УДК 621.311

AHTPOПОГЕННОЕ ВОЗДЕЙСТВИЕ НА РЕЧНОЙ СТОК ANTHROPOGENIC IMPACT ON RIVER FLOW

Д.А. Панкратов, А.О. Боровикова
Научный руководитель – В.А. Романко, старший преподаватель
Белорусский национальный технический университет, г. Минск
D. Pankratov, A. Borovikova
Supervisor – V. Romanko, Senior Lecturer
Belarusian national technical university, Minsk

Аннотация: В статье исследуется влияние антропогенных потребителей пресной воды на поверхностные источники.

Annotation: The article examines the influence of anthropogenic freshwater consumers on surface sources.

Ключевые слова: река, водопотребление, эффективность.

Key words: river, water consumption, efficiency.

Введение

Вода является основой жизни и важнейшим ресурсом на планете. Её роль переценить невозможно, так как благодаря уникальным свойствам воды, а именно свойству накапливать тепло, она является идеальным теплоносителем. Однако нерациональное использование этого ресурса может привести к пересыханию рек и озёр, что, в свою очередь, может стать причиной к остановке в работе многих энергетических предприятий.

Основная часть

Цель данного исследования заключается в анализе деятельности энергетических предприятий, использующих воду, и выявлении взаимосвязи между объёмом воды в поверхностном источнике и уровнем возможного потребления энергии населённым пунктом. Кроме того, изучить технологии, позволяющие более рационально использовать водные ресурсы без ущерба для окружающей среды. В завершение выявить тенденции в развитии технологий, направленных на повышение эффективности водозабора.

Предметом исследования является свойство потребителей воды, направленное на более эффективное и экономичное её использование.

Объект исследования данной статьи – поверхностные источники воды, которые могут быть использованы в технологическом процессе, а также рассматриваются основные предприятия, потребляющие воду в промышленных масштабах, численность населения и основные области использования пресной воды.

Сейчас почти 45% жителей планеты испытывают проблемы с доступом к пресной воде, поэтому, в данной теме проводится множество исследований направленные на сохранение водного баланса в мире. Так же, следует отметить, что в настоящее время более 2 миллиардов человек пьют воду, не соответствующую СанПиН. К 2035 году около 900 миллионов человек могут столкнуться с нехваткой воды и стать вынужденными переселенцами.

Соответственно, в регионах, в которых есть недостаток воды для бытовых нужд населения, строительство электрических станций невозможно. Основные исследователи в этой сложной теме являются [1]:

- ЮНЕСКО это организация, занимающаяся проблемами водных ресурсов, а также защищает их от антропогенных загрязнений.
- Всемирный банк это международная организация, которая инвестирует огромные средства в разработку новых технологий для защиты водных источников и более экономичного их использования.
- Международный союз охраны природы это организация, которая борется за очищение непригодных источников пресной и морской воды.
- Greenpeace это глобальная некоммерческая организация, которая борется за защиту окружающей среды и экологическую ответственность.
- Всемирная организация здравоохранения международная организация, которая занимается вопросами здравоохранения, а, следовательно, выступает за потребления чистой воды.

В ходе исследования изучены потребности населения и предприятий в пресной воде, а также возможности обеспечения их этим ресурсом из открытых источников, составлен график, который показывает, как с увеличением населения растет потребность в пресной воде [2].

С увеличением численности населения и растёт энергопотребление и, следовательно, количество потребляемой воды (рис. 1).

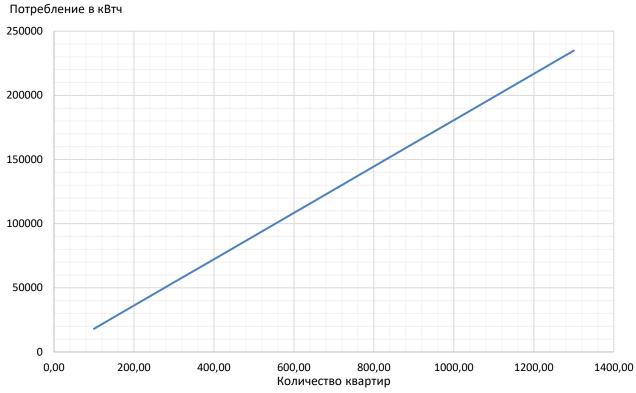


Рисунок 1 – Зависимость потребления кВт ч от количества квартир

Из этого графика видно, как количество квартир влияет на количество производимых кВт·ч. В таблице ниже показано отношение производимых кВт·ч

к количеству потребляемой воды, в зависимости от давления пара на входе в турбину.

Таблица 2 – Отношения воды к кВт ч в зависимости от давления пара	[3	3	1
---	----	---	---

Параметры	Удельный расход технической воды при выработке энергии		Параметры	Удельный расход технической воды при выработке энергии	
пара, МПа	Электрической, м ³ /(МВт·ч)	Тепловой, м ³ /Гкал	пара, МПа	Электрической, м ³ /(МВт·ч)	Тепловой, м ³ /Г кал
Для КЭС:			Для ТЭЦ:		
			3,4	9,4	0,49
8,8	6,86	-	8,8	5	0,42
12,7	5,81	-	12,7	3,88	0,42
23,5	4,96	-	23,5	2,94	0,386

Чем выше давление и температура пара на входе в турбину, тем большее количество тепла пар отдаст в конденсаторе охлаждающей воде и, следовательно, тем больше будет расход технической воды (рис. 2).

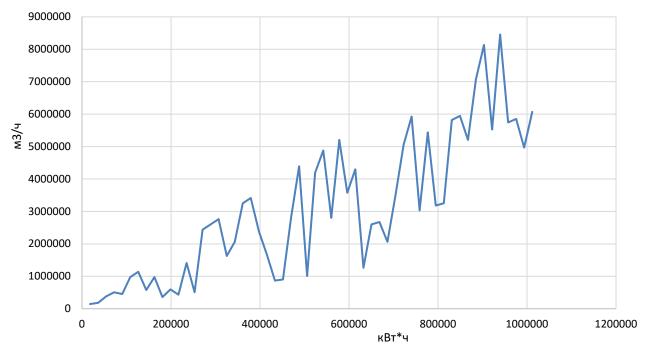


Рисунок 2 – Количество потребляемой воды в зависимости от потребляемой энергии в кВт-ч

Заключение

В заключение следует подчеркнуть, что рациональное использование водных ресурсов имеет ключевое значение для сохранения окружающей среды и обеспечения устойчивого развития человечества. Необходимо принимать эффективные меры по экономии воды, такие как установка счётчиков, ремонт кранов и устранение утечек, а также повышение экологической осведомлённости населения. Только совместные усилия и ответственное отношение к водным ресурсам позволят сохранить нашу планету для будущих поколений.

Литература

1. Компетентные организации для решения проблемы с недостатком и качеством воды [Электронный ресурс] / Компетентные организации для решения

проблемы с недостатком и качеством воды. – Режим доступа: https://мочур.pф/blog/kompetentnye-organizacii-dlya-resheniya-problemy-s-nedostatkom-i-kachestvom-vody /. – Дата доступа: 21.10.2024.

- 2. Социальная норма 250 кВт·ч в месяц. В Минэнерго привели расчёты на примере электроприборов [Электронный ресурс] / Социальная норма 250 кВт·ч в месяц. В Минэнерго привели расчёты на примере электроприборов. Режим доступа: https://www.gazeta.uz/ru/2022/06/13/energy-limits /. Дата доступа: 21.10.2024.
- 3. Вода в предприятиях теплоэнергетики [Электронный ресурс] / Вода в предприятиях теплоэнергетики. Режим доступа: https://ros-pipe.ru/tekh_info/tekhnicheskie-stati/vodoprovodnye-sistemy-i-oborudovanie/otraslevye-resheniya/voda-v-predpriyatiyakh-teploenergetiki /. Дата доступа: 21.10.2024.