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In this paper the statistical theory of viscosity of the dilute solution of flexible polymer molecules is 
represented 

 
In what follows we will consider the shear viscosity of the dilute solution of 

flexible polymer molecules. The shear viscosity coefficient is expressed by the time 
correlation function (TCF) of the microscopic shear stress tensor 12σ̂  (see, for example 
[1, 2]) 

12 12ˆ ˆ( / ) ( ) (0)s V t= β 〈σ σ 〉 , (1) 

where V  is volume of system, 1( )Bk T −β = . 
The difficulty of calculation ( )s t  is connected with a general difficulty evaluation TCF. 
The problems are appeared also of we make use of the method of kinetic equations. 

Let me introduce the normalized TCF 

( ) ( ) / (0)c t s t s= . (2) 

For calculation of ( )c t  we will apply the method of the memory function due to 
Zwanzig–Mori and asymptotic approach [1, 2]. 

The complex shear stresses TCF is  

0

( ) ( ) exp( ) ( ) ( )c c t i t dt c ic
∞

′′ ′ω = − ω = ω − ω∫ . (3) 

Then the coefficient of shear viscosity defined by  

( ) (0) ( )s c′′η ω = ω , (4) 

here ω  is frequency. 

For calculation the function ( )c t  the Zwanzig–Mori equation is applied 

0

( ) ( ) ( )
tdc t M t c d

dt
= − − τ τ τ∫ ,  (5) 

where ( )M t  is memory function. 
In general case the microscopic stress tensor due to interaction between molecules 

define as [2] 

,
ˆ ij i jF Xνµ νµ

ν µ
σ = −∑ . (6) 

In order to overcome the difficulty calculation TCF ( )s t  we will use the M.Doi 
and S. Edvards model for microscopic stress tensor in the case of chain molecules [3] 
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2
0

3ˆ ,   B
ij i j

k T
K X X K

l
σ = =∑ . (7) 

Here 0l  is the monomer length, ( )iXr  is the bond vector directed along 
monomer, Bk  is Boltzmann constant. In other words, we used the Gaussian bead–spring 
model. 

In order to carry out the calculations we used the Fourier series for vector r . The 
coefficients of the above mentioned series defined as [3, 4] 

0

1( ) ( , ) cos
N

i i
psx p dsx s t

N N
π

= ∫ , (8) 

where N  is the number monomers in molecule. 
Then the microscopic stress tensor is  

2 2

1

2ˆ ( ) ( )ij i j
p

pK x p x p
N

∞

=

π
σ = ∑ . (9) 

In the case of the shear viscosity 
2 2

12 1 2
2ˆ ( ) ( )

p

pK x p x p
N
π

σ = ∑ . (9′) 

We note that modes ( )ix p  are independent. 
The formal solution of the equation (5) can be performed by means of the 

Fourier–Laplace transformation  

0

( ) ( ) ,   iztc x e c t dt z i
∞

−= = ω− ε∫ . (10) 

Then we find 

1( )
( )

c z
iz M z

=
+

 (11) 

and for  0z i= ω− ε ε→  we obtain 

0
1( ) ,   ( ) lim ( )

( )
c M M i

i M ε→
ω = ω = ω− ε

ω+ ω
, (12) 

0

( ) ( ) = ( ) ( ) i tM e M t dt M iM
∞

− ω ′′ ′ω = ω − ω∫ . (13) 

In result we find  

2 2

( )( )
( ( )) ( ( ))

Mc
M M

′′ ω′′ ω =
′′ ′ω + ω− ω

. (14) 

The memory function is defined the next model [5, 6] 

( ) sechM t a bt= . (15) 

The evaluation of parameters a  and b  will be considered later on base of the 
asymptotic expression for ( )s t  for case short times. With help (15) we find 
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( ) sech
2 2

aM
b b
π πω′′ ω = , (16) 

( ) ( )1 1( ) tanh
2 4 4 4 4 2 2
ia i i aM
b b b b b

ω ω π πω ′ ω = − Ψ + −Ψ − −  
, (17) 

where ( )xΨ  is the Euler psi–function.  
The frequency–dependent coefficient of shear viscosity defined as  

( )
12

2 2( ) (0) sech  sech ( ) ,   =
2 2

bs
b b a

−
 πω πωη ω = τ + ζ ω τ  π 

. (18) 

At 0ω→  we find the low–frequency viscosity coefficient 

(0) (0)sη = τ . (19) 

Now we proceed to the calculation of the coefficients a  and b . For this end we 
will use the short–time expression of the quantity ( )s t . Above mentioned asymptotical 
expansion has the form  

2 4

2 4( ) (0)
2! 4!
t ts t s s s= − + . (20) 

Here 12 12ˆ ˆ(0) (0) (0)s
V
β= 〈σ σ 〉  is shear modulus. 

2 12 12 4 12 12ˆ ˆ ˆ ˆ(0) (0) ,   (0) (0)s s
V V
β β= 〈σ σ 〉 = 〈σ σ 〉    . (21) 

The parameters a  and b  defined as  

4 2
2 0

2 0
/ ,   

s s
a s s b

s s
= = − , (22) 

In (18) and (19) 

2 /b aτ = π . (23) 

The quantity τ  is time of correlation for TCF ( )s t . For evaluation 0 2,  s s  and 4s  
we used expression (9′) for stress tensor.  

Taking into account the independence of modes ( )ix p , we obtain  
22 2

2 2 2
0 12 12 1 2

2ˆ ˆ(0) (0) ( ) ( )
p

ps K x p x p
V V N

π β β= 〈σ σ 〉 = 〈 〉〈 〉 
 

∑ . (24) 

But 

2 2
1 2 2 2( ) ( )

2
Nx p x p

p K
〈 〉 = 〈 〉 =

β π
.  (25)  

and there fore 

0 Bs nk T= ,    (26)  

where n  is the density number for molecules.  
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In what follows we shall consider the separate mode with number p. For 
evaluation 2 12 12ˆ ˆ( / ) (0) (0)s V= β 〈σ σ 〉   we must at first find 

2 2

12 1 2 1 2
2ˆ ( ( ) ( ) ( ) ( ))pK x p x p x p x p

N
π

σ = +

  .  (27)  

Take into account that  

1 1
0

2 2
0

1( ) ( , ) cos

1( ) ( , ) cos

N

N

spx p dsv s t
N N

spx p dsv s t
N N

π
=

π
=

∫

∫





, (28) 

where 1v  and 2v  is components of the vector =v r , which is the relative velocity the 
two adjacent beads. Bearing in mind that 

2 2
1 2

Bk T
v v〈 〉 = 〈 〉 =

µ
,  (29)  

where µ  is the reduced mass of the beads, we obtain 
2 2 2

2 2
0

6 ( )Bn k T p
s

N l
π

=
µ

.  (30) 

In a similar way we find 

4 12 12ˆ ˆ( / ) (0) (0)s V= β 〈σ σ 〉    
At first we write 

2 2

12 1 2 1 2 1 2
2ˆ [2 ( ) ( ) ( ) ( ) ( ) ( )]pK x p x p x p x p x p x p

N
π

σ = + +

    ,  (31)  

1 1
0

2 2
0

1( ) ( , ) cos

1( ) ( , ) cos

N

N

psx p dsv s t
N N

psx p dsv s t
N N

π
=

π
=

∫

∫

 

 

. (32) 

For evaluation iv  we use relation 

( / )i iv v= − ζ µ ,  (33) 

where ζ  is the friction coefficient. Besides, we take into account that the members with 
ζ  are considerably greater than ones without ζ . 

In result we obtained the next expression 
2 2 2 2

4 2 2 3
0

6 ( )Bn k T p
s

l N
π ζ

=
µ

.  (34) 

The quantities a  and b  defined as 
2 2

3 2
0

6 ( )
,   Bp k T

a b
N l
π ζ= =

µµ
.  (35) 
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The correlation time for p – mode is 
2
0

3 2

22
6 ( )p

B

l Nb
a k T p

ζ
τ = =

π π
.   (36) 

After summation over p  with taking account that 2 2 / 8p− = π∑ , we obtain 

2
01

24 ( )B

l N
k T
ζ

τ =
π

.  (37) 

Then we used the next expression for the friction coefficient ζ  due to Zimm ( sη  
is the solvent viscosity) [3, 4} 

3 1/ 2
0

3 (6 )
8 sl Nζ = π η .  (38) 

As the important result we find that 
3/ 2 3/ 2N Mτ   .  

The dependence of this quantity on the molecular weight agrees with experiments. 
According to (37) and (38) the correlation time is proportional to the 3/ 2N  ( N  is 

number of monomers in molecule). This dependence is important because due to 
increase N  the viscosity coefficients increases essentially. 
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