УДК 535.327, 535.012

ТЕМПЕРАТУРНЫЕ КОЭФФИЦИЕНТЫ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ МОНОКЛИННЫХ КРИСТАЛЛОВ КУbxY1-x(WO4)2

Юмашев К. В.¹, Гурецкий С. А.², Карпинский Д. В.², Труханова Е. Л.², Герцова А. В.¹

¹Белорусский национальный технический университет ²ГО «НПЦ НАН Беларуси по материаловедению» Минск, Республика Беларусь

Аннотация. Получены зависимости температурных коэффициентов показателей преломления для поляризаций света вдоль осей N_p, N_m и N_g оптической индикатрисы от коэффициента стехиометрии х моноклинных кристаллов KYb_xY_{1-x}(WO₄)₂.

Ключевые слова: моноклинные кристаллы, температурные коэффициенты показателей преломления, метода отклонения лазерного пучка.

THERMO-OPTIC COEFFICIENTS OF MONOCLINIC KYb_xY_{1-x}(WO₄)₂ Yumashev K.¹, Guretskii S.², Karpinsky D.², Trukhanova E.², Hertsova A.¹

¹Belarusian National Technical University ²SSPA "Scientific Practical Materials Research Center of NAS of Belarus" Minsk, Republic of Belarus

Abstract. The dependences of the thermo-optic coefficients for light polarizations along the N_p , N_m , and N_g axes of the optical indicatrix on the stoichiometry coefficient x of monoclinic $KYb_XY_{1-X}(WO_4)_2$ crystals were obtained. **Key words:** monoclinic crystals, thermo-optic coefficients, laser beam deviation technique.

Адрес для переписки: Юмашев К. В., пр. Независимости, 65/17, г. Минск 220113, Республика Беларусь e-mail: kyumashev@bntu.by

В настоящей работе исследованы температурные коэффициенты показателя преломления dn/dT моноклинных кристаллов калий-иттриевых вольфраматов, активированных ионами иттербия KYb_xY_{1-x}(WO₄)₂. Данные кристаллы являются высокоэффективными лазерными активными средами, генерирующими в спектральной области 1 мкм. Радиусы ионов иттрия Y³⁺ и иттербия Yb³⁺ близки (1,019 Å и 0,985 Å соответственно), что дает возможность непрерывного легирования кристалла KY(WO₄)₂ (коэффициент стехиометрии x = 0) ионами Yb³⁺, в конечном итоге получая кристалл KYb(WO₄)₂ (x = 1,0).

Кристаллы КҮb_xY_{1-x}(WO₄)₂ выращивались модифицированным методом Чохральского, детально описанным в [1]. Температурные коэффициенты dn/dT определялись с помощью метода отклонения лазерного пучка в среде с линейным градиентом температуры. Этот метод основан на измерении угла отклонения в лазерного луча, прошедшего через образец в форме прямоугольного параллелепипеда, в котором создан линейный градиент температуры. По полученным значениям угла θ находится термический коэффициент оптического пути W. Величина W в данном эксперименте определяется формулой W = dn/dT+ $\alpha(n - 1)$, где α – температурный коэффициент линейного расширения материала в направлении распространения света, а n - его показатель преломления для соответствующей длины волны света λ и поляризации Е лазерного пучка. Поэтому в итоге температурный коэффициент dn/dT определяется по формуле $dn/dT = W - \alpha(n-1)$, в которой используются известные данные по коэффициенту α и показателю *n*. Погрешности в измерении *W* и d*n*/d*T* составили ~0,5·10⁻⁶ K⁻¹ и ~0,6·10⁻⁶ K⁻¹ соответственно. Детальное описание данного метода и процедуры измерения можно найти в [2, 3].

Моноклинные кристаллы KYb_xY_{1-x}(WO₄)₂ относятся к пространственной группе симметрии С2/с и являются двуосными средами. В соответствии с этим оптические свойства этих кристаллов описываются оптической индикатрисой с тремя ортогональными главными осями N_p, N_m и N₉. При этом между главными показателями преломления n_p , n_m и n_g (для поляризаций света $E//N_p$, E/N_m и E/N_g соответственно) выполняется условие $n_p < n_m < n_g$. Ось N_p параллельна кристаллографической оси b, а оси N_m и N_g лежат в плоскости кристаллографических осей а и с. Поэтому для измерений коэффициентов dn_i/dT (i = p, m, g) были приготовлены по три образца для каждого стехиометрического состава x = 0, 0,05, 0,1, 0,2, 0,5 и 1,0. Образцы имели форму прямоугольных параллелепипедов с размерами $5,6 \times 7,0 \times 8,6$ мм³ (x = 0), $8,0\times7,0\times8,5$ MM³ (x = 0,05), $8,0\times7,0\times8,6$ MM³ (x = 0,1), 8,0×7,0×8,5 MM^3 (x = 0,2), 8,0×7,0×9,1 MM^3 (x = 0,5) и 8,1×7,0×9,1 мм³ (x = 1,0), ориентированными вдоль осей N_p , N_m и N_g соответственно [рис. 2 (б)]. Ориентация образцов достигалась путем идентификации оси b кристалла с помощью рентгеновского просвечивания образцов в геометрии обратного рассеяния Лауэ с точностью 0,2°. Далее приготавливались образцы с гранями, перпендикулярными направлению *b*//*N_p*, и определялось направление осей N_m и N_g путем выявления направлений гашения света (с точностью 0,5°) при просмотре образцов, помещенных между скрещенными поляризаторами, вдоль оси *b*. Содержание иттербия в выращенных кристаллах измеряли методом рентгеновской флуоресценции с использованием эталонных образцов. Относительный разброс концентрации иттербия в объеме исследуемых кристаллов в зависимости от уровня легирования составлял 0,3–0,7 %. Измерения проводились на длине волны 1,06 мкм. В таблице 1 приведены значения термического коэффициента оптического пути W измеренные для различных направлений распространения k и поляризации E света. Значения W характеризуются сильной анизотропией, отличаясь как по абсолютной величине, так и по знаку для различных сочетаний направлений k и E. При этом для фиксированных направлений k и E термический коэффициент оптического пути возрастает с увеличением коэффициента стехиометрии х кристалла.

Таблица 1 – Термические коэффициенты оптического пути (10⁻⁶ K⁻¹) для кристаллов KYb_xY_{1-x}(WO₄)₂, измеренные на длине волны 1,06 мкм при различных направлениях распространения *k* и поляризаций *E* света

Коэффициент	k //N _p		k //Nm	k //Ng						
стехиометрии, х	$E //N_m$	$E //N_g$	E / N_p	$E //N_g$	$E //N_p$	$E //N_m$				
0	-6,2	-10,2	-4,8	-1,2	0,58	6,2				
0,05	-6,0	-10,1	-4,6	-1,0	0,64	6,5				
0,1	-5,3	-9,9	-4,1	-0,97	0,69	6,9				
0,2	-5,2	-9,7	-3,6	-0,43	1,1	7,5				
0,5	-4,1	-8,9	-3,4	0,48	1,3	8,0				
1,0	-2,0	-7,5	-1,8	2,7	2,4	9,7				

Таблица 2 – Температурные коэффициенты показателей преломления dn/dT (10⁻⁶ K⁻¹) для кристаллов KYb_xY_{1-x}(WO₄)₂, измеренные на длине волны 1,06 мкм при различных направлениях распространения k и поляризаций E света, x – коэффициент стехиометрии

x	$E //N_p$		$E //N_m$	<i>E</i> // <i>N</i> _m		E // N_g		значения, усредненные по направлению <i>k</i>		
	k / N_m	k / N_g	$k //N_p$	k / N_g	k / N_p	k / N_m	$E //N_p$	$E //N_m$	E // N_g	
0	-16,0	-15,4	-9,6	-10,4	-13,8	-13,4	-15,7	-10,0	-13,6	
0,05	-15,9	-15,3	-9,45	-10,1	-13,7	-13,3	-15,6	-9,8	-13,5	
0,1	-15,4	-15,2	-8,8	-9,6	-13,5	-13,3	-15,3	-9,2	-13,4	
0,2	-14,9	-14,7	-8,7	-8,9	-13,3	-12,9	-14,8	-8,8	-13,1	
0,5	-14,8	-14,2	-7,6	-8,2	-12,6	-12,4	-14,5	-7,9	-12,5	
1,0	-13,3	-12,7	-5,6	-6,0	-11,3	-10,9	-13,0	-5,8	-11,1	

На рисунок 1 показана зависимость термических коэффициентов оптического пути от коэффициента стехиометрии х для различных направлений распространения *k* и поляризаций *E* света. Зависимость *W* от х достаточно хорошо описывается линейной зависимостью для каждой пары направлений *k* и *E*.

Температурные коэффициенты показателей преломления для поляризаций света *E*//*N_p*, *E*//*N_m* и *E*//*N_g* определялись по формуле

$$\frac{dn_i}{dT} = W_{ij} - \alpha_j (n_i - 1),$$

где $(i \neq j)$, индекс i = p, *m*, *g* соответствует поляризации света, а индекс j = p, *m*, *g* – направлению распространения света *k*. При этом использовались полученные ранее для кристаллов КУb_xY_{1-x}(WO₄)₂ значения температурных коэффициентов линейного расширения по наклону линейной зависимости, описывающей теплового расширения материала:

$$\begin{aligned} \alpha_p &= (3.42 + 0.08x) \ 10^{-6} \ K^{-1}, \\ \alpha_m &= (11.60 + 1.00x) \ 10^{-6} \ K^{-1}, \\ \alpha_g &= (16.49 - 1.30x) \ 10^{-6} \ K^{-1} \ [1]. \end{aligned}$$

Значения показателей преломления для различных коэффициентов стехиометрии х находились по формуле $n = xn_{KYbW} + (1 - x)n_{KYW}$ [4], в которой п_{КYbW} и п_{KYW} – показатели преломления соответственно для кристаллов KYbW (x = 1.0) и KYW (x = 0): на длине волны 1,06 мкм $n_p = 1,9925$, $n_m = 2,0357$, $n_g = 2,0773$ (для KYbW), $n_p = 1,9681$, $n_m = 2,0063$, $n_g = 2,0499$ (для KYW) [5, 6].

В таблице 2 приведены значения температурных коэффициентов показателей преломления dn_i/dT для кристаллов KYb_xY_{1-x}(WO₄)₂, полученные при различных направлениях распространения k и поляризаций E света, а также значения dn_i/dT, усредненные для каждой поляризации света по двум направлениям распространения k. Температурные коэффициенты dn_i/dT для всех поляризаций света и коэффициентов стехиометрии х отрицательные и характеризуются достаточно сильной анизотропией. При этом для каждой поляризации света значение температурного коэффициента x (то есть при последовательном переходе от кристалла КҮШ к КҮbW) уменьшается по абсолютной величине с увеличением коэффициента стехиометрии.

Коэффициент стехиометрии, х

Рисунок 1 — Зависимость термических коэффициентов оптического пути *W* кристаллов KYb_xY_{1-x}(WO₄)₂ на длине волны 1,06 мкм от коэффициента стехиометрии х для различных направлений распространения *k* и поляризаций *E* света. Символы – экспериментальные данные, линии – линейная аппроксимация (коэффициенты *R*² составляют 0,9427 – 0,9991)

На рисунок 2 приведена зависимость температурных коэффициентов dn_i/dT , усредненных по двум направлениям распространения света k, от коэффициента стехиометрии x кристаллов KYb_xY_{1x}(WO₄)₂. Данные усредненные значения рассматриваются в качестве итоговых температурных коэффициентов показателей преломления для каждой поляризации света. Зависимость dn_i/dT от xдостаточно хорошо описывается линейной зависимостью для каждой поляризации света:

$$\frac{dn_p}{dT} = (-15.613 + 2.583x) \, 10^{-6} \, K^{-1},$$
$$\frac{dn_m}{dT} = (-9.830 + 4.042x) \, 10^{-6} \, K^{-1},$$
$$\frac{dn_g}{dT} = (-13.633 + 2.484x) \, 10^{-6} \, K^{-1}.$$

Различие между значениями dn/dT при x = 0 и x = 1,0 составляет (2,5–4,2)·10⁻⁶ K⁻¹, что значительно превышает погрешность измерения dn/dT (0,6×10⁻⁶ K⁻¹). Таким образом, зависимость температурных коэффициентов показателей преломления от коэффициента стехиометрии х кристаллов KYb_xY_{1-x}(WO₄)₂ можно представить в виде:

$$\left(\frac{dn_{p,m,g}}{dT}\right)_{KYb_xY_{1-x}W} = x \left(\frac{dn_{p,m,g}}{dT}\right)_{KYbW} + (1-x) \left(\frac{dn_{p,m,g}}{dT}\right)_{KYW}$$

Следует отметить, что данные по dn/dT, полученные в настоящей работе для KYW и KYbW находятся в хорошем согласии с соответствующими значениями, полученными другими авторами и которые собраны в [7].

Рисунок 2 – Зависимость температурных коэффициентов показателей преломления dn/dT (усредненных по измерениям для двух направлений распространения света) кристаллов KYb_xY_{1-x}(WO₄)₂ на длине волны 1,06 мкм от коэффициента стехиометрии *х.* Символы – экспериментальные данные, линии – линейная аппроксимация (коэффициенты детерминации $R^2 = 0.9855$ (*E* //N_p), 0,9931 (*E* //N_m) и 0,9981 (*E* //N_g)

Литература

1. Appl. Phys. B / K. V. Yumashev [et al.]. – 2024. – V. 130 (1), art. 14.

2. Appl. Phys. B / S. Vatnik [et al.]. – 2009. – V. 95 (4). – P. 653–656.

 Приборы и методы измерений / П. А. Лойко. – 2010. – № 1. – С. 70–77.

4. Opt. Letters / S. Kurilchik [et al.]. – 2017. – V. 42 (21). – P. 4565–4568.

5.Physical review B / M. C. Pujol [et al.]. – V. 65, – P. 165121-1–165121-11.

6. Crystals, Crystallogr. Rep. / A. A. Kaminskii [et al.]. - 2001. – V. 46 (4). – P 733–741.

7. Opt. Mater / P. A. Loiko [et al.]. – 2011. – V. 33, № 11. – 1688–1694.