УДК 621.315.592 МОДИФИКАЦИЯ ПОВЕРХНОСТИ ПЛАСТИН КРЕМНИЯ В РЕЗУЛЬТАТЕ ОБРАБОТКИ В DC ПЛАЗМЕ ВОДОРОДА: ИССЛЕДОВАНИЕ МЕТОДОМ КОМБИНАЦИОННОГО РАССЕЯНИЯ Францкевич А. В., Францкевич Н. В., Мартинович В. А.

Белорусский национальный технический университет Минск, Республика Беларусь

Аннотация. Введение водорода в кремний – одна из технологических операций, позволяющая улучшить качество микроэлектронных структур. Однако, после введения водорода в зависимости от многих факторов в решетке Si могут возникать напряжения растяжения\сжатия, формироваться Si_xH_y комплексы. Методом комбинационного рассеяния (KP), регистрируя изменения локальных колебательных мод в спектральных диапазонах 521 ± 20 , 2100 ± 100 , 4161 ± 20 cm⁻¹, можно идентифицировать изменения, произошедшие с поверхностью Si. Пластины Cz-Si p-типа обрабатывались в DC плазме водорода при U = 1, 2,5 и 5 кB, T = 350 °C, и изучались с использованием метода KP. Проведенные исследования позволили зафиксировать изменение интенсивности и местоположения линий в зависимости от условий плазменной обработки. Кроме этого, возможно, зарегистрирован сигнал от орто-пара молекулы водорода. Ключевые слова: комбинационное рассеяние, дефекты в кремнии, водородная плазма.

SURFACE MODIFICATION OF SILICON WAFERS BY HYDROGEN DC PLASMA TREATMENT: A RAMAN STUDY Frantskevich A., Frantskevich N., Martinovich V.

Belarusian National Technical University Minsk, Republic of Belarus

Annotation. Hydrogen introduction into silicon is one of the technological operations that improves the quality of microelectronic structures. However, after hydrogen introduction, depending on many factors, tensile/compressive stresses may arise in the Si lattice, and SixHy complexes may form. Using the Raman scattering (RS) method, recording changes in local vibrational modes in the spectral ranges of 521 ± 20 , 2100 ± 100 , 4161 ± 20 cm⁻¹, it is possible to identify changes that have occurred with the Si surface. Cz-Si p-type wafers were processed in DC hydrogen plasma at U = 1, 2.5, 5 kV, T = 350 °C, and studied using the Raman method. The studies made it possible to record a change in the intensity and location of lines depending on the plasma processing conditions. In addition, a signal from an ortho-para hydrogen molecule may have been recorded. **Key words:** Raman scattering, defects in silicon, hydrogen plasma.

e-mail: n_frantskevich@bntu.by

Введение. Водород (H₂) широко используется в технологии производства солнечных элементов, светодиодов, элементов памяти и других микроэлектронных структур на основе кремния с целью улучшения их качества. В отличие от исследований, направленных на изучение пассивацией водородом дефектов, главная тема проводимых исследований управляемое развитие дефектов в объеме и на поверхности пластин кремния в присутствии водорода. Возможные области применения разрабатываемой технологии - снижение дозы имплантации в технологии Smart-Cut [1], создания вертикальных и поверхностных структур в кремниевой матрице [2]. Один из этапов проводимых исследований - изучить возможную модификацию поверхности пластин монокристаллического Cz-Si при введении в них ионов водорода из DC плазмы с разной энергией и при разных температурах.

После введения водорода в решетке Si могут возникать напряжения растяжения/сжатия, формироваться Si_xH_y и Si_xV_y комплексы, образовываться нанопузыри, содержащие водород [3–10]. Идентификация произошедших изменений в кристаллической решетке кремния возможна с использованием метода КР. В работах [11, 12] приведены результаты исследований по изучению влияния доз имплантации, температуры и длительности водородных плазменных обработок, а также последующих отжигов на интенсивность и местоположения линий LVM (local vibrational mod), ассоциируемых с водородной молекулой, локализованной в дефектах решетки кремниевой пластины, Si_xH_v группами и Si_xV_v комплексами.

Эксперимент. В стандартные пластины *p*-типа 12 Ω·ст Cz-Si водород вводился из DC плазмы при 350 °C. Энергия ионов в процессе плазменной обработки составляла 5 (образец 1), 2,5 (образец 2) или 1 kV (образец 3). Длительность обработки составляла 60 минут при плотности тока 240, 120 и 60 µA/ст² для соответствующих энергий.

Спектры комбинационного рассеяния снимались при комнатной температуре с использованием газового Ar⁺ лазера с длинной волны 488 nm и выходной мощностью 20 mW. Лазерный пучок фокусировался на исследуемых образцах с помощью микроскопа с увеличением X100. Регистрация сигнала производилась с использованием дифракционной решетки 1800 линий\мм и охлаждаемой ССD матрицы. **Результаты и дискуссия.** Результат комбинационного рассеяния для образца 1 в спектральных диапазоне 450–650 ст⁻¹представлен на рисунке 1.

Рисунок 1 – Спектры комбинационного рассеяния от пластин Cz Si p-типа в спектральном диапазоне 450–650 сm⁻¹. Пластины обрабатывались DC плазме водорода при 350 °C в течение 60 мин. Разность потенциалов и плотность тока составляла: U = 5 kV, $j = 240 \ \mu$ A/cm² (черная линия), U = 2,5kV,

 $j = 240 \mu A/cm²$ (черная линия), U = 2,5 kV, $j = 120 \mu A/cm²$ (красная линия), U = 1 kV,

Рисунок 2 – Спектры КР от пластины Сz Si *p*-типа в спектральном диапазоне 450–650 сm⁻¹. Пластина обрабатывались в DC плазме водорода при 350 °C в течении 60 мин. Разность потенциалов и плотность тока составляла U = 5 kV, j = 240 µA/cm². Красная линия – данные KP, зеленые линии – результаты фитинга

Как видно из представленных данных, для образца 1, обработанного при максимальной разности потенциалов и наибольшей плотности тока, наблюдается минимальная интенсивность сигнала линии Si-Si, что является ожидаемым результатом. Для этого же образца интенсивность LVM, сопоставляемых сигналу от Si_xH_y комплексов, меньше, чем для образца 2, что является несколько «странным» результатом. Однако, этот

противоречивый результат легко объясняется, если предположить, что пассивации водородом дефектов, образовавшихся в результате плазменной обработки при данных условиях, не происходит. Более детальный анализ LVM, сопоставляемого Si-Si связям, и LVM, сопоставляемых H₂ молекуле локализованной в дефектах кремния, подтверждает высказанное предположение. Соответствующие результаты КР представлены на рисунке 2.

Как видно из данных, представленных на рисунке 2, сигнал КР раскладывается на две составляющие по формуле Лоренца с максимумами 519,4 и 523,01 см⁻¹. С учетом того, что для исходного кремния регистрируются значение 521 см⁻¹, полученный результат позволяет предположить, что в приповерхностном слое кремния после плазменной обработки сформировались области кремния, испытывающие растягивающие и сжимающие напряжения, т. е. дефектные области. Для образцов 2 и 3 так же наблюдаются как сжимающие, так и растягивающие напряжения. Только в отличии от образца 1, для них регистрируется LVM сопостовляемые SiH и H₂.

Заключение. В пластины монокристаллического Si вводился водород из DC плазмы при разности потенциалов U = 5, 2,5 и 1 kV. Из полученных результатов исследований методом KP можно сделать вывод, что наиболее оптимальные условия введения водорода, является обработка в плазме при U = 5 kV.

Литература

1. Bruel, M. // Nucl. Instr. Meth. Phys. Res. B. - V. 108.

2. Frantskevich, N. // Journal: Solid State Phenomena. – 2009. – V. 156, 158. – P. 91.

3. Thierry de Vrijer // Vibr. Sp. - 2022. - V. 121. - P. 103387.

4. Zhang, X. // Nat Sci. - 2021. № 1:e. - P. 10002.

5. Ling, Z. // Jour. Mat. S. Chem. Eng. - 2013. - P. 1-14.

6. Woo Sik Yoo // J. Micro/Nanolith. MEMS MOEM. – 2014. – № 13 (1). – P. 011205.

7. Volodin, V. // APL. - 0003-6951/98/73(9)/1212.

8. Dong, X. // J. Phys.: Condens. Matter. - 2020. - V. 32.

9. Mews, M. // Energy Procedia. – 2014. – V. 55. – P. 827 – 833.

10. Nazarov, A. // Sem. Ph., QElectronics & Optoelectronics. – 2008. – V. 11, № 2. – P. 101–123.

11. Terreault, B. // Physica status solidi (a). – 2007. – V. 204. – P. 2129.

12. Ilisca, E. // Hydrogen. – 2021. – № 2.