

## ALTES LA ACTRAAYOFILA / 63

The results of theoretical description of the melt moving in liquid ingot and in two-phase zone on the basis of numerical solution of problem are given.

### Ю. А. САМОЙЛОВИЧ, НПП «Платан», Россия, В. И. ТИМОШПОЛЬСКИЙ, НАН Беларуси, Е. В. КАЛИНЕВИЧ, БНТУ

УДК 621.746

### ИССЛЕДОВАНИЕ ТЕРМОГРАВИТАЦИОННЫХ КОНВЕКТИВНЫХ ПРОЦЕССОВ В ЖИДКОМ ЯДРЕ ПРИ ЗАТВЕРДЕВАНИИ СТАЛЬНЫХ СЛИТКОВ

Процессы конвективного движения расплава в жидком ядре стальных слитков оказывают большое влияние на структуру и свойства литого металла, в частности на химическую неоднородность по сечению слитков (макросегрегацию). Среди экспериментальных методов определения скоростей циркуляции расплава в жидком ядре затвердевающих слитков наибольшее распространение получили методы радиоактивных изотопов [1-4]. Теоретические исследования термогравитационной конвекции развивались в двух направлениях: использование классических представлений о термогравитации идеальной несжимаемой жидкости под воздействием сил тяжести [5-7, 9]; решение задач термогравитационной конвекции в затвердевающих слитках при использовании современных ЭВМ [8, 10, 11].

Ниже приведены результаты теоретического описания движения расплава в жидком ядре слитка и в двухфазной зоне на основе численного решения задачи.

При постановке задачи используется ряд допущений:

• рассматривается продольное сечение листового стального слитка, затвердевающего в изложнице;

• движение расплава в жидком ядре слитка обусловлено эффектом термогравитации, при этом инерционными эффектами, преобладающими в начальный период затвердевания слитка, пренебрегаем;

• основной целью является определение поля скоростей движения расплава в жидком ядре и двухфазной зоне на основе совместного решения уравнений теплопроводности и гидродинамики;

• конфигурация жидкого ядра в затвердевающем слитке считается известной на основе математического моделирования процесса затвердевания слитка в изложнице.

Исходная система уравнений включает двухмерное уравнение нестационарной теплопроводности с учетом конвективных составляющих переноса теплоты:

$$\rho c_p \frac{\partial T}{\partial t} + v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} = \frac{\partial}{\partial x} \left( \lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left( \lambda \frac{\partial T}{\partial y} \right), \quad (1)$$

где T — температура; t — время;  $\rho$ ,  $c_p$ ,  $\lambda$  — соответственно коэффициенты массовой плотности, удельной теплоемкости и теплопроводности металла;  $v_x$ ,  $v_y$  — компоненты вектора скорости течения расплава. В процессе затвердевания слитка образуется слой двухфазной зоны, свойства которой нуждаются в специальном обсуждении. Как известно, двухфазная зона затвердевающего слитка представляет собой переплетение дендритных ветвей растущих металлических кристаллитов с остаточным расплавом и характеризуется коэффициентом проницаемости *K*, величина которого определяет степень сопротивления передвижению расплава в пределах двухфазной зоны в соответствии с законом Дарси:

$$\vec{v} = -\frac{K}{\mu} \operatorname{grad} P , \qquad (2)$$

где *P* – текущее значение давления в жидкой фазе; µ – динамическая вязкость расплава.

Коэффициент проницаемости дендритной сетки является важнейшей характеристикой фильтрационного течения. Эксперименты японских исследователей [12, 13] позволили установить зависимость коэффициента проницаемости углеродистой стали от доли жидкой фазы  $\varphi$  в двухфазной системе «дендритные кристаллиты — расплав» в виде следующих соотношений:

$$K = 10^{-7} + (\varphi - 0.85) \cdot 10^{-4}$$
(3)  
(M<sup>2</sup>) при  $\varphi > 0.85$ ,  
 $K = 10^{-9} (M^2)$  при 0.85 >  $\varphi > 0.7$ ,  
 $K = 3.25 \cdot 10^{-10} \varphi^3$   
(M<sup>2</sup>) при  $\varphi < 0.7$ .

#### **54** / AMTES M MOTOAAUPPUR 4 (36), 2005

Следует отметить, что закон Дарси был установлен при изучении фильтрации воды через песчаные фильтры и в последующем явился базовым соотношением при построении теории фильтрации разнообразных физических систем. По нашему представлению, при анализе фильтрационных явлений в затвердевающих отливках закон Дарси нуждается в определенной корректировке с учетом особенностей движения расплава в двухфазной зоне. В связи с этим представляется возможным использовать обобщенное уравнение баланса моментов движения, представляющее собой суперпозицию уравнения Дарси и уравнений Навье-Стокса в следующем виде:

$$\rho \frac{\partial \vec{v}}{\partial t} - \mu \nabla^2 \vec{v} + (\mu / K) \times \vec{v} + \nabla p = F , \qquad (4)$$

где *p* – локальное давление; *F* – вектор внешней силы.

Расчеты фильтрационного течения расплава в двухфазной зоне показали, что скорость течения расплава железа пропорциональна порядку величины коэффициента проницаемости К и при значениях  $K < 10^{-12}$  м<sup>2</sup> становится исчезающе малой величиной. Эти расчеты согласуются с результатами экспериментов по выливаемости жидкого остатка затвердевающих отливок [14, 15]. На основании таких экспериментов Б.Б.Гуляевым [16] введено понятие границы выливаемости сплавов как некоторой температуры  $T_{\rm выл}$ , лежащей в интервале между ликвидусом ( $T_{_{\rm ЛИК}}$ ) и солидусом (Т<sub>сол</sub>) и определяющей степень подвижности расплава в двухфазной зоне слитка. Представление о границе выливаемости развивается в работе [10] представлением об «активном районе двухфазной зоны» (АРДЗ), в пределах которого считается возможным изменение локальных температур в режиме автоколебаний.

В связи с изложенным выше предположим, что пространство двухфазной зоны можно разделить на две части по признаку степени сопротивления продвижению расплава:

• при значениях коэффициента  $K>10^{-4}-10^{-5}$  м<sup>2</sup> скорость передвижения расплава в двухфазной зоне считается достаточно большой и принимается во внимание в ходе гидродинамических расчетов;

• при *K*<10<sup>-5</sup> м<sup>2</sup> перемещение расплава в пределах двухфазной зоны не принимается во внимание.

Таким образом, для двухфазной зоны принимали значения коэффициента проницаемости  $K=10^{-5}$  м<sup>2</sup>, а для расплава, циркулирующего в жидком ядре слитка, K=1.

На рис. 1–3 приведены результаты расчетов для металлической ванны высотой 0,5 м, шириной 0,3 м при задании граничных условий:

 $T=T_{_{\text{выл}}}$  — для боковой и донной границ ванны,  $T=T_{_{\text{лик}}}+\Delta T$  — для верхней границы (Y=0,5 м), где  $T_{\text{выл}} = T_{\text{лик}} - 0,05$  ( $T_{\text{лик}} - T_{\text{сол}}$ );  $T_{\text{лик}} = 1724$  К;  $T_{\text{сол}} = 1644$  К;  $\Delta T = 1$  град и следующих теплофизических свойств расплава:  $\rho_{*} = 6900$  кг/м<sup>3</sup>;  $\rho_{B} = 7200$  кг/м<sup>3</sup>;  $\lambda_{*} = 60$  Вт/(м·К);  $\lambda_{B} = 40$  Вт/(м·К);  $c_{p} = 650$  Дж/(кг·К);  $\alpha = 10^{-5}$  1/град;  $\mu = 0,0062$  Па·с;  $K_{B} = = 10^{-5}$  м<sup>2</sup>,  $K_{*} = 1$  м<sup>2</sup>,  $T_{\text{нач}} = 1725$  К (индексы «ж» и «в» относятся соответственно к жидкому ядру и двухфазной зоне).

В центральной части жидкого ядра преобладают восходящий поток расплава, а вблизи от фронта кристаллизации наблюдаются нисходящие потоки (рис. 1). Характер изменения скоростей металла в жидком ядре во времени показан на рис. 2 для четырех горизонтов по высоте (точки A, B, C и D указаны на рис. 1). Из рисунка видно, что скорость течения расплава нарастает во времени от нуля до  $v_{\text{макс}}$ , причем наибольшие скорости потоков составляют 5–6 см/с.



Рис. 1. Картина течения расплава и расположение контрольных точек *A*, *B*, *C*, *D* (в жидком ядре слитка) и *1*, *2*, *3* (в сечении двухфазной зоны)





С увеличением перепада температур  $\Delta T_m$  по высоте жидкого ядра скорости восходящих потоков в центральной части металлической ванны нарастают. Ниже приведены максимальные значения вертикальной компоненты вектора скорости течения в точке A при нескольких значениях перепада температур:

| $\Delta T_m$ ,             | град | 5   | 6   | 7   | 9   | 14,   |
|----------------------------|------|-----|-----|-----|-----|-------|
| <i>V</i> <sub>макс</sub> , | см/с | 5,0 | 5,6 | 6,4 | 8,1 | 12,1. |

Полученные расчетом значения скорости восходящих потоков расплава удовлетворительно согласуются с экспериментальными данными для слитка массой 23 т, полученными с использованием радиоактивных изотопов [2].

На рис. З приведены результаты расчетов по определению скорости передвижения расплава в пределах двухфазной зоны; кривые 1, 2, 3 соответствуют точкам, указанным на рис. 1 для сечения, отстоящего на расстоянии 0,135 м от плоскости симметрии слитка. Из рисунка видно, что скорости потоков в двухфазной зоне во времени изменяются аналогично потокам в жидком ядре — вначале нарастают, достигают максимума и затем постепенно убывают. Максимальные значения потоков в двухфазной зоне в пределах 3-10 мм/с при значениях  $\Delta T_m = 5-10$  град.



Рис. 3. Изменение во времени скоростей течения расплава в нескольких точках по сечению двухфазной зоны (расположение точек 1, 2, 3 указано на рис. 1)

С целью возможностей сопоставления различных видов конфигурации слитков уравнения теплопроводности и движения расплава ограничимся допущением о стационарности процесса.

При таком допущении система уравнений теплопроводности и движения расплава имеет следующий вид:

$$-\mu\nabla^2 \vec{U} + \left(\frac{\mu}{K}\right)\vec{U} + \nabla p = \vec{F} , \qquad (5)$$

 $\nabla \cdot \vec{U} = 0 , \qquad (6)$ 

$$\vec{U}\nabla T = \nabla \left(\lambda \cdot \nabla T\right),\tag{7}$$

где Т – температура; р – давление в жидкости;

 $\vec{F}$  — вектор внешней силы;  $\vec{U}$  — вектор скорости потока ( $u_x = u$ ,  $u_y = v$ );  $\mu$  и K — коэффициенты динамической вязкости и проницаемости двухфазной зоны.

Для двух измерений изучаемой системы (X, Y) компоненты вектора внешней силы имеют вид

$$F_{y} = -\alpha \rho g_{0} \left( T - T_{0} \right), \ F_{x} = 0 \ . \tag{8}$$

При проведении расчетов использовали следующие значения физических характеристик расплава:  $\rho$ =7000 кг/м<sup>3</sup>;  $\lambda$ =60 Вт/(м·К);  $\alpha$ =10<sup>-5</sup> град<sup>-1</sup>;  $T_{\rm выл}$ =1720 К;  $\mu$ =0,0062 Па·с. Значения перепада температур по высоте жидкого ядра варьировали в пределах  $\Delta T$ =3–10 град.

На рис. 4 показана картина течений расплава в сечении жидкого ядра размерами 2S=0,3 м, H=0,5 м при задании перепада температур  $\Delta T=$ =3 град. В центре сечения наблюдаются восходящие, а вдоль боковых граней — нисходящие потоки расплава в полном соответствии с эмпирическими наблюдениями [17]. Более конкретная картина открывается при построении поля скоростей вдоль линий A-B и C-D в наиболее характерных сечениях жидкого ядра. На рис. 5 показано распределение вертикальной (вдоль оси Y) компоненты вектора скоростей вдоль линии C-D(горизонт Y=0,4 м) при нескольких значениях перепада температур  $\Delta T$ . Отметим, что графики на рисунке могут быть представлены формулой





Рис. 4. Картина течений расплава в сечении жидкого ядра размерами H=0,5 м, 2S=0,3 м при задании  $K_{\rm B}=10^{-5}$  м,  $\Delta T=3$  град



Рис. 5. Распределение температуры в поперечном сечении жидкого ядра толщиной 2S=0,3 м (вдоль линии C-D) при задании нескольких значений перепада температуры  $\Delta T$ :  $1 - \Delta T=3$  град; 2 - 5;  $3 - \Delta T=10$  град

## 66 / AMTES & METAAASPEUA

впервые приведенной в работе [8]. Особенность формулы (9) состоит в том, что с ее помощью удается с удовлетворительной точностью представить описание поля скоростей как при ламинарном, так и турбулентном характере течения металла.

Результаты расчетного анализа по влиянию высоты жидкого ядра на характер конвективных потоков представлены на рис. 6, где приведено распределение скорости течения вдоль линии A-B (см. рис. 4) при трех значениях высоты жидкого ядра: H=0,5 м (*a*) и 1,5 м (*б*). Из рисунка видно, что максимальные значения скоростей течения (при задании перепада температур  $\Delta T=10$  град) при весьма существенном изменении высоты жидкого ядра изменяются незначительно, составляя  $v_{\text{макс}}=0,095, 0,115$  и 0,123 м/с при задании H=0,5, 1,0 и 1,5 м соответственно.



Рис. 6. Влияние высоты жидкого ядра (H) на распределение скорости течения по вертикали (вдоль линии A-B) при нескольких значениях  $\Delta T=3$  (I), 5 (2) и 10 град (3); H=0,5 м (a); H=1,5 м ( $\delta$ ); 2S=0,3 м

На рис. 7 показана картина течений расплава в жидком ядре высотой 0,6 м и толщиной 2S=0,5м при задании  $\Delta T=3$  град. Из рисунка видно, что характер течений расплава качественно не отличается от картины течении при меньшей толщине жидкого ядра: восходящие потоки в центре, нисходящие — по боковым граням полости ядра. Однако влияние высоты ядра на величину максимальной скорости течения в данном случае отличается от ядра толщиной 0,3 м. На рис. 8 показано распределение вертикальной компоненты вектора скорости течения (v) вдоль линии A-B (см. рис. 4) при трех значениях высоты жидкого ядра и нескольких значениях перепада температуры ( $\Delta T$ ). Из рисунка видно, что изменение высоты ядра с 0,6 до 1,0 м приводит к росту максимальной скорости течения почти вдвое (с 0,163 до 0,3 м/с), а дополнительное увеличение высоты ядра от 1,0 до 1,5 — к приросту максимальной скорости течения всего лишь на 11–12% (с 0,3 до 0,335 м/с).



Рис. 7. Картина течений расплава в сечении жидкого ядра размерами H=0,6 м; 2S=0,5 м при задании  $K_{\rm B}=10^{-5}$  м<sup>2</sup>,  $\Delta T=$  =3 град



Рис. 8. Влияние высоты жидкого ядра (H) на распределение скорости течения по вертикали (вдоль линии A-B) при нескольких значениях  $\Delta T=3$  (I), 5 (2) и 10 град (3); H=0,6 м (a); H=1,5 м (6); 2S=0,5 м

# <sup>85</sup> БНТУ-

Приведенные выше расчетные данные указывают на то, что влияние конфигурации жидкого ядра слитка на характер конвективных течений носит достаточно сложный характер: существенное возрастание скоростей течения расплава получено лишь для достаточно крупных слитков (при толщине жидкого ядра 2S=0,5 м), в то время как для слитков меньшего размера (2S=0,3 м) прирост скорости течения с увеличением высоты ядра не превышает 10-12%.

#### Литература

1. Беляев Ю.П., Скребцов А.М., Казачков Е.А. и др. Определение скорости движения металла в изложницах при затвердевании крупных листовых слитков спокойной стали с помощью радиоактивных изотопов // Проблемы стального слитка. Т. 3. М., 1969. С. 39–42.

2. Беляев Ю.П., Липка Н.П. Развитие конвективных потоков в жидкой спокойной стали в процессе кристаллизации крупных слитков // Тр. IV конф. по стальному слитку. М., 1969. С. 87–89.

3. Марковский Е.А., Ефимов В.А., Малахов В.Б. и др. Определение конвективных потоков при кристаллизации слитка методом радиоактивных индикаторов // Тр. IV конф. по стальному слитку. М., 1969. С. 93–95.

4. Скребцов А.М. Исследование с помощью радиоактивных изотопов некоторых вопросов гидродинамики жидкого ядра в сердцевине затвердевающего слитка // Проблемы стального слитка. Т. 5. М., 1974. С. 116–120.

5. Остроумов Г.А. Свободная конвекция в условиях внутренней задачи. М., 1952.

### <u>ARTEG RAGTAANOFRA</u> / 67

6. Бер Л.Э. К теории термогравитационной конвекции в условиях турбулентного режима // Изв. АН СССР. Отд. техн. наук. 1957. №11. С. 75-83.

7. Славнова Э.И. Об ячеистой структуре конвективного потока жидкости в вертикальном канале круглого сечения // ИФЖ. 1961. Т. 4. № 8. С. 80-86.

8. Самойлович Ю.А. Гидродинамические явления в незатвердевшей части (жидком ядре) слитка // Изв. АН СССР. Металлы. 1969. № 2. С. 84–92.

9. Гершуни Г.З., Жуховицкий Е.М. Конвективная устойчивость несжимаемой жидкости. М., 1972.

10. Самойлович Ю.А. Теплообмен между потоком расплава и фронтом кристаллизации слитка // Физика и химия обработки материалов. 1978. № 4. С. 28–35.

11. Недопекин Ф.В. Математическое моделирование гидродинамики и тепломассопереноса в слитках. Ижевск: Изд. Удмуртского университета, 1995.

12. Ohnaka L., Fukusako T. Solidification Analysis of Steel Ingots with consideration on Fluid Flow. Trans, of Iron and Steel Inst. Japan. 1981. Vol.21. P. 485-494.

13. Ohnaka L., Kobayashi K. Flow analysis during Solidification by the Direct Finite Difference Method. Trans, of ISI Japan. May 1986. Vol. 26. P. 781-789.

14. Затвердевание стального слитка в изложнице. Методы исследования режимов затвердевания и охлаждения (справ.) / В.И. Тимошпольский, Ю.А. Самойлович, И.А. Трусова и др. Мн., 2003.

15. Стальной слиток. В 3-х т. Т. 2. Затвердевание и охлаждение / В.И. Тимошпольский, Ю.А. Самойлович, И.А. Трусова и др.; Под общ. ред. В.И. Тимошпольского, Ю.А. Самойловича. Мн., 2000.

16. Гуляев Б.Б. Литейные процессы. М., 1960.

17. Хворинов Н.И. Кристаллизация и неоднородность стали. М., 1958.