{1}{\sqrt{x^2 - 1} \cdot (x - 1)}}, \quad y'(2) = -\frac{1}{\sqrt{3}}.$$
6.7. 1)
$$dy = \ln x dx; \quad 2) \quad dy = \frac{dx}{\sqrt{a^2 - x^2}}; \quad 3) \quad dy = \frac{a dx}{x^2 + a^2};$$
4)
$$dy = \frac{5e^{5x}(2e^{5x} + 1)}{1 + e^{10x}} dx; \quad 5) \quad dy = \left(\frac{1}{2\sqrt{\arcsin x(1 - x^2)}} + \frac{2\operatorname{arcctg} x}{1 + x^2}\right) dx;$$
6)
$$dy = -\frac{dx}{2\sin \frac{x}{a}}.$$

7. ПРОИЗВОДНАЯ ФУНКЦИИ, ЗАДАННОЙ ПАРАМЕТРИЧЕСКИ

Рассмотрим плоскость с фиксированной системой координат (O, x, y). Пусть точка M(x, y) движется по плоскости, и траектория ее движения

$$\begin{cases} x = x(t); \\ y = y(t), \end{cases}$$
 (7.1)

где t — время, или

$$r(t) = x(t) \cdot \vec{i} + y(t) \cdot \vec{j}$$

где r(t) – радиус-вектор точки M.

Предположим, что для функции x = x(t) существует обратная функция $t = x^{-1}(x)$ (например, когда x = x(t) строго монотонна). Тогда (7.1) задается также в виде $y = y(x^{-1}(x))$.

Пусть $M_0(x_0, y_0)$ – точка на кривой (7.1), где

$$\begin{cases} x_0 = x(t_0) \\ y_0 = y(t_0). \end{cases}$$

Предположим, что x(t) и y(t) дифференцируемы и $x'(t_0) \neq 0$.

Тогда по формулам (6.11), (6.15)

$$y'(x_0) = (y(x^{-1}(x)))'\Big|_{x=x_0} = y'_t(x^{-1}(x_0)) \cdot (x^{-1})'(x_0) =$$

$$= y'_t(t_0) \cdot \frac{1}{x'_t(t_0)} = \frac{y'_t(t_0)}{x'_t(t_0)}.$$

Таким образом для функции, заданной в виде (7.1), производная

$$y'_{x} = \begin{cases} x = x(t) \\ y'_{x} = \frac{y'_{t}(t)}{x'_{t}(t)} \end{cases}$$
 (7.2)

Пример

Найти y'_x для функции $\begin{cases} x = a \cos t; \\ y = b \sin t. \end{cases}$ $0 < t < \pi$.

Решение

Функция $x = a \cos t$ монотонно убывает на промежутке $[0; \pi]$. Для нее \exists обратная: $t = \arccos \frac{x}{a}$. По формуле (7.2)

$$\begin{cases} x = a\cos t; \\ y_x' = \frac{(b\sin t)'}{(a\cos t)'} = -\frac{b}{a} \cdot \frac{\cos t}{\sin t}, \quad t \in (0;\pi). \end{cases}$$
 (7.3)

Кривая в примере — параметрическое задание эллипса (верхней части), заданного уравнением $y = \frac{b}{a} \sqrt{a^2 - x^2}$. Если из формулы (7.3) исключить t, то получим

$$y_x' = -\frac{b}{a} \cdot \frac{\cos\left(\arccos\frac{x}{a}\right)}{\sin\left(\arccos\frac{x}{a}\right)} = -\frac{b}{a} \cdot \frac{\frac{x}{a}}{\sqrt{1-\cos^2\left(\arccos\frac{x}{a}\right)}} = -\frac{b}{a} \cdot \frac{\frac{x}{a}}{\sqrt{1-\frac{x^2}{a^2}}} = -\frac{b}{a} \cdot \frac{x}{\sqrt{a^2-x^2}},$$

что совпадает с производной $\left(\frac{b}{a}\sqrt{a^2-x^2}\right)'$.

 $y_{n} p a ж нение 7.1$. Найти y'_{x} для функции

$$\begin{cases} x = a \operatorname{ch} t; \\ y = b \operatorname{sh} t, \end{cases} \quad t > 0.$$

 $V \, n \, p \, a \,$ ж н е н и е 7.2. Найти y_x' для функции

$$\begin{cases} x = a \cos t; \\ y = b \sin t, \end{cases} - \pi < t < 0,$$

для параметрического задания эллипса (нижняя часть). Найти y' для явного задания $y = -\frac{b}{a}\sqrt{a^2-x^2}$ эллипса. Проверить совпадение найденных формул.

Сводка формул

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases} \Rightarrow \begin{cases} x = x(t); \\ y'_x = \frac{y'_t(t)}{x'_t(t)}. \end{cases}$$

Задания

Задание 7.1

Вычислить производную y'_x для функции, заданной параметрически.

1)
$$\begin{cases} x = 2t + 1, \\ y = t^{3}; \end{cases}$$
 2)
$$\begin{cases} x = a\cos^{2}t, \\ y = b\sin^{2}t; \end{cases}$$
 3)
$$\begin{cases} x = \arccos\frac{1}{\sqrt{1 + t^{2}}}, \\ y = \arcsin\frac{1}{\sqrt{1 + t^{2}}}; \end{cases}$$

4)
$$\begin{cases} x = a(t - \sin t), \\ y = a(t - \cos t); \end{cases}$$
 5)
$$\begin{cases} x = a(\ln t g \frac{t}{2} + \cos t + \sin t), \\ y = a(\sin t - \cos t); \end{cases}$$
 6)
$$\begin{cases} x = t(1 - \sin t), \\ y = t \cos t; \end{cases}$$

7)
$$\begin{cases} x = a \sinh t, \\ y = b \cosh t; \end{cases}$$
 8)
$$\begin{cases} x = \frac{3at}{1+t^2}, \\ y = \frac{3at^2}{1+t^2}; \end{cases}$$
 9)
$$\begin{cases} x = 2 \ln \cot t, \\ y = \tan t, \\ y = \tan t, \end{cases}$$
 10)
$$\begin{cases} x = t + \frac{1}{2} \sin 2t, \\ y = \cos^3 t; \end{cases}$$

11)
$$\begin{cases} x = \operatorname{ctg} t, \\ y = \frac{1}{\cos^2 t}; \end{cases}$$
 12)
$$\begin{cases} x = \cos t \sin t, \\ y = \operatorname{tg}^2 t; \end{cases}$$
 13)
$$\begin{cases} x = \ln \frac{t+1}{t}, \\ y = \frac{1}{t^2 + t}; \end{cases}$$
 14)
$$\begin{cases} x = \ln \sin t, \\ y = e^{\cos 2t}; \end{cases}$$

15)
$$\begin{cases} x = \sin^{\frac{3}{2}} t, \\ y = \cos^{\frac{3}{2}} t; \end{cases}$$
 16)
$$\begin{cases} x = \ln(1+t^{2}), \\ y = t - \operatorname{arctg} t; \end{cases}$$
 17)
$$\begin{cases} x = 3\cos^{3} t, \\ y = 9\sin^{3} t; \end{cases}$$
 18)
$$\begin{cases} x = \frac{2-t}{2+t^{2}}, \\ y = \frac{t^{2}}{2+t^{2}}; \end{cases}$$

19)
$$\begin{cases} x = \frac{1}{t^2 - 3t + 2}, \\ y = \frac{2}{t^2 - 5t + 4}; \end{cases}$$
 20)
$$\begin{cases} x = \arcsin(t^2 - 1), \\ y = \arccos 2t. \end{cases}$$

Задание 7.2

Вычислить $\frac{dy}{dx}$ при заданном значении параметра t.

1)
$$\begin{cases} x = t, \\ y = \frac{\ln t}{t}, & \text{при } t = 1; \end{cases}$$
 2)
$$\begin{cases} x = e^t \cos t, & \text{при } t = \frac{\pi}{2}; \\ y = e^t \sin t, \end{cases}$$

3)
$$\begin{cases} x = \operatorname{ctg} t, \\ y = \frac{1}{\cos^2 t}, & \text{при } t = \frac{\pi}{4}; \quad 4) \begin{cases} x = e^{-t^2}, \\ y = \operatorname{arctg}(2t+1), \end{cases}$$
 при $t = 1;$

5)
$$\begin{cases} x = 4 \operatorname{tg}^2 \frac{t}{2}, & \text{при } t = \frac{\pi}{2}; \\ y = 2^{\sin t} + 3^{\cos t}, & \text{при } t = e; \end{cases}$$

7)
$$\begin{cases} x = \sec t, & \text{при } t = \frac{\pi}{6}; \ 8 \end{cases} \begin{cases} x = \arcsin 2t, & \text{при } t = \frac{1}{4}; \\ y = \sqrt{1 - 4t^2}, & \text{при } t = \frac{1}{4}; \end{cases}$$

9)
$$\begin{cases} x = \sin t, \\ y = 2e^{t\sqrt{2}} + 3e^{-t\sqrt{2}}, & \text{при } t = 0; \\ y = \cot t, \\ y = \cot t, \end{cases} \text{при } t = \frac{\pi}{4}.$$

Ответы

7.1. 1)
$$\frac{3t^2}{2}$$
; 2) $-\frac{b}{a}$; 3) -1; 4) $\frac{1+\sin t}{1-\cos t}$; 5) tg t; 6) $\frac{\cos t - t\sin t}{1-\sin t - t\cos t}$;

7)
$$\frac{b \th t}{a}$$
; 8) $\frac{2t}{1-t^2}$; 9) ctg 2t; 10) $-\frac{3\sin t}{2t}$; 11) $-2 \lg^3 t$; 12) $\frac{\lg 2t}{\cos^4 t}$;

13)
$$\frac{2t+1}{t^2+t}$$
; 14) $-4\sin^2 t e^{\cos 2t}$; 15) $-\lg^{\frac{1}{2}}t$; 16) $\frac{t}{2}$; 17) $-3\lg t$;

18)
$$\frac{4t}{t^2 - 4t - 2}$$
; 19) $\frac{4t - 10}{2t - 3} \cdot \left(\frac{t - 2}{t - 4}\right)^2$; 20) $\frac{-\sqrt{2 - t^2}}{\sqrt{1 - 4t^2}}$.

7.2. 1) 1; 2) – 1; 3) – 2; 4)
$$-\frac{e}{10}$$
; 5) $-\frac{\ln 3}{8}$; 6) $3e^3$; 7) 2; 8) $-\frac{1}{2}$; 9) $-\sqrt{2}$; 10) – 1.

8. ПРОИЗВОДНАЯ ФУНКЦИИ, ЗАДАННОЙ НЕЯВНО

Пусть функция y = f(x) задана неявно в виде

$$F(x, y) = 0, (8.1)$$

то есть $F(x, f(x)) = 0, \forall x \in D(f)$.

Дифференцируем уравнение (8.1) по x, при этом считаем, что y – функция от x, получим уравнение, содержащее x, y, y'. Из полученного уравнения выражаем y'.

Пример 8.1

Найти y'_x для функции y = y(x), заданной неявно: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Решение

$$\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)' = 1'; \frac{2x}{a^2} + \frac{2y}{b^2} \cdot y' = 0 \Rightarrow y' = -\frac{b^2}{a^2} \cdot \frac{x}{y}; y \neq 0.$$
 (8.2)

Рассмотренное в примере 8.1 уравнение эллипса определяет в неявном виде две функции: $y = \pm \frac{b}{a} \sqrt{a^2 - x^2}$ и $x \in [-a; a]$.

Если рассмотреть параметрическое уравнение эллипса

$$\begin{cases} x = a\cos t; \\ y = b\sin t, \ 0 \le t < 2\pi, \end{cases}$$

то после подстановки x и y в формулу (8.2), получим формулу (7.3) (см. пример п. 7.1), $t \neq 0$, $t \neq \pi$, $t \neq 2\pi$.

Пример 8.2

Найдем производную степенно-показательной функции $y = u(x)^{\upsilon(x)}$, где u(x), $\upsilon(x)$ дифференцируемы и u(x) > 0.

Решение

$$\ln y = \ln(u(x)^{v(x)});$$

$$\ln y = \upsilon(x) \cdot \ln(u(x));$$

$$(\ln y)' = (\upsilon(x) \cdot \ln(u(x)))';$$

$$\frac{1}{y} \cdot y' = \upsilon'(x) \cdot \ln(u(x)) + \upsilon(x) \cdot \frac{1}{u(x)} \cdot u'(x);$$

$$y' = y(\upsilon'(x) \cdot \ln(u(x)) + \frac{\upsilon(x)}{u(x)} \cdot u'(x)) =$$

$$= u(x)^{\upsilon(x)} \cdot \ln(u(x)) \cdot \upsilon'(x) + \upsilon(x) \cdot u(x)^{\upsilon(x)-1} \cdot u'(x).$$

y n p a ж h e h u e 8.1. Найти производную для функции $y = (1 + x^2)^{\lg x}$. y n p a ж h e h u e 8.2. Найти y'_x для функции y = y(x), заданной уравнением $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. Сравнить результат с y'_x из упражнения 7.1.

Задания

Задание 8.1

Найти производную неявной функции.

1)
$$x^2 + 5xy + y^2 - 7 = 0$$
; 2) $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$; 3) $y^2 + xy + \sin y = 0$;

4)
$$e^x - e^{-y} - 2xy = 0$$
; 5) $arctg(x + y) = x$; 6) $e^x \sin y - e^{-y} \cos x = 0$;

7)
$$\arctan \frac{y}{x} = \ln \sqrt{x^2 + y^2}$$
; 8) $\arcsin(xy) + \arctan \frac{x}{y} = a$;

9)
$$\arcsin \sqrt{x} + \frac{1}{x+y} = y^2$$
; 10) $1 + x = \frac{1}{2} \ln(2y+3)$.

Задание 8.2

Найти производную неявной функции в заданной точке.

1)
$$x^2 - 2xy + y^2 - 6x + 2y + 5 = 0, M(5, 0)$$
;

2)
$$9x^2 + 4xy + 6y^2 - 8x + 16y - 50 = 0$$
, $M(2, 1)$;

3)
$$y^2 = x + \ln\left(\frac{y}{x}\right)$$
, $M(1, 1)$; 4) $e^y + xy = e$, $M(0, 1)$;

5)
$$4^x + 4^y = 4^{x+y}$$
, $M(1, 0)$; 6) $\sin^2(x+y) = 2xy$, $M(\pi; 0)$;

7) tg
$$y = xy$$
, $M(2; 0)$; 8) $y^3 = \frac{2x + y}{x + y}$, $M(0, 1)$;

9)
$$\ln x + e^{-\frac{y}{x}} = 2$$
, $M(e, 0)$; 10) $y^2 + \arcsin(x + y) = x$, $M(0, 0)$.

Задание 8.3

Найти производную степенно-показательной функции:

1)
$$y = x^{\sqrt{x}}$$
; 2) $y = \sqrt[x]{x}$; 3) $y = (\arctan x)^x$; 4) $y = x^{\cos x}$; 5) $y = (\cos x)^x$;

6)
$$y = (\sin^2 x)^{\ln x}$$
; 7) $y = (\ln x)^{\frac{1}{x}}$; 8) $y = (\sin 2x)^{\cot \frac{x}{2}}$;

9)
$$y = (\operatorname{arctg} x)^{\frac{1}{x}}$$
; 10) $y = (\sqrt{x})^{\sin^2 x}$; 11) $y = (\ln x^2)^{\cos^2 x}$;

12)
$$y = (\operatorname{ch} x)^{\frac{1}{x}}$$
; 13) $y = \left(1 + \frac{1}{x}\right)^{x}$; 14) $y = (\operatorname{ctg} x)^{\sqrt{1-x}}$;

15)
$$y = (\sinh \frac{x}{a})^{\sin \frac{a}{x}}$$
; 16) $y = (x + x^2)^{\frac{1}{x}}$.

Ответы

8.1. 1)
$$-\frac{2x+5y}{5x+2y}$$
; 2) $-\sqrt[3]{\frac{y}{x}}$; 3) $-\frac{y}{2y+x+\cos y}$; 4) $\frac{2y-e^x}{e^{-y}-2x}$; 5) $(x+y)^2$;

6)
$$-\frac{e^{-y}\sin x + e^x\sin y}{e^{-y}\cos x + e^x\cos y}$$
; 7) $\frac{x+y}{x-y}$; 8) $\frac{y(x^2+y^2+\sqrt{1-x^2y^2})}{x(\sqrt{1-x^2y^2}-x^2-y^2)}$;

9)
$$\frac{(x+y)^2 - 2\sqrt{x-x^2}}{2\sqrt{x-x^2}(2y(x+y)^2+1)}$$
; 10) 2y+3.

8.2. 1)
$$\frac{1}{2}$$
; 2) $-\frac{8}{9}$; 3) 0; 4) $-\frac{1}{e}$; 5) 0; 6) 0; 7) 0; 8) $\frac{1}{3}$; 9) 1; 10) 0.

8.3. 1)
$$x^{\sqrt{x}} \cdot \frac{\ln x + 2}{2\sqrt{x}}$$
; 2) $\sqrt[x]{x} \cdot \frac{1 - \ln x}{x^2}$;

3)
$$(\operatorname{arctg} x)^x \left(\ln \operatorname{arctg} x + \frac{x}{\operatorname{arctg} x(1+x^2)} \right);$$

4)
$$x^{\cos x} \left(-\sin x \cdot \ln x + \frac{\cos x}{x} \right)$$
; 5) $(\cos x)^{x-1} (\ln \cos x \cdot \cos x - \sin x \cdot x)$;

6)
$$(\sin^2 x)^{\ln x} \cdot \frac{\sin^2 x \cdot \ln \sin^2 x + x \cdot \ln x \cdot \sin 2x}{x \cdot \sin^2 x}$$
; 7) $(\ln x)^{\frac{1}{x}} \cdot \frac{1 - \ln x \cdot \ln \ln x}{x^2 \cdot \ln x}$;

8)
$$(\sin 2x)^{\cot \frac{x}{2}} \cdot \frac{2\sin x \cdot \cot 2x - \ln \sin 2x}{2\sin^2 \frac{x}{2}}$$
;

9)
$$(\operatorname{arctg} x)^{\frac{1}{x}} \left(\frac{1}{x \operatorname{arctg} x (1 + x^2)} - \frac{\ln \operatorname{arctg} x}{x^2} \right);$$

10)
$$(\sqrt{x})^{\sin^2 x} \left(\sin 2x \cdot \ln \sqrt{x} + \frac{\sin^2 x}{2x} \right);$$

11)
$$(\ln x^2)^{\cos^2 x} \left(\frac{2\cos^2 x}{x \cdot \ln x^2} - \sin 2x \cdot \ln \ln x^2 \right);$$

12)
$$(\cosh^{\frac{1}{x}} \left(-\frac{1}{x^2} (\ln \cosh x - x \cosh x) \right);$$
 13) $\left(1 + \frac{1}{x} \right)^x \left(\ln \left(1 + \frac{1}{x} \right) - \frac{1}{x+1} \right);$

14)
$$(\operatorname{ctg} x)^{\sqrt{1-x}} \cdot \left(-\frac{\ln \operatorname{ctg} x}{2\sqrt{1-x}} - \frac{\sqrt{1-x}}{\operatorname{ctg} x \cdot \sin^2 x} \right);$$

15)
$$\left(\operatorname{sh} \frac{x}{a} \right)^{\sin \frac{a}{x}} \left(\frac{\sin \frac{a}{x} \cdot \operatorname{cth} \frac{x}{a}}{a} - \frac{a \cos \frac{a}{x} \ln \operatorname{sh} \frac{x}{a}}{x^2} \right);$$

16)
$$(x+x^2)^{\frac{1}{x}} \left(\frac{1+2x}{x^2+x^3} - \frac{\ln(x+x^2)}{x^2} \right)$$
.

9. ГЕОМЕТРИЧЕСКИЙ И ФИЗИЧЕСКИЙ СМЫСЛ ПРОИЗВОДНОЙ

Пусть (O, x, y) — прямоугольная система координат на плоскости. Рассмотрим график функции y = f(x) (множество точек с координатами (x, f(x)). Пусть $M_0(x_0, f(x_0)), M_1(x_0 + \Delta x, f(x_0 + \Delta x))$ — точки на графике (рис. 9.1).

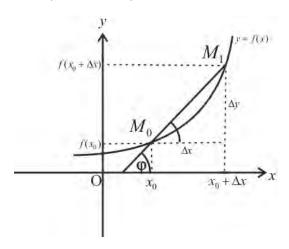


Рис. 9.1. Секущая $y = f(x_0) + \operatorname{tg} \varphi(x - x_0)$

Рассмотрим секущую на графике, проходящую через точки M_0 и M_1 , тогда

$$tg\,\phi = \frac{\Delta y}{\Delta x} = \frac{f\left(x_0 + \Delta x\right) - f\left(x_0\right)}{\Delta x} \, - \text{угловой коэффициент секущей,}$$

И

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \text{tg}\,\phi.$$
 (9.1)

Определение 9.1. Пусть функция y = f(x) дифференцируема в точке x_0 и $f'(x_0)$ — ее производная. Касательной к графику функции в точке $(x_0, f(x_0))$ будем называть прямую, заданную уравнением

$$y = f(x_0) + f'(x_0)(x - x_0). (9.2)$$

Из формулы (9.1) видно, что касательная — предельное положение секущей M_0M_1 при $\Delta x \to 0$.

Действительно, секущая M_0M_1 задается уравнением $y = f(x_0) + \operatorname{tg} \varphi(x - x_0)$ (уравнение прямой, проходящей через точку $(x_0, f(x_0))$ с угловым коэффициентом $\operatorname{tg} \varphi$). Так как выполняется (9.1), то уравнение $y = f(x_0) + \operatorname{tg} \varphi(x - x_0)$ в пределе при $\Delta x \to 0$ примет вид (9.2).

Таким образом, $f'(x_0)$ – угловой коэффициент касательной к кривой y = f(x) в точке $(x_0, f(x_0)), f'(x_0) = \operatorname{tg}\alpha$ (рис. 9.2).

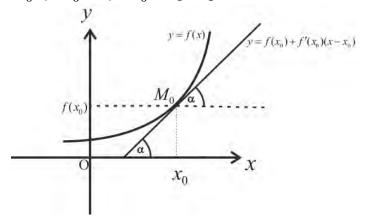


Рис. 9.2. Касательная $y = f(x_0) + f'(x_0)(x - x_0)$

Определение 9.2. Пусть функция y = f(x) имеет в точке x_0 бесконечную производную (см. определение 6.5). Тогда касательная к графику функции в точке $(x_0, f(x_0))$ – вертикальная прямая $x = x_0$.

Определение 9.3. Нормалью к графику функции y = f(x) в точке $M_0(x_0, f(x_0))$ называется прямая, проходящая через точку M_0 и перпендикулярная касательной к графику в этой точке.

Если $f'(x_0) \neq 0$, то из (9.2) следует, что уравнение нормали имеет вид

$$y = f(x_0) - \frac{1}{f'(x_0)} \cdot (x - x_0) \tag{9.3}$$

(так как угловые коэффициенты k_1 и k_2 перпендикулярных прямых связаны соотношением $k_1k_2=-1$).

Пример 9.1

 $y = x^2 + 1$, $M_0(1, 2)$. Написать уравнение касательной и нормали к кривой в точке M_0 .

Решение

 $x_0=1;\ y(1)=2$, поэтому точка M_0 лежит на кривой; $y'=2x;\ y'(1)=2$. Тогда по формуле (9.2)

$$y = 2 + 2(x - 1) = 2x$$
 – уравнение касательной.

Далее по формуле (9.3)

$$y = 2 - \frac{1}{2}(x - 1) = -\frac{1}{2}x + \frac{5}{2}$$
 – уравнение нормали.

Пример 9.2

 $y = x^2 + 1, M(2, 4)$. Написать уравнения касательных к кривой, проходящих через точку M.

Решение

 $y(2) = 5 \neq 4$, поэтому точка M не лежит на кривой. По формуле (9.2)

$$y = x_0^2 + 1 + 2x_0(x - x_0). (9.4)$$

Так как точка M лежит на касательной, то

$$4 = (x_0^2 + 1) + 2x_0(2 - x_0); \ x_0^2 - 4x_0 + 3 = 0; x_0 = 1; \ x_0 = 3$$

поэтому касательные к кривой в точках $M_0(1; 2)$ и $M_1(3; 10)$ проходят через точку M.

Тогда из (9.4)

$$y = 2 + 2(x - 1) = 2x$$
, $y = 10 + 6(x - 3) = 6x - 8$ – уравнения касательных.

y n p a ж n e n u e 9.2. Рассмотрим функции $y = \sqrt[3]{x^2}$; $y = \sin \sqrt[3]{x^2}$; $y = \sqrt[3]{x^2} \sin \sqrt[3]{x^2}$ (см. упражнение 6.6). Написать уравнение касательной и нормали к графикам этих функций в точке $M_0(0;0)$.

Рассмотрим точки $M_0(x_0, f(x_0))$ и $M_1(x_0 + \Delta x, f(x_0 + \Delta x))$ на графике функции y = f(x). Тогда по формуле (6.6)

$$df(x_0) = f'(x_0) \Delta x,$$

а по формуле (9.2)

$$y - f(x_0) = f'(x_0)(x - x_0) = f'(x_0)\Delta x - f'(x_0)\Delta x$$

приращение касательной, когда приращение независимой переменной x равно Δx , поэтому значение $\mathrm{d}f(x_0)$ равно приращению касательной, рис. 9.3.

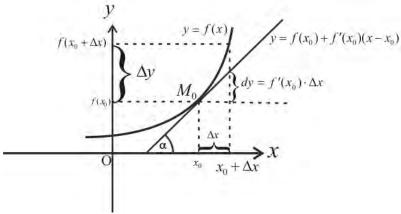


Рис. 9.3. Геометрический смысл дифференциала

Приращение Δy функции y=f(x) отличается от $\mathrm{d}x$ на $o(\Delta x)$ (см. формулу 6.4), то есть

$$\Delta y = f(x_0 + \Delta x) - f(x_0) = f'(x_0) \Delta x + o(\Delta x).$$
 (9.5)

Пример 9.3

 $y=x^2; \ x_0=1; \ \Delta x=0,1$. Рассмотрим точки $M_0(1;1)$ и $M_1(1,1;1,21)$. Найти $\mathrm{d} y(x_0)$ и Δy при переходе от M_0 к M_1 .

Решение

$$y'=2x;$$
 $dy=2xdx;$ $dy(x_0)=2dx$, если $\Delta x=0,1$, то $dy(x_0)=2dx=2\Delta x=0,2;$ $\Delta y=f(x_0+\Delta x)-f(x_0)=1,21-1=0,21.$

В приближенных вычислениях Δf заменяют на $\mathrm{d} f$ и получают формулу

$$f(x_0 + \Delta x) = f(x_0) + \Delta f \approx f(x_0) + f'(x_0) \Delta x.$$
 (9.6)

Пример 9.4

Вычислить приближенно $\sqrt[3]{30}$.

Решение

$$\sqrt[3]{30} = \sqrt[3]{27+3} = 3 \cdot \sqrt[3]{1+\frac{1}{9}}$$
.

Пусть

$$f(x) = \sqrt[3]{1+x}$$
; $x_0 = 0$; $\Delta x = \frac{1}{9}$.

Тогда

$$f'(x) = \frac{1}{3\sqrt[3]{(1+x)^2}}; f'(0) = \frac{1}{3}.$$

По формуле (9.6)

$$f\left(\frac{1}{9}\right) = f(0) + f'(0) \cdot \Delta x = 1 + \frac{1}{3} \cdot \frac{1}{9} = \frac{28}{27}.$$

Поэтому
$$\sqrt[3]{30} \approx 3 \cdot \sqrt[3]{1 + \frac{1}{9}} = 3 \cdot f\left(\frac{1}{9}\right) = \frac{28}{9}$$
.

Пусть y = f(x) дифференцируема в точке x_0 и

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
 – ее производная. (9.7)

Числитель дроби $\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ — приращение функции f(x). Сама

дробь задает приращение функции на единицу приращения независимой переменной x (скорость приращения функции). Поэтому, согласно (9.7), $f'(x_0)$ — мгновенная скорость приращения функции. Если тело движется прямолинейно и x задает время, а f(x) — путь, пройденный телом за время t, то $f'(x_0)$ — мгновенная скорость в момент времени x_0 .

Пример 9.5

Пусть $y = x^2$, $x_0 = 1$, $x_1 = 1,1$, $\Delta x = 0,1$ (см. пример 9.3). Тогда $\Delta y = f(x_0 + \Delta x) - f(x_0) = f(1,1) - f(1) = (1,1)^2 - 1^2 = 0,21 \qquad \text{путь,}$ пройденный телом на промежутке времени [1; 1,1];

 $\frac{\Delta y}{\Delta x} = \frac{0.21}{0.1} = 2.1$ — средняя скорость движения на этом промежутке;

 $y'(x_0) = 2x_0 = 2$ — мгновенная скорость в момент времени $x_0 = 1$.

Пусть точка M(x, y, z) движется в пространстве, и траектория ее движения

$$\begin{cases} x = x(t); \\ y = y(t); \\ z = z(t), \end{cases}$$
 (9.8)

где t – время,

или
$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$$
, (9.9)

где r(t) – радиус-вектор точки M.

Концы вектора (9.9) задают траекторию движения (9.8) — годограф вектор-функции $\vec{r}(t)$.

Определение 9.4. Производной векторной функции $\vec{r}(t)$ в точке t_0 называется вектор

$$\vec{r}'(t_0) = \lim_{\Delta t \to 0} \frac{\vec{r}(t_0 + \Delta t) - \vec{r}(t_0)}{\Delta t}.$$

Вектор $\vec{r}'(t_0)$ задает мгновенную скорость движения точки при $t = t_0$;

$$\vec{r}'(t) = x'(t)\vec{i} + y'(t)\vec{j} + z'(t)\vec{k};$$

 $\vec{r'}(t)$ направлен по касательной к кривой (9.8) в точке M(x(t), y(t), z(t)).

Пример 9.6

 $\begin{cases} x = \cos t; \\ y = \sin t, \end{cases} t \ge 0 - \text{траектория движения точки,}$ $\vec{r}(t) = \cos t \cdot \vec{i} + \sin t \cdot \vec{j}.$

Найдем $\vec{r}'(t)$ при t=0, $t=\frac{\pi}{4}$.

Решение

$$\vec{r}'(t) = -\sin t \cdot \vec{i} + \cos t \cdot \vec{j}$$
,

$$\vec{r}'(0) = \vec{j}; \quad \left| \vec{r}'(0) \right| = 1, \quad \vec{r}'\left(\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}}\vec{i} + \frac{1}{\sqrt{2}}\vec{j}; \quad \left| \vec{r}'\left(\frac{\pi}{4}\right) \right| = 1, \text{ рис. 9.4.}$$

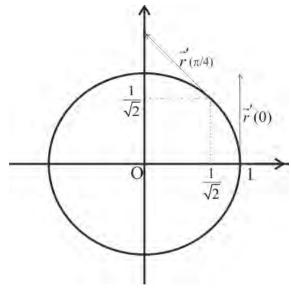


Рис. 9.4

Упражнение 9.3

Пусть винтовая линия

$$\begin{cases} x = \cos t; \\ y = \sin t, \ t \ge 0 - \text{траектория движения точки } M(x, y, z). \\ z = t; \end{cases}$$

Найти
$$\overrightarrow{r}'(t)$$
 при $t = 0$, $t = \frac{\pi}{4}$, $t = \frac{3\pi}{4}$.

Задания

Задание 9.1

Составить уравнения касательной и нормали линии, заданной уравнением, в указанной точке M.

1)
$$y = x^2 + 4x - 26$$
, $M(4, 6)$; 2) $y = 3x - x^2 + 7$, $M(5, -3)$;

3)
$$y = 2x^3 + 3x - 9$$
, $M(1, -4)$; 4) $y = x^4 - 3x^3 + 4x^2 - 5x + 1$, $M(0, 1)$;

5)
$$3x^2 + 4xy - 4x - 8y = 0$$
, $M\left(1, -\frac{1}{4}\right)$;

6)
$$x^2 + 4xy + 4y^2 + 6x - 3y + 15 = 0, M(-2, 1)$$
;

7)
$$x^2 + y^2 = 9$$
, $M(0, 3)$;

8)
$$y^2 = 8x$$
, $M(2, 4)$;

9)
$$y = tg \, 2x$$
 в начале координат;

10)
$$y = e^{1-x^2}$$
 в точках пересечения с прямой $y = 1$.

Задание 9.2

Составить уравнения касательной и нормали к линии, заданной параметрическими уравнениями, при указанном значении параметра *t*.

1)
$$x = t$$
, $y = t^2$, $t = 2$;

2)
$$x = t + 1$$
, $y = \frac{1}{t - 2}$, $t = 1$;

3)
$$x = t^3$$
, $y = t^4$, $t = 1$;

4)
$$x = 2(t - \sin t)$$
, $y = 2(1 - \cos t)$, $t = \frac{\pi}{2}$.

Задание 9.3

Найти угол, под которым пересекаются линии.

1)
$$11x^2 - 16xy - y^2 - 26x + 22y + 10 = 0$$
, $x = 1$;

2)
$$x^2 + 4xy + y^2 - 8x + 2y - 9 = 0$$
, $x - y + 1 = 0$;

3)
$$x^2 - 3xy + y^2 - 4x + 6y - 1 = 0$$
, $x + y - 2 = 0$;

4)
$$(x-5)^2 + (y-6)^2 = 25, (x+2)^2 + (y-6)^2 = 32$$
.

Задание 9.4

В какой точке касательная к линии $y = x^3 - 11x - 15$ перпендикулярна к прямой 2x + 2y - 7 = 0?

Задание 9.5

В какой точке касательная к линии $y = x^3 - 5x^2 + 6x - 3$ параллельна прямой 3x - y - 5 = 0?

Задание 9.6

В какой точке касательная к линии $y = x^2 + 4x - 5$ образует с прямой 3x - 2y + 7 = 0 угол $\phi = \frac{\pi}{4}$?

Задание 9.7

В какой точке параболы $y = x^2 - 2x + 5$ нужно провести касательную, чтобы она была перпендикулярна к биссектрисе первого координатного угла?

Задание 9.8

В уравнении параболы $y = x^2 + bx + c$ определить b и c так, чтобы она касалась прямой y = 2x - 1 в точке x = 1.

Задание 9.9

Точка движется по прямой y = 2x + 3 так, что абсцисса ее возрастает с постоянной скоростью $\upsilon = 3$. С какой скоростью изменяется ордината?

Задание 9.10

Одна сторона прямоугольника имеет постоянную величину $a=10\,$ см, а другая -b- изменяется, возрастая с постоянной скоростью 4 см/с. С какой скоростью растут диагональ и площадь прямоугольника в тот момент, когда $b=30\,$ см?

В какой точке параболы $y^2 = 18x$ ордината возрастает вдвое быстрее абсциссы?

Точка движется по параболе $y = 7 - x^2$ так, что ее абсцисса изменяется с течением времени t по закону $x = t^3$. С какой скоростью изменяется ордината?

Вычислить приближенно:

1)
$$\cos 61^{\circ}$$
; 2) $\lg 10.21 \left(\ln(10) \approx 2.303 \right)$; 3) $\sqrt[5]{33}$; 4) $\arctan 1.05$.

Сторона квадрата равна 8 см. Насколько приблизительно увеличится его площадь, если каждую сторону увеличить: 1) на 1 см; 2) 0,1 см?

Радиус R изменяется на величину ΔR . Вычислить, на сколько изменяются:

- 1) площадь круга;
- 2) объем шара,

и сравнить их с точными значениями.

Ответы

9.1. 1)
$$12x - y - 42 = 0$$
 – касательная, $x + 12y - 76 = 0$ – нормаль;

2)
$$7x + y - 32 = 0$$
 – касательная,

$$x - 7y - 26 = 0$$
 – нормаль;

3)
$$9x - y - 13 = 0$$
 – касательная,

$$x + 9y + 35 = 0$$
 – нормаль;

4)
$$5x + y - 1 = 0$$
 – касательная,

$$x - 5y + 5 = 0$$
 — нормаль;

5)
$$x - 4y - 2 = 0$$
 – касательная,

$$16x + 4y - 15 = 0$$
 – нормаль;

6)
$$2x - y + 5 = 0$$
 – касательная;

$$x + 2y = 0$$
 – нормаль;

7)
$$y = 3 - \kappa$$
асательная,

$$x = 0$$
 – нормаль;

8)
$$x - y + 2 = 0$$
 – касательная,

$$x + y - 6 = 0$$
 – нормаль;

9)
$$y - 2x = 0$$
 – касательная,

$$2y + x = 0$$
 — нормаль;

10) 1)
$$2x + y - 3 = 0$$
 – касательная,

$$x-2y+1=0$$
 – нормаль в точке $M_1(1, 1)$;

2)
$$2x - y + 3 = 0$$
 – касательная,

$$x + 2y - 1 = 0$$
 — нормаль в точке M_2 (-1, 1);

9.2. 1)
$$4x - y - 4 = 0$$
 – касательная,

$$x + 4y - 18 = 0$$
 — нормаль;

2)
$$x + y - 1 = 0$$
 – касательная,

$$x - y - 3 = 0$$
 — нормаль;

3)
$$4x - 3y - 1 = 0$$
 – касательная,

$$3x + 4y - 7 = 0$$
 – нормаль;

4)
$$x - y - \pi + 4 = 0$$
 – касательная,

$$x + y - \pi = 0$$
 — нормаль.

9.3. 1)
$$\varphi_1 = \arctan\left(\frac{2}{3}\right), \ \varphi_2 = \arctan\left(\frac{10}{11}\right);$$

2)
$$\phi_1 = \phi_2 = \arctan(1,5;3)$$
 $\phi_1 = \phi_2 = \frac{\pi}{2};4)$ $\phi_1 = \phi_2 = \arctan 7.$

9.4.
$$M(-2, -1)$$
; $N(2, -29)$.

9.5.
$$M(3, -3)$$
; $N\left(\frac{1}{3}, -\frac{41}{27}\right)$.

9.6.
$$M\left(-\frac{9}{2}, -\frac{11}{4}\right)$$
. 9.7. $M\left(\frac{1}{2}, \frac{17}{4}\right)$. 9.8. $b = c = 0$. 9.9. 6.

9.10. Диагональ растет со скоростью приблизительно 3,8 см/с, площадь – со скоростью $40 \text{ cm}^2/\text{c}$.

9.11.
$$x = \frac{9}{8}, y = \frac{9}{2}.$$

9.12.
$$-6t^5$$
.

9.13. 1) 0,485; 2)1,009; 3) 2,0125; 4)
$$\frac{\pi}{4}$$
 + 0,025 \approx 0,81.

9.15. 1)
$$\Delta S \approx dS = 2\pi R \Delta R$$
; 2) $\Delta V \approx dV = 4\pi R^2 \Delta R$.

10. ПРОИЗВОДНЫЕ ВЫСШИХ ПОРЯДКОВ

Определение 10.1. Пусть функция y = f(x) дифференцируема $\forall x \in R$ и y' = f'(x) — ее производная. Предположим, что f'(x) в свою очередь дифференцируема и (f'(x))' — ее производная. Она называется второй производной функции y = f(x) и обозначается f''(x). Таким образом:

$$f''(x) = (f'(x))'.$$

Аналогично,

$$f^{(n)}(x) = (f^{(n-1)}(x))'.$$

Другое обозначение для f''(x): $f^{(2)}(x)$; $\frac{\mathrm{d}^2 f}{\mathrm{d} x^2}$; $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$.

Пример 10.1

$$y = \ln \left| x + \sqrt{x^2 + a^2} \right|$$
. Найти y'' .

Решение

$$y' = \frac{1}{\sqrt{x^2 + a^2}}$$
 (см. упражнение 6.4).

$$y'' = \left(\frac{1}{\sqrt{x^2 + a^2}}\right)' = -\frac{x}{\sqrt{(x^2 + a^2)^3}}.$$

Пример 10.2

Найти k-ю производную функции $y = a^x$.

Решение

$$y' = a^x \ln 2; \ y'' = (a^x \ln 2)' = a^x \ln^2 2, \dots,$$

 $y^{(k-1)} = a^x \ln^{k-1} 2; \ y^{(k)} = (a^x \ln^{k-1} 2)' = a^x \ln^k 2.$
Таким образом $(a^x)^{(k)} = a^x \ln^k a.$

У n p a ж н е н и е 10.1. Проверить, что

$$(x^{\alpha})^{(k)} = \alpha \cdot (\alpha - 1) \cdot \dots \cdot (\alpha - k + 1) x^{\alpha - k};$$

$$\sin^{(k)}(x) = \sin\left(x + \frac{\pi k}{2}\right);$$
$$\cos^{(k)}(x) = \cos\left(x + \frac{\pi k}{2}\right).$$

Y n p a ж нение 10.2. $y = \ln x$; $y = \ln(1+x)$. Найти $y^{(k)}$.

Пример 10.3

Найти y'' для функции y = y(x), заданной неявно:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
.

Решение

$$y' = -\frac{b^2}{a^2} \cdot \frac{x}{y}; \ y \neq 0 \ \text{ (см. пример 8.1)}.$$

$$y'' = \left(-\frac{b^2}{a^2} \cdot \frac{x}{y}\right)' = -\frac{b^2}{a^2} \cdot \left(\frac{x}{y}\right)' = -\frac{b^2}{a^2} \cdot \frac{y - xy'}{y^2} = \left|\text{подставим } y' = -\frac{b^2}{a^2} \cdot \frac{x}{y}\right| =$$

$$= -\frac{b^2}{a^2} \cdot \frac{y + \frac{b^2}{a^2} \cdot \frac{x^2}{y}}{y^2} = -\frac{b^2}{a^2} \cdot \frac{b^2}{y} \cdot \frac{\frac{y^2}{b^2} + \frac{x^2}{a^2}}{y^2} = -\frac{b^4}{a^2} \cdot \frac{1}{y^3}.$$

y n p a ж h e h u e 10.3. Найти y'' для функции y = y(x), заданной уравнением

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

Пусть функция y = y(x) задана параметрически в виде

$$\begin{cases} x = x(t); \\ y = y(t) \text{ (см. п.7).} \end{cases}$$

Пусть x(t) и y(t) дважды дифференцируемы и $x'(t) \neq 0$. Тогда (см. п. 7.2)

$$\begin{cases} x = x(t); \\ y'_x = \frac{y'_t(t)}{x'_t(t)} - \end{cases}$$

первая производная функции y = y(x).

Рассуждая аналогично п. 7:

$$\begin{cases} x = x(t); \\ y_x'' = \frac{(y_x')_t'}{x_t'(t)} - \text{вторая производная функции.} \end{cases}$$
 (10.1)

При этом

$$(y'_x)'_t = \left(\frac{y'_t}{x'_t}\right)'_t = \frac{y''_t x'_t - y'_t x''_t}{(x'_t)^2},$$

поэтому формула (10.1) перепишется в виде

$$\begin{cases} x = x(t); \\ y_x'' = \frac{y_t'' x_t' - y_t' x_t''}{(x_t')^3}. \end{cases}$$

Пример 10.4

Найти y'' для функции y = y(x), заданной параметрически в виде

$$\begin{cases} x = a \cos t; \\ y = b \sin t, \quad 0 < t < \pi. \end{cases}$$

Решение

По формуле (7.3)

$$\begin{cases} x = a\cos t; \\ y'_x = -\frac{b}{a}\operatorname{ctg} t. \end{cases}$$

Далее, по формуле (10.1)

$$\begin{cases} x = a\cos t; \\ \left(-\frac{b}{a}\operatorname{ctg} t\right)' = \begin{cases} x = a\cos t; \\ y_x'' = -\frac{b}{a^2} \cdot \frac{1}{\sin^3 t} \end{cases}$$

$$y \, n \, p \, a \,$$
ж $e \, h \, u \, e \, 10.5$. Найти y_x'' для функции $\begin{cases} x = a \, \text{ch} \, t; \\ y = b \, \text{sh} \, t, \ t > 0. \end{cases}$

Теорема 10.1. Пусть Функции u = u(x) и v = v(x) n раз дифференцируемы, тогда

$$(u+v)^{(n)} = u^{(n)} + v^{(n)}. (10.2)$$

$$(u\cdot\upsilon)^{(n)}=u^{(n)}\upsilon+C_n^1u^{(n-1)}\upsilon'+C_n^2u^{(n-2)}\upsilon''+...+C_n^{n-1}u'\upsilon^{(n-1)}+u\upsilon^{(n)}-\quad (10.3)$$
 формула Лейбница, где $C_n^k=\frac{n!}{k!(n-k)!};$ в частности:

$$(u\upsilon)'' = u''\upsilon + 2u'\upsilon' + u\upsilon'',$$

$$(uv)''' = u'''v + 3u''v' + 3u'v'' + uv'''$$
.

Пример 10.5

$$y = 2^x(x^2 + x)$$
. Найти $y^{(6)}$.

Решение

По формуле (10.3):

$$(2^{x}(x^{2}+x))^{(6)} = (2^{x})^{(6)}(x^{2}+x) + 6(2^{x})^{(5)}(x^{2}+x)' + 15(2^{x})^{(4)}(x^{2}+x)'',$$

остальные слагаемые равны 0.

Далее

$$(2^x)^{(4)}=2^x\ln^4 2; \quad (2^x)^{(5)}=2^x\ln^5 2; \quad (2^x)^{(6)}=2^x\ln^6 2 \; ,$$
 поэтому

$$(2^{x}(x^{2}+x))^{(6)} = 2^{x} \ln^{4} 2(\ln^{2} 2(x^{2}+x) + 6\ln 2(2x+1) + 30).$$

Определение 10.2. Пусть функция y = f(x) дифференцируема и dy = f'(x)dx — ее дифференциал. Зафиксируем dx и будем рассматривать dy как функцию одной переменной x. Дифференциал от дифференциала dy функции y = f(x) будем называть вторым дифференциалом этой функции и обозначать d^2y . Таким образом:

$$d^2y = d(dy)$$
. (10.4)

Аналогично

$$d^n y = d(d^{n-1}y)$$
. (10.5)

Преобразуем формулы (10.4) и (10.5):

$$d^2y = d(dy) = d(f'(x)dx) = d(f'(x))dx = f''(x)dx^2$$
.

То есть

$$d^2y = f''(x)dx^2,$$

$$d^n y = f^{(n)}(x) dx^n.$$

При вычислении d(f'(x)) приращение независимой переменной берем равным первоначальному приращению dx.

Пример 10.6

 $y = \sin(x^2)$. Найти dy, d²y.

Решение

$$y' = \cos(x^{2}) \cdot 2x, \quad y'' = -\sin(x^{2}) 4x^{2} + 2\cos(x^{2});$$

$$dy = \cos(x^{2}) 2x dx;$$

$$d^{2}y = (-\sin(x^{2}) \cdot 4x^{2} + 2\cos(x^{2})) dx^{2}.$$

Свойство инвариантности верное для первого дифференциала не выполняется для второго.

Например, для функции $y = \sin(x^2)$ из примера 10.6 имеем $u = x^2$;

$$y = \sin u$$
; $du = 2xdx$; $d^2u = 2dx^2$.

Тогда для первого дифференциала

$$dy = \cos(x^2) 2x dx = \cos u du,$$

но

$$d^{2}y = -\sin(x^{2})4x^{2}dx^{2} + 2\cos(x^{2})dx^{2} =$$

$$-\sin u du^{2} + \cos u(2dx^{2}) = -\sin u du^{2} + \cos u d^{2}u.$$

Таким образом

$$d^2u = -\sin u du^2 + \cos u d^2u \neq -\sin u du^2 = d^2(\sin u).$$

Если u = u(x), то для функции y = y(u(x)) верна формула

$$d^{2}y = y''_{u}(u)du^{2} + y'_{u}(u)d^{2}u.$$

Если функции u = u(x) и v = v(x) n раз дифференцируемы, то для $d^n(u+v)$ и $d^n(uv)$ верны формулы, аналогичные формулам (10.2), (10.3). В частности:

$$d(u+v) = du + dv,$$

$$d^{2}(u+v) = d^{2}u + d^{2}v,$$

$$d(uv) = udv + vdu,$$

$$d^{2}(uv) = ud^{2}v + 2dudv + vd^{2}u.$$

Задания

Задание 10.1

Найти y' и y'' для функции y = y(x), заданной неявно:

1)
$$y^2 = 8x$$
; 2) $y = x + \operatorname{arctg} y$; 3) $y^2 = 5x - 4$; 4) $y^2 - x = \cos y$;

5)
$$3x + \sin y = 5y$$
; 6) $tg y + 3x = 5y$; 7) $xy = y^3$; 8) $y = e^y + 4x$;

9)
$$\ln y - \frac{y}{x} = 7$$
; 10) $4\sin^2(x+y) = x$.

Задание 10.2

Найти у' и у" параметрически заданной функции:

1)
$$\begin{cases} x = 2t + 3, \\ y = 3t^{3}; \end{cases}$$
2)
$$\begin{cases} x = 2\cos^{2}t, \\ y = 3\sin^{2}t; \end{cases}$$
3)
$$\begin{cases} x = \frac{1}{t+2}, \\ y = \frac{t^{2}}{(t+2)^{2}}; \end{cases}$$
4)
$$\begin{cases} x = \sqrt{t^{2} - 1}, \\ y = t^{2} + 1; \end{cases}$$
5)
$$\begin{cases} x = e^{t} \cos t, \\ y = e^{t} \sin t; \end{cases}$$
6)
$$\begin{cases} x = t^{4}, \\ y = \ln t; \end{cases}$$
7)
$$\begin{cases} x = \operatorname{arctg}t, \\ y = \ln(1 + t^{2}); \end{cases}$$
8)
$$\begin{cases} x = \arcsin t, \\ y = \sqrt{1 - t^{2}}; \end{cases}$$
9)
$$\begin{cases} x = e^{3t}, \\ y = e^{-3t}; \end{cases}$$
10)
$$\begin{cases} x = \ln t, \\ y = t^{2} \ln t \end{cases}$$

Задание 10.3

Для заданной функции y и аргумента x_0 вычислить $y'''(x_0)$.

1)
$$y = x\cos 2x$$
, $x_0 = \frac{\pi}{12}$; 2) $y = \ln(x^2 - 4)$, $x_0 = 3$;

3)
$$y = 2^{x^2}$$
, $x_0 = 1$; 4) $y = x \arctan x$, $x_0 = 2$;

5)
$$y = (4x - 5)^4$$
, $x_0 = 1$; 6) $y = \sin(x^3 + \pi)$, $x_0 = \sqrt[3]{\pi}$;

7)
$$y = x^4 \ln x$$
, $x_0 = 1$; 8) $y = e^x \cos x$, $x_0 = 0$.

Задание 10.4

Найти d^2y :

1)
$$y = x^3 \ln 5x$$
; 2) $y = (x^2 + 1) \arctan x$; 3) $y = e^{5x} \cos 3x$;

4)
$$y = \sqrt{\arcsin 2x} + (\arctan x)^2$$
; 5) $y = \ln(x + \sqrt{1 + x^2})$; 6) $y = 4^{x^3}$;

7)
$$y = e^{-\sin^4 5x}$$
; 8) $y = \text{ctg}(x^3 + x^2)$; 9) $y = \text{arctg ln } x + \text{ln arctg } x$;

10)
$$y = \operatorname{ctg} x + \operatorname{cosec} x$$
.

Задание 10.5

Доказать, что заданная функция y = f(x) удовлетворяет заданному уравнению:

1)
$$y = e^x \cos x$$
, $y'' - 2y' + 2y = 0$;

2)
$$y = \cos e^x + \sin e^x$$
, $y'' - y' + ye^{2x} = 0$;

3)
$$y = e^x \sin x$$
, $y''' - 2y'' + 2y' = 0$;

4)
$$y = \frac{1}{1 + x + \ln x}$$
, $xy' + xy^2 + y^2 = 0$;

5)
$$y = \arcsin^2 x + 3\arcsin x + 5$$
, $y''(1-x^2) - xy' = 2$;

$$6) \begin{cases} x = 3t^2, \\ y = 3t - t^3; \end{cases}$$

$$36y''(y-\sqrt{3x})=x+3;$$

7)
$$y = e^x + 2e^{2x}$$
, $y''' - 6y'' + 11y' - 6y = 0$;

8)
$$y = \sinh x + \cosh x$$
, $y'' - y = 0$;

9)
$$y = \cos^4\left(1 - \frac{x}{4}\right)$$
, $3y'^2 = 4yy'' + y^2$;

10)
$$1+x=\frac{1}{2}\ln(2y-3)$$
, $y''(2y+3)-2(y')^2=0$.

Ответы

10.1. 1)
$$y' = \frac{4}{y}$$
, $y'' = -\frac{16}{y^3}$; 2) $y' = \frac{1+y^2}{y^2}$, $y'' = -\frac{2+2y^2}{y^5}$;

3)
$$y' = \frac{5}{2y}$$
, $y'' = -\frac{25}{4y^3}$; 4) $y' = \frac{1}{2y + \sin y}$, $y'' = -\frac{2 + \cos y}{(2y + \sin y)^3}$;

5)
$$y' = \frac{3}{5 - \cos y}$$
, $y'' = -\frac{9\sin y}{(5 - \cos y)^3}$;

6)
$$y' = \frac{3\cos^2 y}{5\cos^2 y - 1}$$
, $y'' = \frac{9\sin 2y \cdot \cos^2 y}{(5\cos^2 y - 1)^3}$;

7)
$$y' = \frac{y}{3y^2 - x}$$
, $y'' = -\frac{2xy}{(3y^2 - x)^3}$; 8) $y' = \frac{4}{1 - e^y}$, $y'' = \frac{16e^y}{(1 - e^y)^3}$;

9)
$$y' = \frac{y^2}{xy - x^2}$$
, $y'' = \frac{x^2y^3 - 2x^3y^2}{(xy - x^2)^3}$;

10)
$$y' = \frac{1 - 4\sin(2x + 2y)}{4\sin(2x + 2y)}, y'' = -\frac{\cos(2x + 2y)}{8\sin^3(2x + 2y)}.$$

10.2. 1)
$$y'_x = \frac{9}{2}t^2$$
, $y''_{xx} = \frac{9}{2}t$; 2) $y'_x = -\frac{3}{2}$, $y''_{xx} = 0$;

3)
$$y'_x = -\frac{4t}{t+2}$$
, $y''_{xx} = 8$; 4) $y'_x = 2\sqrt{t^2 - 1}$, $y''_{xx} = 2$;

5)
$$y'_x = \frac{\sin t + \cos t}{\cos t - \sin t}$$
, $y''_{xx} = \frac{2}{e^t (\cos t - \sin t)^3}$; 6) $y'_x = \frac{1}{4t^4}$, $y''_{xx} = -\frac{1}{4t^8}$;

7)
$$y'_x = 2t$$
, $y''_{xx} = 2 + 2t^2$; 8) $y'_x = -t$, $y''_{xx} = -\sqrt{1 - t^2}$;

9)
$$y'_{x} = -e^{-6t}$$
, $y''_{xx} = 2e^{-9t}$; 10) $y'_{x} = t^{2}(2\ln t + 1)$, $y''_{xx} = 4t^{2}(\ln t + 1)$.

10.3. 1)
$$\frac{\pi - 18\sqrt{3}}{3}$$
; 2) $\frac{252}{125}$; 3) $6\ln^2 4 + 2\ln^3 4$; 4) $-\frac{16}{125}$; 5) -1536 ;

6)
$$6-27\pi^2$$
; 7) 26; 8) -2.

10.4. 1)
$$d^2y = (6x \ln 5x + 25x) dx^2$$
;

2)
$$d^2y = \left(2 \arctan x + \frac{2x}{1+x^2}\right) dx^2$$
; 3) $d^2y = e^{5x} (16 \cos 3x - 30 \sin 3x) dx^2$;

4)
$$d^2y = \left(\frac{4x \arcsin 2x - \sqrt{1 - 4x^2}}{\sqrt{\arcsin^3 2x \cdot (1 - 4x^2)^3}} + \frac{2 - 4x \arctan x}{(1 + x^2)^2}\right) dx^2;$$

5)
$$d^2y = -\frac{xdx^2}{\sqrt{(1+x^2)^3}}$$
; 6) $d^2y = 4^{x^3} \ln 4(9x^4 \ln 4 + 6x) dx^2$;

7)
$$d^2y = 100e^{-\sin^4 5x} \sin^2 5x (4\sin^4 5x \cdot \cos^2 5x - 4\cos^2 5x + 1)dx^2$$
;

8)
$$d^2y = \frac{2\cos(x^3 + x^2)(3x^2 + 2x)^2 - \sin(x^3 + x^2)(6x + 2)}{\sin^3(x^3 + x^2)}dx^2$$
;

9)
$$d^2y = -\left(\frac{(\ln x + 1)^2}{x^2(1 + \ln^2 x)^2} + \frac{1 + 2x \arctan x}{\arctan^2 x(1 + x^2)^2}\right) dx^2$$
; 10) $d^2y = \frac{(1 + \cos x)^2}{\sin^3 x} dx^2$.

11. СВОЙСТВА НЕПРЕРЫВНЫХ ФУНКЦИЙ

Определение 11.1. Пусть $X \subset R$ — подмножество во множестве действительных чисел R. X называется ограниченным сверху (снизу), если \exists такое число M(m), что выполняется неравенство $x \leq M$ ($x \geq m$) $\forall x \in X$. При этом M(m) называется верхней (нижней) гранью множества X. Наименьшая из всех возможных верхних граней множества X называется точной верхней гранью множества X и обозначается X (латинское supremum (супремум) — наивысшее). Наибольшая из всех возможных нижних граней множества X называется точной нижней гранью множества X и обозначается X и обозначается inf X (латинское infimum (инфимум) — наинизшее).

Пример 11.1

$$X_1 = (a, b)$$
, inf $X_1 = a$, sup $X_1 = b$, $X_2 = [a, b)$, inf $X_2 = a$, sup $X_2 = b$, рис. 11.1.

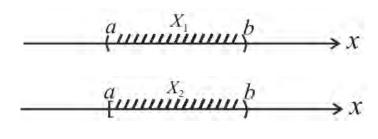


Рис. 11.1

Для множества X_1

inf
$$X_1 \notin X_1$$
, sup $X_1 \notin X_1$.

Для множества X_2

inf
$$X_2 \in X_2$$
, sup $X_2 \notin X_2$.

Аксиома Вейерштрасса. Всякое непустое ограниченное множество $X \subset R$ имеет конечные точные верхние и нижние грани $\sup X$ и $\inf X$.

Для функции $y=f(x),\ x\in X\subset R,\ \sup_{x\in X}f(x)$ и $\inf_{x\in X}f(x)$ определяются, как $\sup f(X)$ и $\inf f(X)$ — множества значений f(X) функции y=f(x) при $x\in X$.

Пример 11.2

$$f(x) = 1 - x^2, x \in (-1; 1); \inf_{x \in (-1; 1)} f(x) = 0; \sup_{x \in (-1; 1)} f(x) = 1.$$

При этом $\inf_{x \in (-1; 1)} f(x) \notin f(X)$; $\sup_{x \in (-1; 1)} f(x) \in f(X)$, рис 11.2.

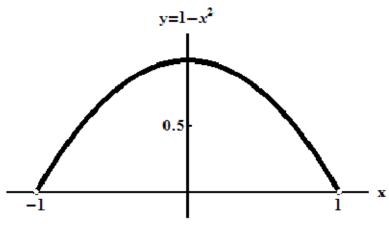


Рис.11.2

Теорема 11.1. (теорема Вейерштрасса). Если функция y = f(x) непрерывна на отрезке [a,b], то она достигает на этом отрезке своих точных верхней и нижней граней, то есть $\exists c_1, c_2 \in [a,b]$ такие, что

$$f(c_1) = \sup_{x \in [a; b]} f(x), f(c_2) = \inf_{x \in [a; b]} f(x)$$
.

При этом

$$f(c_1) = \max_{x \in [a; b]} f(x), f(c_2) = \min_{x \in [a; b]} f(x)$$
.

Если в условии теоремы 10.1 рассматривать не отрезок, а интервал (a, b) или полуинтервал, то она не выполняется.

Например, для y = f(x) из примера 11.2

$$f(0) = 1 = \max_{x \in (-1; 1)} f(x) = \sup_{x \in (-1; 1)} f(x), 0 = \inf_{x \in (-1; 1)} f(x) \notin f(X) \Rightarrow f(x)$$

не имеет минимума на множестве (-1, 1).

V n p a ж e e e u e. Найти $\inf_{x \in X} f(x)$ и $\sup_{x \in X} f(x)$.

a)
$$y = \operatorname{arctg} |x|, x \in R$$
;

6)
$$y = \frac{x^2}{1+x^4}, x \in (-1;1);$$

B) $y = 3\sin x + 4\cos x, x \in R$;

$$\Gamma) y = \sin x - \cos x, x \in [0; \pi];$$

д)
$$y = \cos^2 x + \cos x - 2$$
, $x \in (0; \pi)$;

e)
$$y = \cos^2 x + 4\cos x - 5, x \in (0; \pi)$$
.

Найти $\min_{x \in X} f(x)$; $\max_{x \in X} f(x)$ на этих множествах.

Теорема 11.2. (теорема Больцано–Коши). Если функция y = f(x) непрерывна на отрезке [a,b] и принимает на его концах значения разных знаков, то $\exists c \in (a,b)$, такая, что f(c) = 0.

Пример 11.3

Проверить, что уравнение $\cos x = x$ имеет корень на интервале $\left(0; \frac{\pi}{2}\right)$, рис. 11.3.

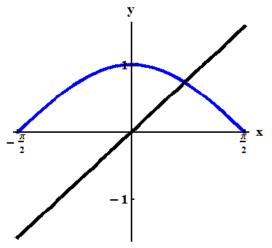


Рис. 11.3. Графики функций $y = \cos x, \ y = x, \ x \in \left(0; \frac{\pi}{2}\right)$

Решение

Функция $y = \cos x - x$ непрерывна $\forall x \in R$.

$$y(0) = 1; \quad y\left(\frac{\pi}{2}\right) = -\frac{\pi}{2} \Longrightarrow$$

по теореме 2 $\exists c \in \left(0; \frac{\pi}{2}\right)$, такая что f(c) = 0.

Задания

Задание 11.1

Доказать, что уравнение имеет по меньшей мере один действительный корень в указанном промежутке.

1)
$$x^4 + 1,025x - 0,97 = 0, [-2, -1];$$

2)
$$x^4 - 3x^2 + 2x - 1 = 0$$
, [1, 2];

3)
$$8^x - 3 \cdot 2^x - 16 = 0$$
, $[0, 2]$;

4)
$$\sin x - x + 1 = 0$$
, $[0, \pi]$;

5)
$$x^3 + 4x - 6 = 0$$
, [1, 2];

6)
$$x^3 - 3x + 1 = 0$$
, [1, 2].

Задание 11.2

Доказать ограниченность функции на заданном промежутке.

1)
$$y = \operatorname{arcctg} \frac{x^2 + 1}{2x} + 2^{\sin x} - x^2, [1, 5];$$

2)
$$y = 5^{x^2} \arctan \frac{x}{x+1} + (x^2 - x + 2) \sin \sqrt{3 + x^2}$$
, [0, 100];

3)
$$y = \frac{1+x}{1+x^2}$$
, $[0, +\infty)$;

4)
$$y = x \sin \frac{1}{x}, (-\infty, +\infty);$$

5)
$$y = \operatorname{arctg} 2^x$$
, $(-\infty, +\infty)$;

6)
$$y = xe^{-x}$$
, $(0, +\infty)$.

Задание 11.3

Ограничены ли следующие функции.

1)
$$y = x^2$$
 на $[-5, 10]$; 2) $y = x^3$ на $(-\infty, +\infty)$;

3)
$$y = x\cos\frac{1}{x}$$
 на $(-\infty, +\infty)$; 4) $y = \begin{cases} \frac{1}{2^{x-1}} & \text{при } x \neq 1 \text{ на } (0, 2); \\ 0 & \text{при } x = 1; \end{cases}$

5)
$$y = 2^{\frac{1}{x-1}}$$
 Ha $(0, 1)$?

Задание 11.4

Найти точные грани функции:

1)
$$f(x) = \frac{2x}{1+x^2}$$
 Ha $(0, +\infty)$;

2)
$$f(x) = x^2$$
 Ha $[-5, 10]$;

3)
$$f(x) = \operatorname{arctg} 2^x \operatorname{Ha} (-\infty, +\infty)$$
;

4)
$$f(x) = \sin x + \cos x$$
 Ha $[0, \pi]$;

5)
$$f(x) = 2^{\frac{1}{x-1}}$$
 Ha $(0,1)$;

6)
$$f(x) = \begin{cases} -x^2 + 1 & \text{при } -1 \le x \le 0, \\ -x^2 & \text{при } 0 < x \le 1. \end{cases}$$

Ответы

11.4. 1)
$$\inf_{[0, +\infty)} f(x) = f(0) = 0$$
, $\sup_{[0, +\infty)} f(x) = f(1) = 1$;

2)
$$\inf_{[-5, 10]} f(x) = f(0) = 0$$
, $\sup_{[-5, 10]} f(x) = f(10) = 100$;

3)
$$\inf_{(-\infty, +\infty)} f(x) = 0$$
, $\sup_{(-\infty, +\infty)} f(x) = \frac{\pi}{2}$;

4)
$$\inf_{[0, \pi]} f(x) = f(\pi) = -1, \sup_{[0, \pi]} f(x) = f\left(\frac{\pi}{4}\right) = \sqrt{2};$$

5)
$$\inf_{(0,1)} f(x) = 0$$
, $\sup_{(0,1)} f(x) = \frac{1}{2}$;

6)
$$\inf_{[-1, 1]} f(x) = f(1) = -1$$
, $\sup_{[-1, 1]} f(x) = f(0) = 1$.

12. СВОЙСТВА ДИФФЕРЕНЦИРУЕМЫХ ФУНКЦИЙ

Определение 12.1. Функция y = f(x) называется возрастающей в точке x_0 , если \exists окрестность $O_{\delta}(x_0)$ этой точки такая, что $\forall x \in O_{\delta}(x_0)$:

$$x < x_0 \Rightarrow f(x) < f(x_0)$$
;

$$x_0 < x \Rightarrow f(x_0) < f(x)$$
.

Аналогично определяется убывающая в точке x_0 функция.

Точка x_0 называется точкой локального максимума (минимума) функции y = f(x), если \exists окрестность $O_{\delta}(x_0)$ этой точки такая, что $\forall x \in O_{\delta}(x_0)$, $x \neq x_0$:

$$f(x) < f(x_0) (f(x) > f(x_0)).$$
 (12.1)

Точки локального максимума и минимума называются точками локального экстремума. Если знаки неравенств в соотношениях (12.1) нестрогие, то говорят о нестрогом локальном максимуме (минимуме).

Теорема 12.1. (теорема Ферма). Пусть функция y = f(x) определена в некоторой окрестности $O_{\delta}(x_0)$ точки x_0 , дифференцируема в этой точке и имеет в ней локальный экстремум. Тогда

$$f'(x_0) = 0$$
.

Доказательство

Докажем теорему, например, для случая, когда x_0 – локальный максимум:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
, пусть $x > x_0$, тогда (см. определение 12.1)

$$\frac{f(x) - f(x_0)}{x - x_0} \le 0 \Rightarrow f'(x_0) = \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} \le 0.$$
 (12.2)

Пусть $x < x_0$, тогда

$$\frac{f(x) - f(x_0)}{x - x_0} \ge 0 \Rightarrow f'(x_0) = \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0.$$
 (12.3)

Из (12.2) и (12.3) следует, что $f'(x_0) = 0$, что и требовалось доказать.

Равенство $f'(x_0) = 0$ в теореме 12.1 означает, что касательная к графику функции y = f(x) в точке $(x_0, f(x_0))$ горизонтальна.

Теорема 12.2. Пусть функция y = f(x) дифференцируема в точке x_0 и $f'(x_0) > 0$ ($f'(x_0) < 0$). Тогда f(x) возрастает (убывает) в точке x_0 .

Доказательство

Докажем для случая $f'(x_0) > 0$. По формуле (6.4)

$$\Delta y = f(x_0 + \Delta x) - f(x_0) = f'(x_0) \Delta x + o(\Delta x), \Rightarrow$$

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0) + \frac{o(\Delta x)}{\Delta x} \Rightarrow$$

 \exists окрестность $O_{\delta}(x_0)$, такая что

$$\forall x = x_0 + \Delta x \in O_{\delta}(x_0) : \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} > 0.$$

Если $\Delta x < 0 \Rightarrow f(x_0 + \Delta x) - f(x_0) < 0$, а для $\Delta x > 0 \Rightarrow f(x_0 + \Delta x) - f(x_0) > 0$, следовательно условия возрастания функции в точке (см. определение 12.1) выполнены.

Теорема 12.3 (теорема Ролля). Пусть функция y = f(x):

- 1) непрерывна на отрезке [a, b];
- 2) дифференцируема на интервале (a, b);
- 3) f(a) = f(b).

Тогда $\exists c \in (a, b)$ такая, что f'(c) = 0.

Доказательство

По теореме 11.1 $\exists c_1, c_2 \in [a, b]$ такие, что

$$M = f(c_1) = \max_{x \in [a, b]} (f(x)), \ m = f(c_2) = \min_{x \in [a, b]} (f(x)) \ .$$

Если M = m, то f(x) — постоянная функция $\forall x \in [a, b]$, и поэтому $f'(x) = 0 \ \forall x \in [a, b]$.

Если $M \neq m$, то либо тах, либо тах, либо тах, пибо та

Из теоремы Ролля следует, что между двумя последовательными корнями дифференцируемой функции имеется хотя бы один корень ее производной.

Теорема 12.4 (теорема Лагранжа).

Пусть функция y = f(x):

- 1) непрерывна на отрезке [a, b];
- 2) дифференцируема на интервале (a, b).

Тогда $\exists c \in (a, b)$ такая, что

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$
 (12.4)

Доказательство

Рассмотрим функцию $y(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$, y(x) — непрерывна на отрезке $\begin{bmatrix} a,b \end{bmatrix}$ и дифференцируема на интервале (a,b); y(a) = f(a); y(b) = f(a). Поэтому y(x) удовлетворяет условиям теоремы 12.3, то есть $\exists \ c \in (a,b)$ такая, что y'(c) = 0; $y'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0$, что и требовалось доказать.

Угловой коэффициент прямой L, проходящей через точки (a, f(a)), (b, f(b)), равен $\frac{f(b) - f(a)}{b - a}$. Поэтому формула (12.4) означает, что $\exists \ c \in (a, b)$ такая, что касательная к графику функции y = f(x) в точке (c, f(c)) параллельна прямой L, рис. 12.1.

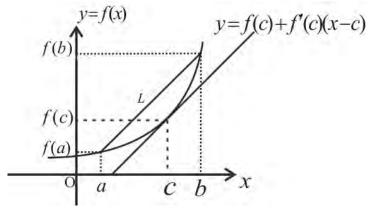


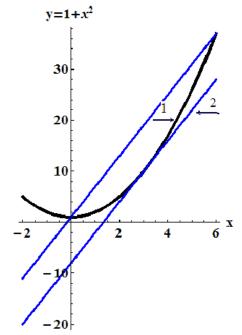
Рис. 12.1

Если x задает время и y = y(x) — путь, пройденный телом при движении по прямой за время x, то $\frac{f(b)-f(a)}{b-a}$ — средняя скорость движения тела на промежутке времени $\begin{bmatrix} a,b \end{bmatrix}$ и согласно (12.4) $\exists \ c \in (a,b)$ такая, что мгновенная скорость f'(c) тела в момент времени c равна средней скорости.

Пример

Дана кривая $y = x^2 + 1$ и точки A(0; 1) и B(6; 37) на кривой. На интервале (0; 6) найти точку c, удовлетворяющую условию (12.4). Написать уравнение касательной в точке (c, f(c)). Сделать чертеж.

Решение



Подставив точки A и B в формулу (12.4), получим

$$f'(c) = \frac{f(b) - f(a)}{b - a} = \frac{37 - 1}{6} = 6;$$

$$f'(x) = 2x \Rightarrow f'(c) = 2c = 6, c = 3;$$

$$y(3) = 10.$$

Уравнение касательной к кривой $y = x^2 + 1$ y = 6x - 8 (см. пример 9.9), рис. 12.2.

Рис.12.2. Графики: 1 - функции $y = x^2 + 1$;

2 – касательной y = 6x - 8

Теорема 12.5. (терема Коши). Пусть функции y = f(x) и y = g(x):

- 1) непрерывны на отрезке [a, b];
- 2) дифференцируемы на интервале (a, b), причем $g'(x) \neq 0$, $\forall x \in (a, b)$ и $g(a) \neq g(b)$. Тогда $\exists c \in (a, b)$ такая, что

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$
 (12.5)

Доказательство

Рассмотрим функцию

$$y(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)} (g(x) - g(a)).$$

y(x) удовлетворяет условиям теоремы 12.3, и далее доказательство аналогично доказательству теоремы 12.4.

Y n p a ж h e h u e 12.2. Проверить справедливость формулы (12.5) и выполнение условий теоремы Коши для функций $f(x) = \cos x$,

$$g(x) = x^3, x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right].$$

Задания

Задание 12.1

Доказать, что на указанных отрезках к данным функциям не применима теорема Ролля.

1)
$$y = 1 - |x|, x \in [-1, 1];$$

2)
$$y = |\sin x| + x, x \in [-1, 1].$$

Задание 12.2

Применив к функциям на указанных отрезках теорему Лагранжа, определить значение c.

1)
$$y = \ln x, x \in [1, e];$$

2)
$$y = x - x^2, x \in [-2, 1];$$

3)
$$y = \begin{cases} 0.5(3-x^2) & \text{при } 0 \le x \le 1 \\ \frac{1}{x} & \text{при } 1 < x < +\infty \end{cases}$$
;

на отрезке [0, 2].

Ответы

12.2. 1)
$$c = e - 1$$
; 2) $c = -1$; 3) $c = \frac{1}{2}$, $c = \sqrt{2}$.

13. ПРАВИЛО ЛОПИТАЛЯ

Теорема 13.1 (правило Лопиталя). Пусть функции y = f(x) и y = g(x):

1) дифференцируемы в некоторой окрестности $O_{\delta}(x_0)$ точки x_0 ;

2)
$$g(x) \neq 0$$
, $g'(x) \neq 0$, $\forall x \in O_{\delta}(x_0)$;

3)
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$$
 (или ∞);

$$4) \exists \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

Тогда

в точке x_0 :

$$\exists \lim_{x \to x_0} \frac{f(x)}{g(x)} \, \mathsf{u} \, \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}. \tag{13.1}$$

Доказательство

Рассмотрим случай $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$. Доопределим f(x) и g(x)

$$f(x_0) = g(x_0) = 0.$$

Тогда они непрерывны $\forall x \in O_\delta(x_0)$. Пусть $x \in O_\delta(x_0)$, $x > x_0$, тогда по теореме Коши (теорема 12.5)

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(c)}{g'(c)},$$

где $c \in (x_0, x) \Rightarrow$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{c \to x_0} \frac{f'(c)}{g'(c)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)},$$
 что и требовалось доказать.

- 1. Если в п. 4 теоремы 13.1 $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \infty$, то $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ также равен ∞ .
- 2. Аналогичная теорема верна и для односторонних пределов.

Теорема 13.2. Пусть M > 0 и функции y = f(x) и y = g(x):

- 1) дифференцируемы при |x| > M;
- 2) $g(x) \neq 0$, $g'(x) \neq 0$ при |x| > M;
- 3) $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = 0$ (или ∞);
- $4) \exists \lim_{x \to \infty} \frac{f'(x)}{g'(x)}.$

Тогда
$$\exists \lim_{x \to \infty} \frac{f(x)}{g(x)}$$
 и $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$.

Доказательство

Пусть $x = \frac{1}{t}$. Рассмотрим функции $y = f\left(\frac{1}{t}\right)$ и $y = g\left(\frac{1}{t}\right)$. Тогда условия 1) –3) теоремы 13.1 выполнены в окрестности $O_{\frac{1}{M}}(0)$ точки $t_0 = 0$.

Проверим условие 4):

$$\lim_{t \to 0} \frac{\left(f\left(\frac{1}{t}\right)\right)'}{\left(g\left(\frac{1}{t}\right)\right)'} = \lim_{t \to 0} \frac{f_x'\left(\frac{1}{t}\right) \cdot \left(-\frac{1}{t^2}\right)}{g_x'\left(\frac{1}{t}\right) \cdot \left(-\frac{1}{t^2}\right)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} - \frac{1}{t^2}$$

предел существует, поэтому по теореме 13.1

$$\exists \lim_{t \to 0} \frac{f\left(\frac{1}{t}\right)}{g\left(\frac{1}{t}\right)} \text{ if } \lim_{t \to 0} \frac{f\left(\frac{1}{t}\right)}{g\left(\frac{1}{t}\right)} = \lim_{t \to 0} \frac{\left(f\left(\frac{1}{t}\right)\right)'}{\left(g\left(\frac{1}{t}\right)\right)'} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}.$$

Тогда

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{t \to 0} \frac{f\left(\frac{1}{t}\right)}{g\left(\frac{1}{t}\right)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)},$$

что и требовалось доказать.

По правилу Лопиталя раскрывают неопределенности типа $\left(\frac{0}{0}\right)$ и $\left(\frac{\infty}{\infty}\right)$. Неопределенности $(\infty-\infty)$ или $(0\cdot\infty)$ необходимо эквивалентными преобразованиями привести к виду $\left(\frac{0}{0}\right)$ или $\left(\frac{\infty}{\infty}\right)$. Неопределенности 0^0 , 1^∞ , ∞^0 раскрывают путем предварительного логарифмирования.

Пример 13.1

 $\lim_{x\to +\infty} \frac{\ln x}{x^{\alpha}}$ ($\alpha > 0$). Пусть M > 0. Функции $y = \ln x$ и $y = x^2$:

- 1) непрерывны и имеют производные при x > M;
- 2) $y = x^{\alpha} \neq 0$, $y' = \alpha x^{\alpha 1} \neq 0$ при x > M;
- 3) $\lim_{x \to +\infty} \ln x = \infty$, $\lim_{x \to +\infty} x^{\alpha} = \infty$;
- 4) $\lim_{x \to +\infty} \frac{(\ln x)'}{(x^{\alpha})'} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{\alpha \cdot x^{\alpha 1}} = \lim_{x \to +\infty} \frac{1}{x^{\alpha}} = 0,$

поэтому по теореме 13.2

$$\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}} = \lim_{x \to +\infty} \frac{(\ln x)'}{(x^{\alpha})'} = 0.$$

y n p a жe n e n u e 13.1. Найти $\lim_{x\to +\infty}\frac{x^{\alpha}}{a^{x}}$ $(\alpha>0,\ a>1)$.

Пример 13.2

Найти $\lim_{x\to 1+0} \ln x \cdot \ln(x-1)$.

Решение

 $\lim \ln x \cdot \ln(x-1) = (0 \cdot \infty) =$

$$= \lim_{x \to 1+0} \frac{\ln(x-1)}{\left(\frac{1}{\ln x}\right)} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to 1+0} \frac{(\ln(x-1))'}{\left(\frac{1}{\ln x}\right)'} =$$

$$= \lim_{x \to 1+0} \frac{\frac{1}{x-1}}{-\frac{1}{\ln^2 x} \cdot \frac{1}{x}} = \lim_{x \to 1+0} -\frac{x \cdot \ln^2 x}{x-1} = -\lim_{x \to 1+0} x \cdot \lim_{x \to 1+0} \frac{\ln^2 x}{x-1} =$$

$$= -\lim_{x \to 1+0} \frac{\ln^2 x}{x-1} = \left(\frac{0}{0}\right) = -\lim_{x \to 1+0} \frac{(\ln^2 x)'}{(x-1)'} = -\lim_{x \to 1+0} \frac{2\ln x \cdot \frac{1}{x}}{1} = 0.$$

Пример 13.3

Найти $\lim_{x\to+0} x^x$.

Решение

Имеем неопределенность вида 0° .

Преобразуем функцию $y = x^x = e^{\ln(x^x)} = e^{x \cdot \ln x}$ Найдем

$$\lim_{x \to +0} x \cdot \ln x = (0 \cdot \infty) = \lim_{x \to +0} \frac{\ln x}{\frac{1}{x}} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to +0} \frac{(\ln x)'}{\left(\frac{1}{x}\right)'} =$$

$$= \lim_{x \to +0} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to +0} (-x) = 0.$$

Поэтому

$$\lim_{x \to +0} x^{x} = \lim_{x \to +0} e^{x \cdot \ln x} = e^{\lim_{x \to +0} x \cdot \ln x} = e^{0} = 1.$$

Пример 13.4

Найти
$$\lim_{x\to 0} \left(\operatorname{ctg} x - \frac{1}{x}\right)$$
.

Решение

$$\lim_{x \to 0} \left(\operatorname{ctg} x - \frac{1}{x} \right) = (\infty - \infty) = \lim_{x \to 0} \frac{x \cos x - \sin x}{x \sin x} = \left(\frac{0}{0} \right) =$$

$$= \lim_{x \to 0} \frac{x \cos x - \sin x}{x^2} \cdot \lim_{x \to 0} \frac{x}{\sin x} = \lim_{x \to 0} \frac{(x \cos x - \sin x)'}{(x^2)'} =$$

$$= \lim_{x \to 0} \frac{\cos x - x \sin x - \cos x}{2x} = \lim_{x \to 0} \left(-\frac{\sin x}{2} \right) = 0.$$

Если в условии теоремы 13.1 предположить дополнительно, что функции $y=f(x),\ y=g(x)$ дифференцируемы в точке x_0 и $g'(x_0)\neq 0$, тогда формула (13.1) перепишется в виде

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = |f(x_0)| = g(x_0) = 0| = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{g(x) - g(x_0)} =$$

$$= \lim_{x \to x_0} \frac{\frac{f(x) - f(x_0)}{x - x_0}}{\frac{g(x) - g(x_0)}{x - x_0}} = \frac{f'(x_0)}{g'(x_0)}.$$
(13.2)

Геометрически это значит, что предел при $x \to x_0$ отношения значений функций y = f(x), y = g(x) равен отношению угловых коэффициентов касательных к этим функциям в точке x_0 .

Пример 13.5

Найти
$$\lim_{x\to\pi} \frac{\sin 7x}{\operatorname{tg} 8x}$$
 (см. пример 4.2).

Решение

$$\lim_{x \to \pi} \frac{\sin 7x}{\operatorname{tg} 8x} = \left(\frac{0}{0}\right) = \lim_{x \to \pi} \frac{(\sin 7x)'}{(\operatorname{tg} 8x)'} = \lim_{x \to \pi} \frac{7\cos 7x}{\frac{8}{\cos^2 8x}} = -\frac{7}{8}, \text{ рис. 13.1.}$$

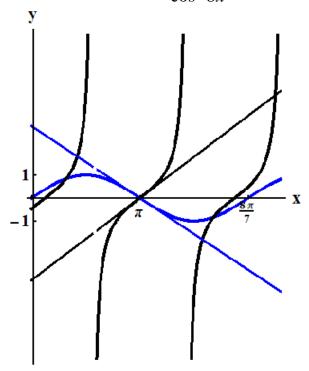


Рис. 13.1. Графики функций $y = \sin 7x$, $y = \tan 8x$ и их касательных в точке $x = \pi$

Задания

Задание 13.1

Вычислить пределы, пользуясь правилом Лопиталя.

- 1) $\lim_{x \to +\infty} \frac{\ln x}{x^2}$; 2) $\lim_{x \to 0} \frac{\sin \alpha x}{\sin \beta x}$; 3) $\lim_{x \to 0} \frac{\operatorname{tg} x x}{\sin x x}$; 4) $\lim_{x \to 0} \frac{\operatorname{ch} x \cos x}{x^2}$;
- 5) $\lim_{x \to \frac{3\pi}{4}} \frac{1 + \sqrt[3]{\log x}}{1 2\cos^2 x}$; 6) $\lim_{x \to 0} \frac{\cos(\sin x) \cos x}{x}$; 7) $\lim_{x \to 0} \frac{\ln(1 + x^2)}{\cos 3x e^x}$;
- 8) $\lim_{x \to \infty} \frac{a^{\frac{1}{x}} 1}{x}$; 9) $\lim_{x \to 1} \frac{\ln^2 x}{1 x}$; 10) $\lim_{x \to 1} \frac{x^2 1 + \ln x}{x^2 1}$;
- 11) $\lim_{x \to 1} \left(\frac{1}{\ln x} \frac{1}{x 1} \right)$; 12) $\lim_{x \to 0} \left(\frac{1}{x} \frac{1}{e^x 1} \right)$; 13) $\lim_{x \to 0} \left(\operatorname{ctg} x \frac{1}{x} \right)$;
- 14) $\lim_{x \to 0} (1 \cos x) \cdot \operatorname{ctg} x$; 15) $\lim_{x \to 1} (1 x) \cdot \sec \frac{\pi x}{2}$;
- 16) $\lim_{x \to 0} (1 e^{2x}) \cdot \operatorname{ctg} x$; 17) $\lim_{x \to 0} (2x)^{x^2}$; 18) $\lim_{x \to +\infty} (\ln 2x)^{\frac{1}{\ln x}}$;
- 19) $\lim_{x \to 0} x^{\frac{1}{\ln(e^x 1)}}$; 20) $\lim_{x \to 0} (3^x + x)^{\frac{2}{x}}$.

Ответы

- 1) 0; 2) $\frac{\alpha}{\beta}$; 3) -2; 4) 1; 5) $-\frac{1}{3}$; 6) 0; 7) 0; 8) 0; 9) 0;
- 10) $\frac{3}{2}$; 11) $\frac{1}{2}$; 12) $\frac{1}{2}$; 13) 0; 14) 0; 15) $\frac{2}{\pi}$;
- 16) -2; 17) 1; 18) 1; 19) e; 20) $9e^2$.

14. ФОРМУЛА ТЕЙЛОРА

Пусть функция y = f(x) дифференцируема в точке x_0 . Тогда (см. формулу (9.5)) ее приращение $f(x_0 + \Delta x) - f(x_0)$

$$f(x_0 + \Delta x) - f(x_0) = f'(x_0) \Delta x + o(\Delta x), \ \Delta x \to 0.$$
 (14.1)

Пусть $x_0 + \Delta x = x$, $\Delta x = x - x_0$, тогда (14.1) перепишется в виде

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0).$$

Рассмотрим многочлен

$$P_1(x) = f(x_0) + f'(x_0)(x - x_0)$$
.

Многочлен $P_1(x)$ обладает следующими свойствами:

- 1) $P_1(x_0) = f(x_0)$;
- 2) $P'_1(x_0) = f'(x_0)$;
- 3) $f(x) = P_1(x) + o(x x_0), x \rightarrow x_0$.

Пусть функция y = f(x) n раз дифференцируема в точке x_0 . Найдем многочлен

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n,$$
 (14.2)

обладающий аналогичными свойствами:

1)
$$P_n^{(k)}(x_0) = f^{(k)}(x_0), \ k = 0, 1, ..., n;$$
 (14.3)

2)
$$f(x) = P_n(x) + o(x - x_0)^n, x \to x_0$$
.

Из (14.2), (14.3) следует, что

$$P_{n}(x_{0}) = a_{0} = f(x_{0});$$

$$P'_{n}(x_{0}) = 1 \cdot a_{1} = f'(x_{0});$$

$$P'''_{n}(x_{0}) = 1 \cdot 2a_{2} = f''(x_{0});$$

$$P''''_{n}(x_{0}) = 1 \cdot 2 \cdot 3a_{3} = f'''(x_{0});$$

$$\vdots$$

$$P_{n}^{(n)}(x_{0}) = 1 \cdot 2 \cdot \dots \cdot n \, a_{n} = f^{(n)}(x_{0}).$$

Поэтому коэффициенты a_k многочлена (14.2) задаются формулой

$$a_k = \frac{f^{(k)}(x_0)}{k!}, \ k = 0, 1, ..., \ n.$$
 (14.4)

Далее

$$\lim_{x \to x_0} \frac{f(x) - P_n(x)}{(x - x_0)^n} = \left(\frac{0}{0}\right) = \left|\text{применим теорему (13.1) } n - 1 \text{ раз}\right| =$$

$$= \lim_{x \to x_0} \frac{f^{(n-1)}(x) - P_n^{(n-1)}(x)}{n!(x - x_0)} = \left| \text{по формуле (13.2)} \right| = \frac{f^{(n)}(x_0) - P_n^{(n)}(x_0)}{n!} = 0.$$

Таким образом свойства (14.3) выполняются (при этом коэффициенты многочлена $P_n(x)$ задаются формулами (14.4)). Тем самым теорема доказана.

Теорема 14.1. Пусть функция y = f(x) n раз дифференцируема в точке x_0 , тогда

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + o((x - x_0)^n),$$
(14.5)

где $o((x-x_0)^n)$ — бесконечно малая функция более высокого порядка малости, чем $(x-x_0)^n$ при $x \to x_0$.

Формула (14.5) называется формулой Тейлора, многочлен

$$P_n(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n =$$

$$= \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

в правой части формулы (14.5) называется многочленом Тейлора, а представление разности $r_n(x) = f(x) - P_n(x)$ в виде $o((x - x_0)^n)$ – остаточным членом в форме Пеано.

Если функция $x_0 = 0$, то (14.5) перепишется в виде

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n), \ x \to 0 - (14.6)$$

формула Маклорена.

Если функция y=f(x) n+1 раз дифференцируема в некоторой окрестности $O_{\delta}(x_0)$ точки x_0 , то остаточный член $r_n(x)$ можно представить в виде

$$r_n(x) = \frac{f^{(n+1)}(x_0 + \theta(x - x_0))}{(n+1)!} (x - x_0)^{n+1}; \ 0 < \theta < 1 - \frac{1}{n+1}$$

остаточный член в форме Лагранжа и формула

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(x_0 + \theta(x - x_0))}{(n+1)!} (x - x_0)^{n+1}$$

называется формулой Тейлора порядка n с остаточным членом в форме Лагранжа.

Y *п* p a $\varkappa c$ h e h u e 14.1. Пусть $x_0 = 0$. Записать формулу Маклорена с остаточным членом в форме Лагранжа.

Пример 14.1

В условиях примера 9.4 оценим погрешность вычисления значений $\sqrt[3]{30} \approx \frac{28}{9} \approx 3$,(1).

Решение

Запишем формулу Маклорена первого порядка с остаточным членом в форме Лагранжа:

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{1}{2!}f''(\theta x)x^2$$
,

где
$$f(x) = \sqrt[3]{1+x}$$
.

Тогда

$$\sqrt[3]{30} = 3\sqrt[3]{1 + \frac{1}{9}} = 3f(0) + \frac{3f'(0)}{1!} \cdot \frac{1}{9} + \frac{3}{2!}f''\left(\theta \cdot \frac{1}{9}\right) \cdot \frac{1}{9^2}, \quad 0 < \theta < 1.$$

$$f'(x) = \frac{1}{3\sqrt[3]{(1+x)^2}}; \quad f''(x) = -\frac{2}{9} \frac{1}{\sqrt[3]{(1+x)^5}}.$$

Поэтому

$$r_{1}\left(\frac{1}{9}\right) = \frac{3}{2!} \cdot \left(-\frac{2}{9}\right) \cdot \frac{1}{\sqrt[3]{\left(1 + \theta \cdot \frac{1}{9}\right)^{5}}} \cdot \frac{1}{9^{2}} \quad \text{if} \quad \left|r_{1}\left(\frac{1}{9}\right)\right| \leq \frac{1}{3} \cdot \frac{1}{9^{2}} = \frac{1}{243} \leq 0,005.$$

Таким образом, вычисленное значение 3,(1) отличается от истинного с точностью до 0,01.

y n p a ж h e h u e 14.2. Записать формулу Маклорена второго порядка для функции $y = 3\sqrt[3]{1+x}$ и по этой формуле вычислить $\sqrt[3]{30}$. Оценить погрешность вычислений.

Пример 14.2

Запишем формулу Маклорена n-го порядка для функции $y = \sin x$:

$$f(x) = \sin x, \quad f(0) = 0;$$

$$f'(x) = \cos x, \quad f'(0) = 1;$$

$$f''(x) = -\sin x, \quad f''(0) = 0;$$

$$f'''(x) = -\cos x, \quad f'''(0) = -1,$$

. . .

$$f^{(k)}(x) = \sin\left(x + \frac{\pi k}{2}\right)$$
 (см. упражнение 10.1) $\Rightarrow f^{(k)}(0) = \sin\left(\frac{\pi k}{2}\right)$.

Таким образом, $f^{(2k)}(0) = 0$, $f^{(2k+1)}(0) = (-1)^k$ и по формуле (14.6)

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1}) =$$

$$= \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+1}).$$
 (14.7)

Аналогично

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n}) = \sum_{k=0}^n (-1)^k \frac{x^{2k}}{(2k)!} + o(x^{2n}); \quad (14.8)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n+1} \frac{x^n}{n} + o(x^n) = \sum_{k=1}^n (-1)^{k+1} \frac{x^k}{k} + o(x^n); \quad (14.9)$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1)\cdot\dots\cdot(\alpha-n+1)}{n!}x^n + o(x^n) = 0$$

$$=1+\sum_{k=1}^{n} \frac{\alpha(\alpha-1)\cdot ...\cdot (\alpha-k+1)}{k!} \cdot x^{k} + o(x^{n}); \qquad (14.10)$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n}) = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n}).$$
 (14.11)

Формулы (14.7)–(14.11) называются основными разложениями.

Пример 14.3

Разложить $(1+x^2)^{\frac{1}{2}}$ по формуле Маклорена до члена x^4 , используя основные разложения. Оценить погрешность при $|x| \leq \frac{1}{2}$.

Решение

Пусть $x^2 = t$. Тогда (см. формулу (14.10))

$$(1+t)^{\frac{1}{2}} = 1 + \frac{1}{2}t + \frac{\frac{1}{2} \cdot \left(\frac{1}{2} - 1\right)}{2!}t^2 + r_2(t);$$

$$(1+t)^{\frac{1}{2}} = 1 + \frac{1}{2}t - \frac{1}{8}t^2 + r_2(t)$$
.

Остаточный член запишем в форме Лагранжа:

$$r_2(t) = \frac{f'''(\theta t)}{3!}t^3, \ 0 < \theta < 1;$$

$$r_2(t) = \frac{\frac{1}{2} \cdot \left(\frac{1}{2} - 1\right) \left(\frac{1}{2} - 2\right)}{3!} (1 + \theta t)^{-\frac{5}{2}} t^3 = \frac{1}{16} \frac{1}{(1 + \theta t)^{\frac{5}{2}}} \cdot t^3.$$

Если
$$|x| \le \frac{1}{2} \Rightarrow 0 \le t \le \frac{1}{4}$$
,

поэтому

$$|r_2(t)| \le \frac{1}{16} \cdot \frac{1}{64} = \frac{1}{1024}.$$

Таким образом,

 $(1+x^2)^{\frac{1}{2}} = 1 + \frac{1}{2}x^2 - \frac{1}{8}x^4$ и погрешность при $|x| \le \frac{1}{2}$ меньше чем 0,001, рис. 14.1.

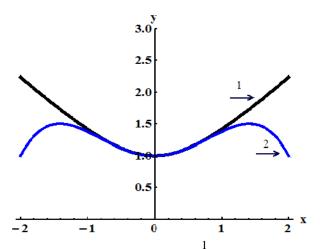


Рис. 14.1. Графики: I – функции $y = (1 + x^2)^{\frac{1}{2}}$ и 2 – ее многочлена Тейлора

Упражнение 14.3. Вычислить:

- 1) е с точностью до 0,001;
- 2) $\sqrt{17}$ с точностью до 0,00001.

У пражнение 14.4. Оценить погрешность формул

a)
$$\sin x \approx x - \frac{x^3}{6}$$
 при $|x| \le \frac{1}{2}$;

б)
$$\sin x \approx x - \frac{x^3}{6} + \frac{x^5}{120}$$
 при $|x| \le \frac{1}{2}$.

Пример 14.4

Найти
$$\lim_{x \to 0} \frac{\sin x - x + \frac{x^3}{6}}{x^5}.$$

Решение

Воспользуемся разложением (14.7):

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5).$$

Тогда

$$\lim_{x \to 0} \frac{\left(x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5)\right) - x + \frac{x^3}{6}}{x^5} = \lim_{x \to 0} \frac{\frac{x^5}{120} + o(x^5)}{x^5} = \lim_{x \to 0} \left(\frac{1}{120} + \frac{o(x^5)}{x^5}\right) = \frac{1}{120}.$$

 $y \ n \ p \ a \ ж \ n \ e \ n \ u \ e \ 14.5$. Вычислить $\lim_{x \to 0} \frac{\sin x - x + \frac{x^3}{6}}{x^5}$ из примера 14.4, используя правило Лопиталя.

Задания

Задание 14.1

Разложить функцию f(x) по степеням $x - x_0$:

1)
$$f(x) = x^3 - 7x^2 + 8$$
, $x_0 = 1$;

2)
$$f(x) = x^4 + 2x^3 - 3x^2 - 4x + 1$$
, $x_0 = -1$;

3)
$$f(x) = \ln x$$
, $x_0 = 1$;

4)
$$f(x) = \sqrt{1-x}$$
, $x_0 = 0$;

5)
$$f(x) = \sqrt[3]{1+x}$$
, $x_0 = 0$;

6)
$$f(x) = e^x$$
, $x_0 = -1$;

7)
$$f(x) = x^3 - 2x^2 + 3x + 5$$
, $x_0 = 2$;

8)
$$f(x) = e^{2x-x^2}$$
, $x_0 = 0$;

9)
$$f(x) = \sin(\sin x), x_0 = 0$$
;

10)
$$f(x) = \cos(\sin x), x_0 = 0;$$

11)
$$f(x) = \ln \frac{\sin x}{x}$$
, $x_0 = 0$;

12)
$$f(x) = \sqrt[3]{\sin x^3}$$
, $x_0 = 0$;

13)
$$f(x) = \sin\left(\frac{\pi x}{2}\right), x_0 = 1;$$

14)
$$f(x) = \sqrt{1 - x + 2x^2}$$
, $x_0 = 0$.

Задание 14.2

Вычислить приближенно:

- 1) $e^{0,1}$ с точностью до 10^{-3} ;
- $2) \cos 5^{\circ}$ с точностью до 10^{-5} ;
- 3) $\sqrt[3]{9}$ с точностью до 10^{-3} ;
- 4) $\sqrt[4]{90}$ с точностью до 10^{-4} ;

- 5) $\sin 18^{\circ}$ с точностью до 10^{-4} ;
- 6) $\sin 1^{\circ}$ с точностью до 10^{-8} ;
- 7) $\ln 1,1$ с точностью до 10^{-3} ;
- 8) $e^{0.2}$ с точностью до 10^{-5} ;
- 9) $\cos 6^{\circ}$ с точностью до 10^{-5} ;
- 10) $\sqrt[4]{e}$ с точностью до 10^{-2} .

Задание 14.3

Оценить абсолютную погрешность приближенных формул:

1)
$$\sin x \approx x - \frac{x^2}{6} \text{ при } |x| \le \frac{1}{2};$$

2)
$$tg x \approx x + \frac{x^3}{3} \pi pu |x| \le 1;$$

3)
$$\sqrt{1+x} \approx 1 + \frac{x}{2} - \frac{x^2}{8}$$
 при $0 \le x \le 1$.

Задание 14.4

Используя основные разложения, найти пределы:

1)
$$\lim_{x\to 0} \frac{\operatorname{tg} x + 2\sin x - 3x}{x^4}$$
;

2)
$$\lim_{x\to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^4}$$
;

3)
$$\lim_{x\to 0} \frac{\sin 2x - \lg x}{\ln(1+x^3)}$$
;

4)
$$\lim_{x \to +\infty} \sqrt{e^x} (\sqrt{e^x + 1} - \sqrt{e^x - 1})$$

4)
$$\lim_{x \to +\infty} \sqrt{e^x} (\sqrt{e^x + 1} - \sqrt{e^x - 1});$$

5) $\lim_{x \to +\infty} x^{\frac{3}{2}} (\sqrt{x + 1} + \sqrt{x - 1} - 2\sqrt{x});$

6)
$$\lim_{x\to 0} \frac{e^x + e^{-x} - 2}{2x^2}$$
;

7)
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\sin x}\right)$$
;

8)
$$\lim_{x\to 0} \frac{1}{x} \left(\frac{1}{x} - \operatorname{ctg} x \right);$$

9)
$$\lim_{x \to 0} \frac{\sin(\sin x) - x\sqrt[3]{1 - x^2}}{x^5}.$$

Ответы

14.1. 1)
$$f(x) = 2 - 11(x - 1) - 4(x - 1)^2 + (x - 1)^3$$
;

2)
$$f(x) = 1 + 4(x+1) - 3(x+1)^2 - 2(x+1)^3 + (x+1)^4$$
;

3)
$$f(x) = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \dots + \frac{(-1)^n (x-1)^n}{n} + R_{n+1};$$

4)
$$f(x) = 1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{16}x^3 + R_4$$
;

5)
$$f(x) = 1 + \frac{1}{3}x - \frac{1}{9}x^2 + \frac{5}{81}x^3 + R_4;$$

6)
$$f(x) = e^{-1} \left(1 + (x+1) + \frac{(x+1)^2}{2!} + \dots + \frac{(x+1)^n}{n!} \right) + R_{n+1};$$

7)
$$f(x) = 11 + 7(x-2) + 4(x-2)^2 + (x-2)^3$$
;

8)
$$f(x) = 1 + 2x + x^2 - \frac{2}{3}x^3 - \frac{5}{6}x^4 - \frac{1}{15}x^5 + R_6$$
;

9)
$$f(x) = x - \frac{x^3}{3} + R_3$$
;

10)
$$f(x) = 1 - \frac{x^2}{2} + \frac{5}{24}x^4 + R_4$$
;

11)
$$f(x) = -\frac{x^2}{6} - \frac{x^4}{180} - \frac{x^6}{2835} + R_6;$$

12)
$$f(x) = x - \frac{x^7}{18} - \frac{x^{13}}{3240} + R_{13};$$

13)
$$1 - \frac{\pi^2}{8}(x-1)^2 + \frac{\pi^4}{384}(x-1)^4 + R_4$$
;

14)
$$1 - \frac{1}{2}x + \frac{7}{8}x^2 + \frac{7}{16}x^3 + R_3$$
.

- **14.2.** 1) 1,105; 2) 0,99619; 3) 2,080; 4) 3,08000; 5) 0,3090; 6) 0,01745241;
- 7) 0,095; 8) 1,22140; 9) 0,99452; 10) 0,78.

14.3. 1) меньше
$$\frac{1}{3840}$$
; 2) меньше $2 \cdot 10^{-6}$; 3) меньше $\frac{1}{16}$.

14.4. 1) 0; 2)
$$-\frac{1}{12}$$
; 3) - 2; 4) 1; 5) $-\frac{1}{4}$; 6) $\frac{1}{2}$; 7) 0; 8) $\frac{1}{3}$; 9) $\frac{19}{90}$.

ЛИТЕРАТУРА

- 1. Кудрявцев, Л. Д. Краткий курс математического анализа / Л. Д. Кудрявцев. М.: Наука, 1989.
- 2. Демидович, Б. П. Сборник задач по математическому анализу / Б. П. Демидович. М. : Наука, 1990.
- 3. Сборник задач по математике для втузов. Линейная алгебра и основы математического анализа: в 2 т. / под ред. А. В. Ефимова, Б. П. Демидовича. М.: Наука, 1981. Т. 1.
- 4. Герасимович, А. И. Математический анализ: в 2 ч. / А. И. Герасимович, Н. А. Рысюк. Минск: Вышэйшая школа, 1989. Ч. 1.
- 5. Математический анализ в вопросах и задачах / под ред. В. Ф. Бутузова. М.: Физматлит, 2001.
- 6. Данко, П. Е. Высшая математика в упражнениях и задачах: в 2 ч. / П. Е. Данко, А. Г. Попов, Т. Я. Кожевникова. Минск: Вышэйшая школа, 1986. Ч. 1.
- 7. Сухая, Т. А. Задачи по высшей математике: в 2 ч. / Т. А. Сухая, В. Ф. Бубнов. Минск : Вышэйшая школа, 1993. Ч. 2.
- 8. Индивидуальные задания по высшей математике: в 4 ч. / под ред. А.П. Рябушко. Минск : Вышэйшая школа, 2008. Ч. 1.
- 9. Кузнецов, Л. А. Сборник заданий по высшей математике / Л. А. Кузнецов. М.: Высшая школа, 1983.
- 10. Зорич, В. А. Математический анализ : в 2 ч. / В. А. Зорич. М. : Фазис, 1997. Ч. 1.
- 11. Письменный, Дм. Конспект лекций по высшей математике. Полный курс / Дм. Письменный. М.: Айрис Пресс, 2006.

СОДЕРЖАНИЕ

1. Комплексные числа	3
Задания	8
2. Пределы числовых последовательностей	12
Задания	20
3. Пределы функций	24
Задания	34
4. Теоремы о пределах	37
Задания	43
5. Непрерывность функции	46
Задания	56
6. Производная функции	61
Задания	71
7. Производная функции, заданной параметрически	75
Задания	77
8. Производная функции, заданной неявно	79
Задания	80
9. Геометрический и физический смысл производной	83
Задания	89
10. Производные высших порядков	93
Задания	98
11. Свойства непрерывных функций	102
Задания	105
12. Свойства дифференцируемых функций	107
Задания	111
13. Правило Лопиталя	112
Задания	117
14. Формула Тейлора	118
Задания	
ЛИТЕРАТУРА	128

Учебное издание

МАТВЕЕВА Людмила Дмитриевна **РУДЫЙ** Александр Никодимович

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Учебно-методическое пособие для студентов энергетических специальностей.

Редактор *Т. Н. Микулик* Компьютерная верстка *Ю.С. Кругловой*

Подписано в печать 29.09.2016. Формат 60×84 $^1/_8$. Бумага офсетная. Ризография. Усл. печ. л. 15,11. Уч.-изд. л. 5,91. Тираж 100. Заказ 609. Издатель и полиграфическое исполнение: Белорусский национальный технический университет. Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/173 от 12.02.2014. Пр. Независимости, 65. 220013, г. Минск.