It is shown that thermal-convection melt flows, arising in liquid casting pipe as a result of melt spray effect and acting along the front of crystallization, have a great influence on forming of hard encrust right up to its fusion. The degree of this influence depends on the character of allocation and intension of thermal-convective flows.

Е. Б. ДЕМЧЕНКО, БНТУ, Е. И. МАРУКОВИЧ, ИТМ НАН Беларуси

ИССЛЕДОВАНИЕ ГИДРОДИНАМИКИ РАСПЛАВА В КРИСТАЛЛИЗАТОРЕ ПРИ ВЕРТИКАЛЬНОМ НЕПРЕРЫВНОМ ЛИТЬЕ

Для исследования качественной и количественной картины гидродинамики расплава в кристаллизаторе при вертикальном непрерывном литье применяли метод гидромоделирования на прозрачных моделях. Изучали причины возникновения, характер распределения, вид и скорость движения термоконвективных потоков, глубину проникновения струи, а также степень влияния потоков на фронт затвердевания отливки.

Моделирование проводили, имитируя получение полой цилиндрической отливки из чугуна диаметром 0,1 м и толщиной стенки 0,03 м в кристаллизатор длиной 0,2 м со средней скоростью вытяжки отливки ω_{cp} =0,56 · 60⁻¹ м/с. Масштабы моделирования (табл. 1) определили исходя из идентичности трех определяющих критериев подобия: Фруда (Fr), Вебера (We) и Рейнольдса (Re), необходимой для осуществления подобия по методикам работ [1-3]

 $Fr = We = Re = idem \cdot$

Критерий Фруда обеспечивает подобие сил тяжести и инерции

ω^2	
Fr =	(1)
gl '	(*)

критерий Вебера - подобие сил тяжести и поверхностного натяжения

We =
$$\frac{\rho l^2}{\sigma}$$
, (2)

критерий Рейнольдса - подобие сил вязкости и инерции

$$\operatorname{Re} = \frac{\omega l}{v}, \qquad (3)$$

где ω – скорость движения жидкости; g – ускорение силы тяжести; *l* – характерный размер; *р* – плотность; о - коэффициент поверхностного натяжения; v - кинематический коэффициент вязкости.

С помощью масштабов моделирования рассчитали геометрические размеры элементов модельной установки и параметры процесса моделирования (табл. 2).

Масштабы		Значения			
	T _B , °C	кинематическая вязкость 1°10 ⁻⁶ , м ² /с			
		0,8	1,1	среднее	
Геометрический <i>M</i> _{Re,Fr}		0,689	0,558	0,66	
Геометрический <i>М</i> _{We}		0,60	0,66		
Скоростной <i>М</i> _{<i>w</i>}	60	0,814		0,81	
Расхода <i>М</i> _О		0,30	0,36		

Таблица	1.	Масштабы	моделирования
---------	----	----------	---------------

Таблица	2.	Параметры	моделирования
---------	----	-----------	---------------

Параметры	Значения			
	натуры		модели	
Размеры кристаллизатора, м:				
диаметр	d	0,100	d _M	0,066
длина	l	0,200	l _M	0,132
Высота модели (21 _м), м			$h_{ m otr}$ л	0,264
Уровень расплава, м:				
максимальный	h_{\max}	0,175	$h_{\rm M,max}$	0,116
минимальный	h_{\min}	0,135	$h_{M,\min}$	0,089
Расход, м ³ /с	Qн	0,0236	Qм	0,0085

УДК 621.74.047

78 / ALATEG LA MAGTRAASPELAG

Общий вид и схема модельной установки показаны на рис. 1. Идентичность критериев подобия обеспечивалась при температуре воды $T_{\rm B}=40-$ 60 °C [4]. Для изучения качественного и количественного характера термоконвективного движения воду подкрашивали анилиновым красителем и проводили фотографирование траектории движения потоков.

На рис. 2, *а*, *б* представлены характер распределения и схемы термоконвективных потоков в полой цилиндрической отливке при одностороннем боковом подводе расплава в кристаллизатор.

Установлено, что по мере проникновения в глубь струя раскрывается и разделяется на два самостоятельных круговых потока, располагающихся по обе стороны полости отливки симметрично относительно места подвода. При подъеме уровня расплава потоки раскрываются, омывая фронт кристаллизации и стержень. Направление движения потоков - в центре струи вдоль фронта кристаллизации и стержня (точка 3) потоки нисходящие, при смещении от струи (точки 1, 5) смешанные (преобладают восходящие), у поверхности стержня - восходящие. В серединных частях отливки (точки 2, 4) потоки смешанные с преобладанием нисходящих потоков. В зоне, противоположной месту подвода, потоки встречаются, движутся вверх, расходятся и поворачивают в сторону к струе. Инжекция воздуха незначительна. Общий характер движения потоков симметричен относительно места подвода расплава.

Глубина проникновения струи $H_{\rm H, cтp}$ снижается при увеличении высоты падения $h_{\rm H, cтp}$. Максимальная глубина наблюдается в зоне действия струи $H_{\rm IH, cтp}$ =0,23 м (рис. 3). Глубина проникновения струи за пределы кристаллизатора доста-

Рис. 2. Характер распределения (*a*) и схемы (б) конвективных потоков в полой цилиндрической отливке

Рис. 3. Зависимость глубины проникновения струи $H_{\mu,crp}$ от высоты падения $h_{\mu,crp}$: 1 – полная глубина; 2 – глубина за пределами кристаллизатора

<u>ANTER IA MARTAANPERIA</u> / 79

точно велика, практически не изменяется и составляет $H_{_{2H,ctp}}$ =0,06 м.

Здесь и далее индекс «н» означает, что величина или параметр соответствует действительным (натурным) значениям, определенным в соответствии с масштабными коэффициентами. При обработке результатов экспериментов использовали линейную аппроксимацию по методу наименьших квадратов.

На рис. 4 приведены эпюры вертикальных составляющих скоростей термоконвективных потоков. Результаты показали, что в данном случае имеет место вынужденное конвективное движение расплава, обусловленное действием заливаемой струи. Динамика скоростей потоков по высоте здесь такова: зона *I* в месте подвода расплава – $\omega_{\mu}=0,29$ м/с, зона *III* на выходе отливки из кристаллизатора – $\omega_{\mu}=0,11$ м/с, зона *IV* за пределами кристаллизатора – $\omega_{\mu}=0,09$ м/с (точка 3). По мере удаления от места подвода в серединные слои отливки скорость потоков падает: в зоне *I*

Рис. 4. Эпюры скоростей конвективных потоков в *I–IV* зонах кристаллизатора: 1, 5 – вдоль фронта кристаллизации; 2, 4 – серединная зона отливки; 3 – в центре струи

- $\omega_{\rm H}$ =0,16 м/с, в зоне $IV - \omega_{\rm H}$ =0,07 м/с (точки *l*, *5*). В серединных частях отливки преобладают восходящие потоки, однако их скорость невелика: $\omega_{\rm H}$ =0,07 м/с (точки *2*, *4*).

Таким образом, в процессе вертикального непрерывного литья полой отливки возникает вынужденное конвективное движение расплава вдоль фронта кристаллизации, наиболее интенсивное в зоне действия струи и имеющее турбулентный характер. Такой вывод следует из расчета числа Рейнольдса, характеризующего изменение режима течения жидкости. При скоростях конвективных потоков вдоль фронта кристаллизации $\omega_{\rm H}=0,10-0,32$ м/с значение числа Рейнольдса равно Re=7500-22500, что значительно больше критического Re=2000 [5] и соответствует турбулентному режиму.

Для количественной оценки степени влияния термоконвективного движения жидкого расплава на процесс формирования отливки воспользовались уравнением теплового баланса на границе между расплавом и коркой, записанного в форме граничного условия Стефана (рис. 5) [6, 7]:

$$\rho r \frac{d\xi}{dt} = q_{1n}(z,t) - q'(z,t), \qquad (4)$$

где $q_{1n}(z,t)$ — удельный тепловой поток на границе «расплав-корка»; q'(z,t) — удельный тепловой поток со стороны расплава; r — удельная теплота кристаллизации; ρ — плотность расплава. При этом на межфазной границе должны соблюдаться начальные условия:

температура расплава равна температуре кристаллизации $T_{\rm \kappa p}$:

 $T[\xi(t), z, t] = T_{\rm KD}$

при

$$\xi(0) = 0; \quad T(x, z, 0) = T_{\kappa p}.$$

Из выражения (4) находим условие вероятности оплавления корки отливки в различных зонах кристаллизатора под действием термоконвективных потоков расплава: корка будет оплавляться, если

$$\frac{d\xi}{dt} < 0$$
, а при $\frac{d\xi}{dt} \ge 0$ будет происходить ее рост

$$q_{1n}(z,t) \le q'(z,t). \tag{5}$$

Для решения задачи определяли удельные тепловые потоки на обеих поверхностях корки отливки $q_{1n}(z, t)$ и $q_{2n}(z, t)$.

При условии отсутствия теплопередачи вдоль оси отливки параметр $q_{1n}(z, t)$ принимали равным удельному тепловому потоку $q_{2n}(z, t)$, отводимому в кристаллизаторе. Значения $q_{2n}(z, t)$ для расчета выбирали из работ [8, 9].

Удельный тепловой поток от расплава к корке отливки q'(z,t) определяли, используя критериальные зависимости теории теплообмена. Теплообмен при вынужденной конвекции расплава (Pr<1) в условиях турбулентного режима движения описывается уравнением [10]

$$Nu = 7,5 + 0,005 Pe , (6)$$

где Nu = $\frac{q'(z,t)d'}{\lambda'\Delta T}$ — критерий Нуссельта, характеризующий интенсивность теплообмена в жидкой фазе; $q' = (d - 2\xi)$ — эффективный диаметр жидкой фазы; d — диаметр отливки; λ' — теплопроводность расплава; $\Delta T = (T_{3an} - T_{kp})$ — температура перегрева; Pe = $\frac{\omega d'}{a'}$ — критерий Пекле, связывающий скорость потоков на межфазной границе и теплофизические свойства расплава.

Параметры для расчета определяли исходя из следующих соображений. Известно, что значения коэффициентов теплопроводности λ' , кинематической вязкости ν' и температуропроводности a' для чугуна вблизи температур кристаллизации изменяются в узких интервалах: $\lambda'=29-$

Рис. 5. Схема теплового состояния твердой корки отливки

-35 Вт/(м · K); $v' = (0,8-1,1) \cdot 10^{-6} \text{ м}^2/\text{c}$; $a' = (4,0--4,6) \cdot 10^{-6} \text{ м}^2/\text{c}$ [11]. Поэтому без снижения точности вычислений выбрали средние значения коэффициентов. Эффективный диаметр жидкой фазы d' определяется толщиной корки отливки ξ на выходе из кристаллизатора. При вертикальном литье полой отливки ξ не превышает $\xi = (8-13) \cdot 10^{-3}$ м [8, 9], что на порядок меньше по отношению к диаметру отливки d=0,1 м. Тогда конвективный теплообмен в кристаллизаторе будет ограничен областью диаметром не менее d'=0,074 м, что вполне допустимо.

После подстановок, вычислений и совместного решения уравнений (2) и (3) относительно $q_{2n}(z, t)$ получаем условие вероятности оплавления корки для турбулентного режима движения расплава

$$q_{2n}(z, t) \le (3200 + 34783\omega)\Delta T . \tag{7}$$

Это соотношение дает возможность оценки критических скоростей турбулентных потоков $\omega_{крит}$ при заданном перегреве расплава ΔT , достаточных для начала оплавления корки отливки. Решив уравнение (7) относительно $\omega_{крит}$, имеем:

$$\omega_{\rm KPHT} \ge \frac{q_{2n}(z,t)}{34783\Delta T} - 0,092 . \tag{8}$$

Результаты моделирования показали, что термоконвективные потоки расплава, возникающие в жидкой лунке отливки и действующие вдоль фронта кристаллизации, оказывают существенное влияние на формирование твердой корки вплоть до ее оплавления. Степень этого влияния зависит от характера распределения и интенсивности термоконвективных потоков. На рис. 6 приведены зависимости экспериментальных ω_{μ} и критических $\omega_{\mu, \kappa \rho \mu \tau}$ скоростей конвективных потоков, рассчитанные по уравнению (8), от времени формирования полой отливки в кристаллизаторе.

Анализ результатов подтвердил, что оплавление твердой корки происходит во всех зонах полой отливки. Наиболее интенсивному оплавлению корка подвергается в зоне *III* на выходе отливки из кристаллизатора. Здесь экспериментальные значения скоростей потоков расплава вдоль фронта кристаллизации $\omega_{\mu}=0,106-0,290$ м/с превышают критические $\omega_{\mu, крит}$ в 1,25–2,0 раза. При оплавлении рост корки замедляется, что приводит к нарушению стабильности процесса литья, возникновению частых прорывов расплава на выходе отливки из кристаллизатора и невозможности осуществлять вытяжку отливки с максимальными скоростями.

Результаты моделирования подтвердили необходимость оценки и учета степени влияния термоконвективного движения расплава на процесс затвердевания отливки для последующей разработки технологий и проектирования оборудования непрерывного литья заготовок машино- и станкостроения.

Литература

1. Афанасьева К.И., Иванцов Г.П. Моделирование разливки непрерывного литья // Сталь. 1958. №7. С. 599-603.

2. Акименко А.Д. Измерение скорости конвективных токов жидкого металла на гидравлических моделях // Изв. вузов. Черная металлургия. 1963. № 5. С. 179–183.

3. Исследование гидродинамики разливки стали в кристаллизаторы УНРС / А.Д. Акименко, А.И. Гуськов, А.А. Скворцов // Проблемы стального слитка. 1974. Вып. V. С. 649–653.

4. Особенности исследования процессов разливки жидких металлов на водяных моделях / А.Д. Акименко, А.А. Скворцов //Теплообмен между отливкой и формой. 1967. Вып. 1. С. 42–43.

Рис. 6. Зависимости экспериментальных ω_{μ} и критических $\omega_{\mu, \text{крит}}$ скоростей потоков от времени *t* формирования отливки в кристаллизаторе

5. Вейник А.И. Теория затвердевания отливки. М.: Машгиз, 1960.

6. Баландин Г.Ф. Основы теории формирования отливки. М.: Машиностроение, 1979. Ч. П.

7. Самойлович Ю.А., Крулевецкий С.А., Горяинов В.А., Кабаков З.К. Тепловые процессы при непрерывном литье стали. М.: Металлургия, 1982.

8. Расчет процесса затвердевания полой цилиндрической отливки при вертикальном непрерывном литье / Е.Б. Демченко, В.И. Тутов, В.А. Гринберг // Металлургия. 2004. Вып. 28. С. 86-93.

9. Марукович Е.И., Демченко Е.Б., Офенгенден А.А. Учет влияния теплоты перегрева расплава на формирование заготовки при вертикальном непрерывном литье // Металлургия машиностроения. 2006. №2. С. 7–11.

10. Боришанский В.М., Кутателадзе С.С., Новиков И.И., Федынский О.С. Жидкометаллические теплоносители. М.: Атомиздат, 1976.

11. Котешов Н.П., Свинолюбов Н.П. Расчет затвердевания отливок с учетом перегрева расплава // Изв. вузов. Черная металлургия. 1980. №3. С. 132–136.