СЛАБЫЕ РАЗРЫВЫ В МАГНИТОУПРУГИХ ИЗОТРОПНЫХ ТЕЛАХ С ИДЕАЛЬНОЙ ПРОВОДИМОСТЬЮ

Босяков С.М., Скляр О.Н.

The equation of characteristics for system of the equations of movement isotropic magnetelastic media with ideal conductivity is obtained and expressions for velocities of propagation magnet-elastic waves are found. The analysis of influence of a magnetic field on change of values of velocities of propagation of elastic waves for various angles of an declination of a normal to a characteristic surface is carried out. The equations of bicharacteristics are obtained and threedimensional fronts magnet-elastic waves is constructed. It is shown, that for the certain values a component of a vector of a magnetic induction, on a surface magnet-elastic quasitransversal waves originate two lacunas. Components of a vector discontinuities are determined.

Теория магнитоупругости изучает взаимное воздействие поля деформаций и электромагнитного поля в твердом теле, и является одним из современных направлений механики деформируемого твердого тела [1]. Результаты исследований в этой области механики сплошных сред относятся к одномерным и двумерным динамическим процессам в магнитоупругих средах с идеальной и реальной проводимостью [2, 3]. Настоящая работа посвящена изучению закономерностей распространения объемных магнитоупругих волн в изотропной среде с идеальной проводимостью с позиций метода характеристик (метода слабых разрывов) [4]. Разрешающая система уравнений имеет следующий вид [2]:

$$A_4 \Delta \vec{u} + (A_1 - A_4) graddiv\vec{u} + \frac{1}{\mu_e} rot \left(rot \left(\vec{u} \times \vec{B} \right) \right) \times \vec{B} = \rho \ddot{\vec{u}} , \qquad (1)$$

где A_1, A_4 - константы упругости материала; $\vec{B} = (B_1, B_2, B_3)$ - вектор магнитной индукции; $\vec{u} = (u_1, u_2, u_3)$ - вектор перемещений; μ_e и ρ - абсолютная магнитная проницаемость и плотность среды соответственно; Δ - оператор Лапласа.

Начальные данные для системы (1) зададим на поверхности $Z = Z(t, x_1, x_2, x_3)$ и перейдем к новым переменным $Z = Z(t, x_1, x_2, x_3)$ и $Z_i = Z_i(t, x_1, x_2, x_3)$ [4]. Следуя стандартной процедуре [4], из (1) будем иметь характеристическое уравнение

$$\det \left\| w_{ij} \right\|_{3\times 3} = 0, \tag{2}$$

где $w_{ii} = g^2 + (a-1)p_i^2 - p_0^2 / c_2^2 + p_i^2 \left(b_k^2 + b_l^2 \right) + p_k^2 b_k^2 + p_l^2 b_l^2 + 2p_k p_l b_k b_l;$

$$w_{ik} = w_{ki} = (a-1)p_i p_k - (p_i^2 + p_k^2)b_i b_k + p_i p_k b_l^2 - p_l b_l (p_i b_k + p_k b_i); \qquad p_0 = \frac{\partial Z}{\partial t};$$
$$p_i = \frac{\partial Z}{\partial x_i}; \ g = |gradZ|; \ a = A_1/A_4; \ c_2 = \sqrt{A_4/\rho}; \ b_k = B_k/A_4\mu_e; \ i \neq k \neq l = \overline{1,3}.$$

Из (2) после несложных преобразований, получим следующие выражения для частных производных по времени t от Z:

$$p_0^{(1,2)} = c_2 \sqrt{\frac{g}{2}} \left(ga_1 \pm \sqrt{a_2^2 g^2 + 4(1-a)s^2} \right),$$

$$p_0^{(3)} = c_2 \sqrt{g^2 + s^2}.$$
(3)

113

В (3) введены обозначения $a_1 = a + 1 + b_1^2 + b_2^2 + b_3^2$, $a_2 = a - 1 + b_1^2 + b_2^2 + b_3^2$, $s = b_1 p_1 + b_2 p_2 + b_3 p_3$.

Отсюда для безразмерных скоростей распространения магнитоупругих волн будем иметь

$$v_{1,2} = \sqrt{\frac{1}{2} \left(a_1 \pm \sqrt{a_2^2 + 4(1-a)\tilde{s}^2}, v_3 = \sqrt{1+\tilde{s}^2} \right)}.$$
 (4)

Здесь $v = V/c_2$ - безразмерная скорость распространения поверхности разрыва; $V = p_0/g$; $\tilde{s} = b_1 n_1 + b_2 n_2 + b_3 n_3$; $n_k = \cos \alpha_k = p_k/g$ - направляющие косинусы нормали к характеристической поверхности, $k = \overline{1,3}$.

Формулы (4) показывают, что скорости волн, распространяющихся в изотропной магнитоупругой среде, зависят от направления распространения (направления нормали к характеристической поверхности), а также от значений компонентов вектора \vec{B} . В случае равенства нулю составляющих вектора магнитной индукции (4) переходят в выражения для безразмерных скоростей распространения продольной ($v_1 = \sqrt{a}$) и поперечных ($v_{2,3} = 1$) волн.

На рис. 1 приведены поверхности обратных скоростей $1/v_k$, $k = \overline{1,3}$ магнитоупругих волн для материала с идеальной проводимостью, находящегося в магнитном поле с индукцией $b_1 = b_3 = 0,5$ и $b_2 = 1$ (упругие свойства материала характеризуются коэффициентом a = 2.723).

Рис. 1. Поверхности обратных скоростей $1/v_k$, $k = \overline{1,3}$ магнитоупругих волн, распространяющихся в изотропной среде с идеальной проводимостью

Из рис. 1 видно, что поверхность обратных скоростей $1/v_2$ содержит два участка, на которых выпуклость переходит вогнутость. Это указывает на появление двух лакун на трехмерном фронте магнитоупругой волны, распространяющейся со скоростью v_2 . Поверхности обратных скоростей $1/v_1$ и $1/v_3$ вышеуказанными особенностями не обладают, то есть распространение магнитоупругих волн со скоростями v_1 и v_3 не сопровождается образованием лакун.

Задавая соответствующие направляющие косинусы n_k нормали к характеристической поверхности, с помощью (4) можно построить сечения поверхностей обратных скоростей плоскостями координат, а также плоскостями, проходящими через начало координат.

Рис. 2. Кривая обратных скоростей $1/v_2$ в плоскости, составляющей с плоскостью $x_2 = 0$ угол $\pi/4$

На рис. 2 показано сечение поверхности $1/v_2$ плоскостью, получаемой поворотом координатной плоскости $x_2 = 0$ вокруг оси x_3 на угол $\pi/4$ против часовой стрелки (числовые данные те же).

Из рис. 2 видно, что на кривой обратных скоростей $1/v_2$ можно выделить два участка, где касательная к кривой касается ее в двух различных точках. Наличие таких касательных является необходимым признаком появления лакун на волновом фронте в плоскости «падения» [4]. Поэтому в плоскости, составляющей с плоскостью $x_2 = 0$ угол $\pi/4$, возникают две лакуны. Найдем бихарактеристики системы (1).

Для этого продифференцируем выражения для $p_0^{(k)}$ по p_i , $i, k = \overline{1,3}$.

$$\frac{\partial p_{0}^{(1,2)}}{\partial p_{i}} = \frac{dx_{i}^{(1,2)}}{dt} = \frac{2p_{i}a_{1} + \frac{g\left(4(1-a)b_{3}s \pm p_{i}a_{2}^{2}\right)}{\sqrt{4(1-a)s^{2} + a_{2}^{2}g^{2}}} \pm \frac{p_{i}}{g}\sqrt{4(1-a)s^{2} + a_{2}^{2}g^{2}}}{2\sqrt{2g\left(ag \pm \sqrt{4(1-a)s^{2} + a_{2}^{2}g^{2}}\right)}}c_{2},$$

$$\frac{\partial p_{0}^{(3)}}{\partial p_{i}} = \frac{dx_{i}^{(3)}}{dt} = \frac{c_{2}\left(p_{i} + b_{i}s\right)}{\sqrt{g^{2} + s^{2}}}.$$
(5)

Интегрируя правые части (5) по времени t, будем иметь искомые бихарактеристики:

$$x_{i}^{(1,2)} = \frac{c_{2}t}{4v_{1,2}} \left(2n_{i}a_{1} + \frac{\left(4(1-a)b_{3}\overline{b} \pm n_{i}a_{2}^{2}\right)}{\sqrt{4(1-a)\overline{b}^{2} + a_{2}^{2}}} \pm n_{i}\sqrt{4(1-a)\overline{b}^{2} + a_{2}^{2}} \right),$$
(6)
$$x_{i}^{(3)} = \frac{\left(n_{i} + b_{i}\overline{b}\right)c_{2}t}{v_{3}}.$$

Применим (6) для построения поверхностей магнитоупругих волн. На рис. 3 представлены их безразмерные трехмерные фронты l_k , $k = \overline{1,3}$, положение которых определяется соответствующими координатами точек $\left(x_1^{(k)}/c_2t, x_2^{(k)}/c_2t, x_3^{(k)}/c_2t\right)$. При построении принимаем $b_1 = b_3 = 0,5$, $b_2 = 1$, a = 2.723, t = 1 с.

Рис. 3. Трехмерные фронты магнитоупругих волн l_k , $k = \overline{1,3}$, распространяющихся в изотропной среде с идеальной проводимостью

Из рис.3 видно, что при распространении магнитоупругой волны со скоростью v_2 при данных значениях компонент вектора магнитной индукции возникают две лакуны. При распространении двух других магнитоупругих волн лакун не возникает.

Рис. 4. Волновой фронт l_2 в плоскости, составляющей с плоскостью $x_2 = 0$ угол $\pi/4$

На рис. 4 представлено сечение волновой поверхности $1/v_2$ плоскостью $x_2 = 0$ повернутой вокруг оси x_3 на угол $\pi/4$ против часовой стрелки (числовые данные прежние).

Анализ условий появления лакун под действием магнитного поля показывает, что наблюдать возникновение лакун на волновом фронте l_2 магнитоупругой волны можно при выполнении приближенного равенства единице хотя бы одной из трех компонент вектора магнитной индукции. Так, например, появление лакун можно наблюдать в случаях, когда $b_1 = b_3 = 0, 2, b_2 = 1$ или $b_1 = b_2 = b_3 = 1$.

Исследуем характер фронтов магнитоупругих волн, распространяющихся в

изотропной среде с идеальной проводимостью. Введем вектор прерывности $\vec{h}^{(k)} = \left(h_1^{(k)}, h_2^{(k)}, h_3^{(k)}\right), \ k = \overline{1,3}$. Для определения отношений компонент вектора прерыв-

ности имеем следующую систему неоднородных алгебраических уравнений:

$$\begin{split} \tilde{w}_{11} + \tilde{w}_{12}H_2^{(k)} + \tilde{w}_{13}H_3^{(k)} &= 0, \\ \tilde{w}_{21} + \tilde{w}_{22}H_2^{(k)} + \tilde{w}_{23}H_3^{(k)} &= 0, \end{split}$$
где
$$H_2^{(k)} = h_2^{(k)} / h_1^{(k)}, \ H_3^{(k)} &= h_3^{(k)} / h_1^{(k)}. \end{split}$$
(7)

Выпишем коэффициенты системы (7):

$$\tilde{w}_{11} = 1 + (a - 1 + 2b^2)n_1^2 + (n_2 + n_3)^2b^2 - v^2,$$

$$\tilde{w}_{22} = 1 + (a - 1 + 2b^2)n_2^2 + (n_1 + n_3)^2b^2 - v^2,$$

$$\tilde{w}_{12} = \overline{w}_{21} = (a - 1)n_1n_2 - (n_1^2 + n_2^2 - n_1n_2 + n_3(n_1 + n_2))b^2,$$

$$\tilde{w}_{13} = (a - 1)n_1n_3 - (n_1^2 + n_3^2 - n_1n_3 + n_2(n_1 + n_3))b^2,$$

$$\tilde{w}_{23} = (a - 1)n_2n_3 - (n_2^2 + n_3^2 - n_2n_3 + n_1(n_2 + n_3))b^2.$$

He (7) provides

Из (7) получаем

$$H_{2} = \frac{\tilde{w}_{12}\tilde{w}_{13} - \tilde{w}_{11}\tilde{w}_{23}}{\tilde{w}_{12}\tilde{w}_{23} - \tilde{w}_{13}\tilde{w}_{22}}, H_{3} = \frac{\tilde{w}_{12}^{2} - \tilde{w}_{11}\tilde{w}_{22}}{\tilde{w}_{13}\tilde{w}_{22} - \tilde{w}_{12}\tilde{w}_{23}}.$$
(8)

Выражение для косинуса угла наклона вектора прерывности к нормали характеристической поверхности найдем, подставив (8) в следующее выражение

$$\cos\gamma = \frac{n_1 + n_2 H_2 + n_3 H_3}{\sqrt{1 + H_2^2 + H_3^2}}.$$
(9)

Для нахождения косинусов углов между векторами прерывности h и нормалью \vec{n} в (9) следует внести выражения для скоростей распространения магнитоупругих волн (4). Так, подставляя в (9) скорость $v_3 = \sqrt{1 + \tilde{s}^2}$, получим $\cos \gamma_3 = 0$, то есть вектор прерывности перпендикулярен нормали к волновой поверхности (поперечная волна). Таким образом, магнитное поле не оказывает влияния на упругие перемещения, сопровождающее распространение этой волны в изотропной среде с идеальной проводимостью.

Анализ зависимостей косинуса угла между векторами \tilde{h} и нормалью \vec{n} от направляющих косинусов нормали к волновой поверхности, полученных при подстановке в (9) выражений для скоростей v_1 и v_2 показывает, что наличие магнитного поля в каждом из случаев приводит к изменению ориентации вектора прерывности. Так, в зависимости от направляющих косинусов нормали к поверхности абсолютная величина $\cos \gamma_2$ может принимать значения от нуля до 0,005 ($b_1 = b_2 = b_3 = 0,1$, a = 2.723). Это позволяет сделать вывод о том, что магнитоупругие волны, распространяющиеся в изотропной среде с идеальной проводимостью со скоростями v_1 и v_2 , являются квазипродольной и квазипоперечной волнами, то есть действие магнитного поля приводит к появлению анизотропии упругих свойств.

ЛИТЕРАТУРА

- 1. Бардзокас Д. И. Кудрявцев Б. А., Сеник Н. А. Распространение волн в электромагнитоупругих средах. М.: Едиториал УРСС. 2003. 336 с.
- 2. Новацкий В. Электромагнитные эффекты в твердых телах. М.: Мир, 1986. 160 с
- 3. Кудрявцев Б. А., Партон В. З. Магнитоупругость // Итоги науки и техники. Сер. Механика деформируемого твердого тела. М: ВИНИТИ. 1981. Т. 14. С. 3—59.
- 4. Петрашень Г. И. Распространение волн в анизотропных упругих средах. Ленинград: Наука. 1981. 284 с.