И. Г. Лазаревич, В. И. Кузменков, И. П. Вопнярский К ВОПРОСУ О РАЗДЕЛЬНЫХ СТЕНКАХ НА БЫСТРОТОКАХ

На широких быстротоках входная часть делится быками на пролеты. В некоторых случаях в пределах верхней части длины быстротока устраиваются раздельные стенки, являющиеся продолжением быков. Расчет сопряжения в нижнем бьефе быстротока обычно выполняется при условии работы всех пролетов на пропуск расчетного расхода. В подобных случаях имеет место сопряжение потоков в условиях плоской задачи. В процессе эксплуатации таких сооружений возможен пропуск воды через отдельные пролеты. Сопряжение потока в нижнем бьефе при этом осуществляется в условиях пространственной задачи. Пространственное сопряжение бьефов может сопровождаться образованием сбойного течения. Интенсивность сбойного течения зависит от характера распределения удельных расходов в сечении перед гидравлическим прыжком.

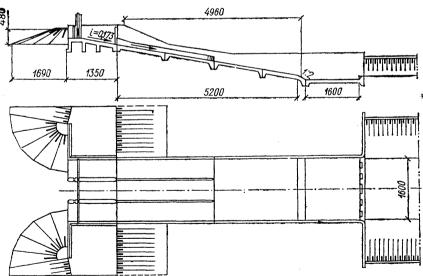


Рис. 1. План и продольный разрез по оси быстротока.

Для изучения влияния раздельных стенок на гидравлический режим в пределах водоската и в нижнем бьефе нами были проведены лабораторные исследования на модели водосброса, выполненного по типу быстротока, запроектированного институтом «Белгипроводхоз». Общая схема и основные размеры водосброса представлены на рис. 1. Модель,

установленная в лотке шириной 1,55 м и длиной 9,0 м, была выполнена в масштабе 1:25 и включала в верхнем бьефе сопрягающие конуса и участок водохранилища с горизонтальным дном длиной 18 м, а в нижнем бьефе — участок отводящего канала длиной 90 м.

Опыты проводились при наличии и отсутствии на водоскате раздельных стенок и различной комбинации работы отдельных пролетов. Глубина нижнего бъефа устанавливалась в соответствии с пропускаемым расходом по кривой расходов.

Рис. 2. Движение потока на быстротоке.

Установлено, что при полностью открытых пролетах и различных напорах вследствие сжатия потока при входе в оголовок быстротока в верхней части водоската наблюдаются линии повышения, образующие ромбовидную фигуру в плане. На последующем участке водоската происходит выравнивание глубин в поперечном сечении, и только от низовой кромки раздельных стенок образуются линии повышения, расходящиеся в плане. Гидравлический прыжок начинался в нижней части водоската; длина прыжка увеличивалась с увеличением напора.

Общий характер движения потока на водоскате и в водобойном колодце для расчетного напора $H\!=\!2,5$ м характеризуется рис. 2. При работе трех пролетов с одинаковым открытием их и при наличии раздельных стенок также имеет место симметричное движение потока в пределах водоската и водобойного колодца.

Однако при различной комбинации работы одного или двух пролетов (как при полном их открытии, так и при маневрировании затворами) раздельные стенки препятствуют растеканию потока, в результате чего удельный расход перед прыжком различен. Это приводит к образованию косых прыжков, за которыми наблюдается сбойность течения значительной интенсивности, сопровождающаяся образованием водоворотов в водобойном колодце и на рисберме. На рис. 3 показан характер движения потока на водоскате и в водобойном колодце при открытии среднего пролета и напоре H = 2,5 м. Таким образом, наличие раздельных стенок на водоскате не допускает пропуска расходов неполным водосливным фронтом.

В случае отсутствия раздельных стенок и работе одного или двух пролетов наблюдалось растекание потока на водоскате. При расчетном

напоре и различном открытии затвора среднего пролета сопряжение потока происходило с гидравлическим прыжком, надвинутым на водоскат. В этих опытах фронт прыжка располагался нормально к оси симметрии потока.

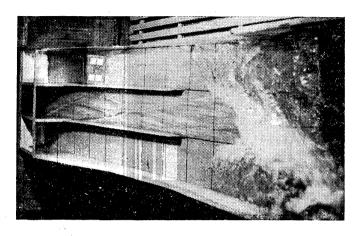


Рис. 3. Движение потока на быстротеке при открытии среднего пролета и наличии раздельных стенок.

На рис. 4 представлен общий характер движения потока при полном открытии среднего пролета. Изменение глубины на участке свободного растекания потока в пределах водоската для различных попереч-

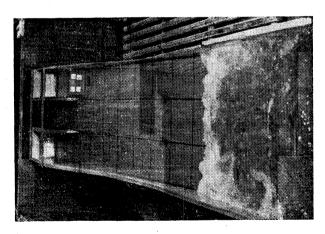


Рис. 4. Движение потока на быстротоке при полном открытии среднего пролета и отсутствии раздельных стенок.

ников в рассмотренном опыте представлено на рис. 5. Здесь же приведена эпюра удельных расходов в сечении перед прыжком. Удельные расходы вычислялись исходя из замеренных в опыте одноточечным способом скоростей на каждой вертикали. В табл. 1 приводятся значения скоростей, глубин и удельных расходов на различных вертикалях в сечении перед прыжком, отстоящем от начала водоската на расстоянии 45,7 м.

Таблица 1

	Расстояние от оси, м	Средняя скорость v , $M/ce\kappa$	Глубина потока <i>h</i> , м	Удельный расход, q , $m^2/ce\kappa$
справа	7,75	8,25	0,37	3,05
	6,50	9,85	0,33	3,26
	5,25	10,05	0,16	1,61
	4,00	9,65	0,15	1,45
	2,75	10,55	0,18	1,90
	1,50	10,3	0,16	1,65
Ось		10,1	0,12	1,21
слева	1,50	10,25	0,18	1,84
	2,75	10,95	0,15	1,64
	4,00	9,25	0,14	1,30
	5,25	9,9	0,11	1,09
	6,50	9,3	0,31	2,88
	7,75	8,2	0,32	2,63

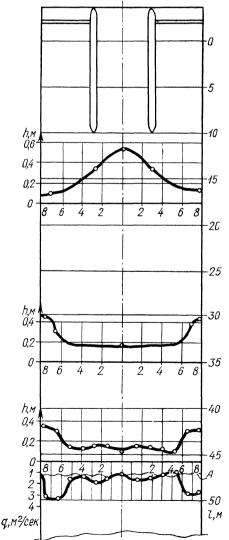


Рис. 5. Распределение глубин и удельных расходов на быстротоке при работе среднего пролета и отсутствии раздельных стенок: A — фронт гидравлического прыжка.

Как видно, в сечении перед прыжком на участках, примыкающих к боковым стенкам быстротока, наблюдаются большие глубины потока, чем в средней части. Увеличение глубины на участках рассматриваемого сечения сопровождается соответственным увеличением удельных расходов.

Неравномерность распределения удельных расходов перед прыжком обусловливает характер движения потока за прыжком. В рассматриваемом опыте в водобойном колодце на участках, прилегающих к боковым имели место более значистенкам, тельные скорости, а в средней части наблюдалась застойная область, в которой возникали водовороты слабой интенсивности с периодичеизменяющимся направлением. На выходе из водобойного колодца скорости практически выравнивались. На начальном участке отводящего канала наибольшие скорости наблюдались по оси канала.

В случае работы двух крайних пролетов по схеме истечения из-под щита при открытии затворов на $0.5 \, M$ $(0.2 \, H)$ и $1.0 \, M$ $(0.4 \, H)$ в нижнем

бьефе сбойность течения практически отсутствовала, а при полном их открытии наблюдалась сбойность значительной интенсивности. Это свидетельствует о том, что увеличение расхода двух крайних пролетов приводит к более неравномерному распределению удельных расходов перед прыжком.

При работе одного крайнего или двух смежных пролетов, включая и маневрирование их затворами, сопряжение потока в конце водоската осуществлялось посредством косых гидравлических прыжков, что приводило к сбойности течения в нижнем бьефе. Интенсивность сбойности возрастала с увеличением расхода.

Растекание в пределах водоската приводит к уменьшению глубины потока и удельного расхода. Так, при работе трех пролетов и расчетном напоре глубина потока перед прыжком составляла $0,43\,$ м, г удельный расход $5,75\,$ $m^2/ce\kappa$, тогда как при работе среднего пролета (табл. 1) по оси симметрии потока эти величины соответственно равнялись $0,12\,$ м и $1,21\,$ $m^2/ce\kappa$. Несмотря на уменьшение удельного расхода при растекании потока, скорость перед прыжком уменьшается незначительно. Так, в первом случае скорость составляет $13,4\,$ $m/ce\kappa$, а во втором — $10,1\,$ $m/ce\kappa$.

Выводы

- 1. Раздельные стенки на водоскате не оказывают влияния на характер сопряжения потока в нижнем бъефе при одинаковом открытии всех пролетов.
- 2. При наличии раздельных стенок работа отдельными пролетами, включая маневрирование затворами, недопустима, так как приводит к явно выраженному сбойному течению в нижнем бьефе.
- 3. В случае отсутствия раздельных стенок на водоскате сбойности течения в нижнем бьефе практически не существует во всех диапазонах открытия среднего пролета или двух крайних при одинаковом открытии их затворов на величину не более 0,4 *H*. При полном же открытии двух крайних пролетов в нижнем бьефе имеет место значительная сбойность течения.
- 4. Пропуск расходов через один крайний или два смежных пролета без раздельных стенок на водоскате не может быть рекомендован в связи с возникновением сбойного течения в нижнем бьефе.