

УДК 621.77

Поступила 31.07.2015

# РАЗРАБОТКА ТЕХНОЛОГИИ ПОЛУЧЕНИЯ АНОДНЫХ ШАРОВ DEVELOPMENT OF TECHNOLOGY FOR ANODE BALL PRODUCTION

Г. В. КОЖЕВНИКОВА, Физико-технический институт НАН Беларуси, г. Минск, Беларусь

*G. V. KOZHEVNIKOVA, Physical and Technical Institute of National Academy of Sciences of Belarus, Minsk, Belarus* 

Разработана технология производства медных анодных шаров методом поперечно-клиновой прокатки. Технология обеспечивает требования к анодным шарам по кристаллическому строению, форме и точности геометрических размеров.

Technology of copper anode balls manufacturing by means of cross-wedge rolling method is developed. The technology satisfies the requirements towards anode balls' crystalline structure, form and geometrical dimensions accuracy.

*Ключевые слова. Медные анодные шары, непрерывное литье, пластическое деформирование, структура меди. Keywords. Copper anode balls, continuous casting, plastic deformation, copper structure.* 

В данный момент медные анодные шары для электронной промышленности производятся в Корее, Японии, США, Финляндии. Формообразование шаров из Японии, Кореи и США осуществляется штамповкой на прессах, шаров из Финляндии – холодной поперечной прокаткой в винтовых калибрах. Геометрическая форма этих шаров отличается от сферической. После деформации шары из Японии подвергаются отжигу и обладают невысокой твердостью (табл. 1), что повысило их химическую растворимость и, как следствие, улучшило качество гальванических покрытий. Лучшими по качеству считаются шары, производимые в Японии. Шары из США и Финляндии не подвергаются отжигу, чем можно объяснить их высокую твердость и худшие эксплуатационные показатели. Размеры зерна шаров, производимых в Японии, составляют от 15 до 70 мкм.

Таблица 1. Технические характеристики медных анодных шаров производства Японии, США, Финляндии

| Страна изготовления | Твердость по Бринеллю НВ | Размеры зерна, мкм | Преобладающий размер зерна, мкм |
|---------------------|--------------------------|--------------------|---------------------------------|
| Япония              | 59                       | 15-70              | 20                              |
| США                 | 131                      | 7–60               | 30                              |
| Финляндия           | 110                      | 95–300             | 190                             |

В ГНУ «Физико-технический институт НАН Беларуси» разработана технология поперечно-клиновой прокатки (ПКП) шаров из меди. Предполагается использовать процесс непрерывного литья медных прутков из отходов производства, разработанный в ГНУ «Институт технологии металлов НАН Беларуси», для получения заготовок для медных анодных шаров для нанесения гальванического покрытия [1]. Химический состав полученных прутков анодной меди должен соответствовать содержанию элементов, приведенному в табл. 2.

Таблица 2. Химический состав медных анодных шаров для нанесения гальванического покрытия

| Cu    | Fe    | S     | Pb    | Sb    | Ni    | As    | Р         | 0     | Bi, Cd, Mn, Sn, Mg, Se, Te, Zn |
|-------|-------|-------|-------|-------|-------|-------|-----------|-------|--------------------------------|
| 99,94 | 0,001 | 0,001 | 0,001 | 0,001 | 0,001 | 0,001 | 0,04-0,07 | 0,001 | 0,001                          |

Основными требованиями, предъявляемыми к медным анодам, являются химический состав, кристаллическое строение, форма (шары, цилиндрические полосы и т. д.), чистота поверхности, точность геометрических размеров [2].

## ALITE II METRAAYOFUR / 119 3 (80), 2015



Рис. 1. Структура анодной меди после непрерывного литья (размеры зерен – от 500 до 1500 мкм, преобладающий размер зерна – 1000 мкм)



Рис. 2. Варианты осуществления новой технологии ПКП шаров из меди диаметром 45 мм

Для получения мелкозернистой структуры на стадии разливки планируется максимальное переохлаждение расплава меди в кристаллизаторе; перемещение образовавшегося слитка в систему вторичного охлаждения уже на втором-третьем этапе литья прутка (первый этап – охлаждение в кристаллизаторе).

Структура меди, полученной непрерывным литьем, имеет крупнокристаллическое строение, величина зерна 500–1500 мкм (рис. 1).

На рис. 2 показаны два варианта осуществления новой технологии ПКП шаров из меди диаметром 45 мм. В первом варианте (рис. 2, *a*) заготовку традиционно получают из медного прутка рубкой и поштучно подают в стан ПКП. Формообразование шаров происходит путем перераспределения металла вдоль оси заготовки движущимся поперек оси плоским клиновым инструментом [3, 4]. На заключительной стадии ПКП происходит отрезка концевых отходов отрезными ножами инструмента.

Во втором варианте (рис. 2, б) в технологическую линию перед станом ПКП встраивается машина планетарного разделения конструкции ФТИ НАН Беларуси [5–7]. В машину подается медный пруток. Двумя валками, совершающими планетарное вращение, в процессе пластического деформирования отрезается мерная цилиндрическая заготовка, имеющая конические торцы. Пруток при этом не вращается, вследствие чего нет ограничений по его длине и кривизне. Затем на стане ПКП выполняется операция пластического формообразования. При этом металл торцевых конусов заполняет объем утяжины, кото-

### **120**/ ALITER LA METRAA YOFUA 3 (80), 2015



Рис. 3. Шары медные, полученные на стане ПКП



Рис. 4. Структура меди после деформации на 80 % и рекристаллизационного отжига (размеры зерен – 3–15 мкм, преобладающий размер зерна – 7 мкм)

рая образовалась бы при традиционной прокатке заготовки с плоскими торцами (рис. 2, *a*). Второй вариант обеспечивает значительное уменьшение объема концевых отходов, что соответственно увеличивает коэффициент использования металла и позволяет работать прямо от прутка без существенных ограничений по его длине и кривизне.

Объем производства анодных шаров на стане ПКП (рис. 3) при одновременной прокатке четырех шаров обеспечивает производство на нем до 2000 т шаров в год.

Используемый процесс непрерывного литья медных прутков из отходов производства для получения заготовок для медных анодных шаров обеспечивает требования к анодным шарам по химическому составу, но структура меди, полученной непрерывным литьем, имеет крупнокристаллическое строение (см. рис. 1). Проведено исследование влияния пластического деформирования [8–10] на структурообразование меди с целью прогнозирования эксплуатационных характеристик изделий за счет создания оптимальных схем пластического деформирования меди, полученной непрерывным литьем.

Пластическая деформация отлитой меди осуществлена двумя вариантами: на трехвалковом стане винтовой прокатки и равноканальным угловым прессованием (РКУ).

Трехвалковый стан винтовой прокатки обеспечивает уменьшение диаметра отлитого слитка и соответственно увеличение длины. Пластическая деформация литого образца вносит дефекты в кристаллическую решетку меди и при последующем отжиге происходит рекристаллизация зерен с уменьшением их размера.

Величину накопленной пластической деформации определяет степень деформации сдвига Л. Для прокатки степень деформации сдвига определяется по формуле [2]:

$$\Lambda = 2\sqrt{3}\ln\frac{d_0}{d_1},\tag{1}$$

где  $d_0, d_1$ - соответственно диаметр слитка до и после прокатки, мм.

Структура анодной меди после прокатки с обжатием 80% и последующим рекристаллизационным отжигом показана на рис. 4. Размеры зерна в этом случае находятся в диапазоне 3–15 мкм.

Равноканальное угловое прессование – технология, сейчас известная в мире под названием ЕСАР, заключается в продавливании образца из одного канала в другой равного сечения и расположенного к первому под углом в пределах от 90 до 180°. Этот процесс обеспечивает пластическую деформацию без изменения диаметра отлитого прутка. Возможно многократное продавливание прутка через устройство прессования с суммированием деформации за каждый цикл нагружения. Так, один цикл нагружения обеспечивает степень деформации 68%, два цикла нагружения – 90%.

По плоскости стыка каналов в образце происходит сдвиг, степень деформации которого равна [2]:

$$\Lambda = 2 \operatorname{ctg} \frac{\varphi}{2}, \qquad (2)$$

где ф – угол между каналами.



Рис. 5. Структура анодной меди после восьми циклов равноканального углового прессования и отжига (Λ = 16) (размеры зерен – 1–12 мкм, преобладающий размер зерна – 5 мкм)

При деформировании РКУ литой меди цилиндрический образец продавливали из одного цилиндрического канала в другой цилиндрический канал того же диаметра, расположенный под углом 90° к первому. За один цикл при  $\varphi = 90^{\circ}$  образец, не меняя своего сечения, накапливал деформацию  $\Lambda = 2$ .

Структура анодной меди после восьми циклов РКУ и отжига ( $\Lambda = 16$ ) показана на рис. 5. Размеры зерна в этом случае находятся в диапазоне 1–12 мкм.

По данным исследования, построена зависимость размеров зерна после холодной пластиче-



Рис. 6. Зависимость размеров зерна анодной меди от пластической деформации с последующим рекристаллизационным отжигом: 1 – максимальный размер зерна; 2 – преобладающий размер зерна; 3 – минимальный размер зерна; А – горячая деформация на 46% без отжига; Б – горячая деформация на 75% без отжига



Рис. 7. Зависимость размеров зерна анодной меди от предельной степени деформации сдвига Л

ской деформации и последующим рекристаллизационным отжигом от степени деформации (рис. 6). Получение зерна размером 7–35 мкм достигается после деформации 77% или двух циклов РКУ (что соответствует степени деформации 90%). На рис. 7 показана полученная зависимость размеров зерна непрерывнолитой меди после холодной пластической деформации с последующим рекристаллизационным отжигом от накопленной деформации.

Зависимость размеров зерна от накопленных деформаций (обжатия б%) может быть аппроксимирована выражением:

$$\ln A = B - n \ln \left( \delta_{\frac{1}{2}} \right), \tag{3}$$

где A – размер зерна, мкм; B, n – постоянные величины для каждого материала, для анодной меди B = 14,73, n = 2,76.

Формула справедлива при обжатиях от 20 до 80%.

Таким образом, создание оптимальных схем пластического деформирования меди, полученной непрерывным литьем, позволяет управлять структурообразованием меди и получать структуры, определяющие высокие эксплуатационные характеристики изготавливаемых изделий. Разработанная технология производства медных анодных шаров методом ПКП обеспечивает требования к анодным шарам по кристаллическому строению, форме и точности геометрических размеров.

#### Литература

1. Марукович Е. И., Маточкин В. А., Чудаков С. Р., Брановицкий А. М. и др. Непрерывное литье медных анодов для нанесения гальванического покрытия при производстве металлокорда // Литье и металлургия. 2006. № 3. С. 67–72.

2. K o z h e v n i k o v a G. Cross-wedge rolling. Minsk: Belorusskaya nauka, 2012. 321 c.

3. Щ у к и н В. Я. Основы поперечно-клиновой прокатки. Минск: Наука и техника, 1986. 223 с.

4. К о ж е в н и к о в а Г. В. Условия устойчивого протекания поперечной и поперечно-клиновой прокаток // Вест. Белорус.-Рос. ун-та. 2009. № 1 (22). С. 44–53. 5. К о ж е в н и к о в а Г. В. Теория и практика поперечно-клиновой прокатки. Минск: Беларуская навука, 2010. 291 с.

6. Щукин В. Я., Кожевникова Г. В., Рудович А. О. Новое в поперечно-клиновой прокатке // Кузнечноштамповочное производство. 1999. № 3. С. 35–37.

7. Shchukin V. Y., Kozhevnikova G. V., Petrenko V. V. Cross-wedge rolling at PTI NAS Belarus // Applied Mechanics and Materials. 2012. Vol. 201–202. P. 1198–1202.

8. К о ж е в н и к о в а Г. В. Построение эпюр контактных напряжений на границе инструмент–заготовка при поперечной прокатке // Трение и износ. 2005. Т. 26, № 1. С. 94–99.

9. Клушин В. А., Макушок Е. М., Щукин В. Я. / Под ред. В. В. Клубовича. Совершенствование поперечноклиновой прокатки. Минск: Наука и техника, 1980. 280 с.

10. К о ж е в н и к о в а Г. В. Исследование кинематики течения металла при поперечно-клиновой прокатке с использованием компьютерного моделирования // Весці НАН Беларусі. Сер. фіз.-тэхн. навук. 2013. № 1. С. 47–53.

#### References

1. Marukovich E. I., Matochkin V. A., Chudakov S. R., Branovickij A. M. idr. Nepreryvnoe lit'e mednyh anodov dlja nanesenija gal'vanicheskogo pokrytija pri proizvodstve metallokorda [Cooper ball continuous casting for electrodeposited coating at metal cord production]. *Lit'e i metallurgija – Foundry production and metallurgy*, 2006, no. 3, pp. 67–72.

2. K o z h e v n i k o v a G. Cross-wedge rolling. Minsk, Belorusskaya nauka Publ., 2012, 321 p.

3. Sh c h u k i n V. Y. *Osnovy poperechno-klinovoj prokatki* [Basics of Cross-Wedge Rolling]. Minsk, Nauka i tehnika Publ., 1986. 223 p.

4. K o z h e v n i k o v a G. V. Uslovija ustojchivogo protekanija poperechnoj i poperechno-klinovoj prokatok [Conditions of stable flow of cross rolling and cross-wedge rolling]. *Vestnik Belorussko-Rossijskogo universiteta – Bulletin of the Belarusian-Russian University*, 2009, no. 1 (22), pp. 44–53.

5. K o z h e v n i k o v a G. V. *Teorija i praktika poperechno-klinovoj prokatki* [Theory and practice of cross-wedge rolling]. Minsk, Belaruskaya navuka Publ., 2010, 291 p.

6. Sh ch u k i n V. Y., K o z h e v n i k o v a G. V., R u d o v i ch A. O. Novoe v poperechno-klinovoj prokatke [News of cross-wedge rolling]. *Kuznechno-shtampovochnoe proizvodstvo – Forging and Stamping Production. Material Working by Pressure*, 1999, no. 3, pp. 35–37.

7. Shchukin V.Y., Kozhevnikova G.V., Petrenko V.V. Cross-wedge rolling at PTI NAS Belarus. Applied Mechanics and Materials, 2012, vol. 201–202, pp. 1198–1202.

8. K o z h e v n i k o v a G. V. Postroenie jepjur kontaktnyh naprjazhenij na granice instrument–zagotovka pri poperechnoj prokatke [Construction of contact stress diagrams at the 'tool – billet' border at cross rolling]. *Trenie i iznos – Friction and Wear*, 2005, vol. 26, no. 1, pp. 94–99.

9. Klushin V.A., Makushok E. M., Shchukin V.Y. Sovershenstvovanie poperechno-klinovoj prokatki [Upgrading of cross-wedge rolling]. Minsk, Nauka i tehnika Publ., 1980, 280 p.

10. K o z h e v n i k o v a G. V. Issledovanie kinematiki techenija metalla pri poperechno-klinovoj prokatke s ispol'zovaniem komp'juternogo modelirovanija [Study of kinematics of metal flow at cross-wedge rolling with the help of computer simulation]. *Vesci Natsianalnay akademii nauk Belarusi. – Seria fizika-tekhicheskich nauk – Proceedings of National Akademy of Sciences of Belarus, Seriya Physical and Technical Sciences*, 2013, no. 1, pp. 47–53.

#### Сведения об авторе

Кожевникова Гражина Валерьевна, канд. техн. наук, ведущий научный сотрудник лаборатории предельной деформируемости ГНУ «Физико-технический институт НАН Беларуси». Ул. Купревича, 10, Минск, Республика Беларусь, fti@tut.by, тел. +375 17 2635972, +375 29 6648309.

#### Information about the authors

Kozhevnikova Grazhina, Ph. D In Engineering, Senior Researcher of the Ultimate Deformation Laboratory of SSI «The Physical and Technical Institute of National Academy of Sciences of Belarus». Str. Kuprevich, 10, Minsk, Republic of Belarus, fti@tut.by, tel. +375 17 2635972, +375 29 6648309.