УДК 621.384.3:621.391

## АКТИВНО-ИМПУЛЬСНАЯ СИСТЕМА ВИДЕНИЯ ДЛЯ НОЧНОГО УПРАВЛЕНИЯ ТРАНСПОРТОМ В УСЛОВИЯХ МЕТЕОПОМЕХ Кунцевич Б. Ф.

ГНПО «Оптика, оптоэлектроника и лазерная техника» Минск, Республика Беларусь

Аннотация. Численно исследована возможность использования активно-импульсных систем видения для ночного управления транспортом, в том числе в условиях метеопомех. Для выяснения условий реализации квазиравномерной подсветки рабочая дистанция методом подбора разбивается на необходимое число зон видимости, сигналы от которых автоматически последовательно регистрируются за время формирования видеокадра, позволяя в конечном итоге вычислить «суммарный» сигнал для всей рабочей дистанции. На основе построения суммарного пространственно-энергетического профиля (ПЭП) всей рабочей дистанции продемонстрирован возможный вариант выделения подходящего числа зон видимости и распределения мощности подсветки по зонам для режима движения с ближним светом.

**Ключевые слова:** активно-импульсная система видения, движение с ближним светом, пространственноэнергетический профиль рабочей дистанции.

## ACTIVE-PULSE VISION SYSTEM FOR NIGHT VEHICLE CONTROL IN DIFFICULT WEATHER CONDITIONS Kuntsevich B.

SSPA "Optics, Optoelectronics and Laser Technology"
Minsk, Republic of Belarus

**Abstract.** The possibility of using active-pulse vision systems for night transport control, including in conditions of meteorological interference, is numerically investigated. To clarify the conditions for implementing quasi-uniform illumination, the working distance is divided by the selection method into the required number of visibility zones, the signals from which are automatically sequentially recorded during the formation of a video frame, allowing ultimately to calculate the "total" signal for the entire working distance. Based on the construction of the total spatial-energy profile (SEP) of the entire working distance, a possible option for selecting a suitable number of visibility zones and distributing the backlight power by zones for driving modes with low beam is demonstrated. **Key words:** active-impulse vision system, movement with low beam, spatial-energy profile of the working distance.

Адрес для переписки: Кунцевич Б. Ф., пр. Независимости, 68-1, г. Минск 220072, Республика Беларусь e-mail: boris\_kuntsevich@mail.ru

В настоящее время активно-импульсные системы видения (АИСВ) широко использутся для решения различных научных и практических задач [1]. Кратко их принцип работы можно сформулировать следующим образом. Наблюдаемая область пространства освещается периодически повторяющимися лазерными импульсами, длительность которых  $\Delta t_{\text{лаз}}$  значительно меньше времени  $\Delta t_{206}$  распространения света до зоны наблюдения и обприемном блоке В В качестве быстродействующего затвора и усилителя принимаемого отраженного светового излучения обычно используется электронно-оптический преобразователь (ЭОП), который синхронно включается с лазерными импульсами на время  $\Delta t_{\phi\pi}$  (строб-импульс фотоприемника), сравнимое с  $\Delta t_{\text{лаз}}$ . Регулировка времени задержки  $\Delta t_{\text{зад}}$  между началами импульсов подсветки и стробирования изменяет расстояние до зоны наблюдения. АИСВ позволяют наблюдать объекты в сравнительно узком слое пространства, называемом зоной видимости (ЗВ).

В последнее время исследуются возможности использования АИСВ для обеспечения безопас-

ного ночого управления транспортом в условиях метеопомех (например, [2] В данной работе впервые вычисляется пространственно-энергетический профиль (ПЭП) рабочей дистанции (до 50 м; режим движения с ближним светом (ДБ)), предстваляющий собой сумму ПЭП отдельных зон видимости (ЗВ). За основу взят метод автосканирования рабочей дистанции. В этом случае рабочая дистанция «разбивается» на совокупность отдельных ЗВ, которые за время формирования одного видеокадра (1/25 секунды) последовательно регистрируются.

Величина регистрируемого сигнала E(S) (т. е. ПЭП) определялась с помощью выражения [3]:

$$E = E_0 S^{-2} \exp(-2\alpha S) \int L(t - 2S/c) G(t - \Delta t_{3a,\pi}) dt$$
 (1)

где S — расстояние;  $E_0$  — величина, не зависящая от S;  $\alpha$  — показатель ослабления лазерного излучения в атмосфере; t — время; L и G — функции, описывающие временные зависимости интенсивности излучения лазерной подсветки и чувствительности приемного блока (коэффициента усиления яркости ЭОП).

Результаты расчетов и их обсуждение. Предполагается, что при ДБС самый близкий предмет находится на расстоянии  $\sim 5$  м. Для определенности выбирая  $\Delta t_{\text{лаз}} = t_{206}/4$ , получаем  $\Delta t_{\text{лаз}} \approx 8$  нс. На длительность  $\Delta t_{\phi \text{п}}$  никаких ограничений не накладывается. Для увеличения длины 3В выбрано  $\Delta t_{\phi \text{п}} = 150$  нс.

При расчетах предполагалось, что подсветка осуществляется лазерным излучением с длиной волны 840 нм. Формы импульса лазерной подсветки и строб-импульса задавались прямоугольными. При расчетах варьировались амплитуда (максимальное значение) мощности импульсов подсветки  $P_{\text{лаз}}$ , число 3В и распределение  $P_{\text{лаз}}$  по зонам. Предполагается, что коэффициент усиления яркости ЭОП равен:  $G_m = 40000$  [1]. Значения остальных параметров: метеорологическая дальность видимости  $S_{\text{МДВ}} = 20$  км (если не оговорено другое).

На рисунке 1 приведен пример расчета возможной реализации квазиравномерного распределения энергии подсветки при «разбиении» рабочей дистанции на 23 ЗВ. На рисунке 1, а цифрами обозначены вычисленные ПЭП для каждой из зон видимости  $E_n$ . Для упрощения рисунка изображены ПЭП только для трех первых и последних 3В. На рисунке 1,  $\delta$  приведен результирующий ПЭП, который представляет собой просуммированный по всем 3В сигнал  $E_{\text{сум}}$  для каждого значения расстояния Ѕ. Приведем параметры, которые подбирались при расчетах для каждой 3B:  $1(2; 1; 3.9 \cdot 10^{-10}), 2(4; 4; 3.1 \cdot 10^{-10}),$  $3(6; 6; 2,2\cdot10^{-10}), 4(8; 9; 1,8\cdot10^{-10}), 5(10; 12;$  $1,5\cdot 10^{-10}$ ), 6(12; 15;  $1,3\cdot 10^{-10}$ ), 7(14; 18;  $1,2\cdot 10^{-10}$ ),  $8(16; 22; 1,1\cdot10^{-10}), 9(18; 25; 1,0\cdot10^{-10}), 10(20; 29;$  $9,2\cdot 10^{-11}), 11(22; 33;$  $8,8\cdot10^{-11}$ ), 12(24; $8.3 \cdot 10^{-11}$ ),  $7,7\cdot 10^{-11}$ ), 13(26; 40; 14(28; 43;  $7.1 \cdot 10^{-11}$ ),  $6.7 \cdot 10^{-11}$ ), 15(30; 47; 16(32; 50;  $6,2\cdot 10^{-11}$ ),  $5,8\cdot 10^{-11}$ ), 52; 17(34; 18(36; 53;  $5.2 \cdot 10^{-11}$ ),  $4,9\cdot 10^{-11}$ ), 19(38; 55; 20(40; 57;  $4,6\cdot 10^{-11}$ ), 21(42;61;  $4.5 \cdot 10^{-11}$ ), 22(44; $4,2\cdot10^{-11}$ ), 23(46; 67;  $4,1\cdot10^{-11}$ ). Здесь введены обозначения: число перед круглой скобкой обозначает номер зоны видимости п; в круглых скобках: первое число – расстояние задержки  $S_{\text{зад}} = c\Delta t_{\text{зад/2}}$  (в м); второе число - коэффициент k, на который надо умножить амплитуду мощности подсветки для соответствующей зоны по сравнению с амплитудой мощности для первой зоны (для 1-й ЗВ k = 1 для метеорологической дальности видимости  $S_{\rm MДB} = 20$  км); третье число – подобранное максимальное значение энергии подсветки  $E_{\text{макс}}$  (в Дж) для соответствующей ЗВ. Для простоты при увеличении номера зоны на единицу значение  $S_{\text{зад}}$  увеличивается на 2 м. Коэффициенты k подбирались численным путем. Из рисунка 1,  $\delta$  следует, что на малых дистанциях глубина модуляции суммарного ПЭП  $E_{\text{сум}}$  максимальна. Для уменьшения глубины модуляции в этом диапазоне использованный шаг приращения  $S_{3ад}$  в 2 м можно заменить на 1 м. Таким образом, рисунок 1,  $\delta$  свидетельствует о возможности реализации квазиравномерной яркости изображения в режиме ДБС путем регистрации за время одного кадра совокупности зон видимости (автосканирования) с указанными выше подобранными параметрами.



Рисунок 1 — Зависимости величин регистрируемых сигналов  $E_n$  для трех первых и последних зон видимости (a), а также результирующего сигнала  $E_{\text{сум}}(\vec{o})$  от расстояния S

Дополнительные расчеты показали возможность реализиции квазиравномерной подсветки рабочей дистанции при  $S_{\rm MДB}=0.35$  км (обычный туман) и  $S_{\rm MДB}=0.10$  км (густой туман). В последнем случае для реализации сравнительного большого максимального значения k=1638 потребуются дополнительные технические решения (например, увеличение числа лазеров подсветки).

## Литература

- 1. Волков, В. Г. Новые лазерные приборы наблюдения / В. Г. Волков, Б. А. Случак // Контенант. 2016. Т 15, № 3. С. 62—70.
- 2. Случак, Б. А. Оптико-электронный прибор для ночного управления транспортом в условиях метеопомех / Б. А. Случак, В. О. Умнов // XXXIII Международная конференция «Лазеры в науке, технике, медицине»: сборник научных трудов. Т. 33; под ред. В. А. Петрова. М, 2023. С. 91—96.
- 3 Кунцевич, Б. Ф. Особенности пространственноэнергетического профиля сигнала, регистрируемого актисно-импульсными системами видения, при учете энергии шумового порога // Журн. прикл. спектр. − 2022. - T. 89, № 2. - C. 869-877.