одновременно дрейфуют через узкозонную p^+ область 5 к ее поверхности й проходят в активированный слой 6 с низкой работой выхода, с поверхности которого электроны эффективно излучаются. В случае отсутствия активированного слоя 6 электроны могут эффективно излучаться в вакууме и внешней поверхностью p^+ области 5.

С ростом питающего напряжения при условии минимальных потерь электронов в p- и p^+ -областях поток излучаемых электронов практически экспоненциально возрастает с ростом Uq. Поскольку p-n-гомопереход смещен в прямом направлении, его напряжение невелико и изменяется в пределах 0,9–2,5 В, при этом поток излучаемых электронов возрастает на несколько порядков.

Экспериментальное устройство – твердотельный источник электронной эмиссии размером 3×3 мм полупроводниковой структурой *nSi-pSi*-p+InSb. При этом толщина слоя nSi составляет (0,8–1) мкм слоя pSi – (0,15–0,2) мкм и слоя p+InAs – (0,2–0,3) мкм. Активированным слоем является слой цезия толщиной (3–7) 10^{-3} мкм.

Экспериментальный катод обеспечивает эмиссию электронов плотностью 20–50 мА/мм² при питающем напряжении 1,2–1,8 В и комнатной температуре. Нестабильность эмиттируемого катодом электронного потока не превышает 30 %. Технико-экономические преимущества предлагаемого электронного многослойного катода в сравнении с аналогами следующие:

 – более чем на порядок возрастает срок службы (с 103 до 104–105 у часов);

 повышается максимальная плотность тока эмиссии в 10 и более раз;

– более чем на порядок снижается нестабильность работы твердотельный источник электронной эмиссии с (5–8) раз у прототипа, до 0,3 у предлагаемого устройства.

Многослойный полупроводниковый катод, содержащий подложку из полупроводника *n*-типа с омическим контактом к ней, слой *p*-типа с омическим контактом; расположенный, на подножке *n*типа, слой активатора на поверхности слоя *p*-типа, свободной от омического контакта, причем области *p*-*n*-перехода покрыты слоем диэлектрика, отличающийся тем, что, с целью повышения срока службы л плотности тока эмиссии, между слоем *p*-типа и слоем активатора расположен *p*⁺-слой узкозонного по отношению к слою *p*-типа полупроводника.

Литература

1. Губкин, А. Н. Электреты. М.: Наука, 1998. – 164 с. 2. Электретные источники электроэнергии / В. А. Сычик [и др.] // Материалы МНТК «Демографические проблемы Беларуси», ч. 3. Мн., 1999. – С. 54.

УДК 621.793.18

ОПТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ФТОРУГЛЕРОДНЫХ ПОКРЫТИЙ, ПОЛУЧЕННЫХ ИОННО-ЛУЧЕВЫМ РАСПЫЛЕНИЕМ РАЗЛИЧНЫХ МИШЕНЕЙ Телеш Е. В.¹, Сафронов Н. В.², Шевчик Е. В.¹

¹Белорусский государственный университет информатики и радиоэлектроники ²ОАО «Минский НИИ радиоматериалов» Минск, Республика Беларусь

Аннотация. Исследовано влияние материала мишени на основные оптические характеристики свойства фторуглеродных покрытий, полученных ионно-лучевым распылением. Установлено, что покрытия, полученные распылением мишени из политетрафторэтилена, обладали более высокой прозрачностью, шириной запрещенной зоны и низким коэффициентом преломления.

Ключевые слова: фторуглеродные покрытия, оптические характеристики, ширина запрещенной зоны, ионно-лучевое распыление.

OPTICAL CHARACTERISTICS OF FLUOROCARBON COATINGS OBTAINED BY ION BEAM SPUTTERING OF VARIOUS TARGETS Telesh E.¹, Safronov N.², Shevchik E.¹

¹Belarusian State University of Informatics and Radioelectronics ²OJSC Minsk Research Institute of Radiomaterials Minsk, Republic of Belarus

Abstract. The influence of the target material on the main optical characteristics of the properties of fluorocarbon coatings obtained by ion-beam sputtering has been studied. It was found that coatings obtained by sputtering a polytetrafluoroethylene target had higher transparency, a wider band gap, and a low refractive index. **Key words:** fluorocarbon coatings, optical characteristics, band gap, ion-beam sputtering.

Адрес для переписки: Телеш Е. В., ул. П. Бровки, 6, г. Минск 220113, Республика Беларусь e-mail: etelesh@bsuir.by

Одним из наиболее перспективных материалов, обладающим уникальным комплексом физико-химических свойств, являются соединения фтора с углеродом. При использовании фторуглеродных покрытий в качестве оптических и защитных покрытий для оптических приборов важным параметром является их способность преломлять и пропускать поток света, обладать минимальной пористостью.

Для получения покрытий можно применить распыление мишени из политетрафторэтилена (ПТФЭ), составной мишени из ПТФЭ и графита, а также графитовой мишени [1–3].

Задачей данных исследований было исследование влияния материала распыляемой мишени на оптические характеристики фторуглеродных покрытий. Схема ионно-лучевого распыления (ИЛР) мишеней различного состава представлена на рисунке 1. Для компенсации положительного заряда на составной мишени 2 и мишени из ПТФЭ и применялся термокатод 3 из вольфрама. Ионный источник 1 представлял собой ускоритель с анодным слоем. В качестве подложки 4 использовалось оптическое стекло К8, в качестве рабочих газов – аргон, метан и хдадон-218 (C_3F_8).

Рисунок 1 – Схема ионно-лучевого распыления мишеней различного состава

_					
	Газовая	Парциаль-	Рабочее	$U_{\mathrm{a}},$	Τ,
	среда	ное	давление,	кВ	%
		давление	Па		
		хладона,			
		СН4, Па			
I	Аr+пары	-	2,3.10-1	1,3	91,0
	CF ₄				
Г	Іары CF4	-	$2,4 \cdot 10^{-1}$	2,5	92,5
Α	r+хладон	$2,0.10^{-2}$	$2,4 \cdot 10^{-1}$	1,0	93,0
Α	r+хладон	$4,0.10^{-2}$	$2,4 \cdot 10^{-1}$	1,2	93,5
	Ar+CH ₄	$1,8.10^{-2}$	$1,7 \cdot 10^{-1}$	2,0	91,7
	Ar+CH ₄	3,0.10-2	$1,6.10^{-1}$	1,9	92,7
	Ar+CH ₄	5,3.10-2	$1,4.10^{-1}$	2,0	92,0
		- /	/ -	, -	- ,-

Таблица 1 – Исследования влияния газовой среды на пропускание покрытий

Измерение оптического пропускания покрытий осуществлялось в диапазоне 350–900 нм с помощью спектрофотометра PROSCAN.

В таблице 1 приведены результаты по влиянию состава газовой среды на пропускание Т покрытий, полученных ИЛР мишени из ПТФЭ, на длине волны $\lambda = 555$ нм. Установлено, что при распылении в парах политетрафторэтилена наблюдается улучшение параметров покрытий. Добавка к рабочему газу хладона-218 также привела к росту пропускания до 93,5 %. Также было установлено, что при величине пар

циального давления метана CH_4 от $1,8\cdot10^{-2}$ до $5,3\cdot10^{-2}$ Па оптические характеристики практически не изменились.

Нагрев подложки до 450 К позволил повысить пропускание до 96,5 % (рисунок 2)

Рисунок 2 – Зависимость пропускания от температуры подложки

На рисунке 3 представлена зависимость пропускания фторуглеродных покрытий, полученных распылением составной мишени, от парциального давления хладона. Максимальное пропускание составило 96 %.

Покрытия, сформированные реактивным ИЛР мишени из графита в среде хладона, обладали максимальным пропусканием 85 % и имели светло-коричневую окраску.

Ширина запрещенной зоны рассчитывалась путем анализа спектров пропускания. Для покрытий, полученных распылением мишени из политетрафторэтилена, она составила 3,32–3,38 эВ, для составной мишени – 3,10–3,25 эВ, для мишени из графита – 2,9–3,0 эВ и практически не зависела от режимов формирования покрытий.

Рисунок 2 – Зависимость пропускания от парциального давления хладона

Измерение коэффициента преломления n с применением эллипсометра ЛЭФ-3 показало, что покрытия, полученные ИЛР мишени из ПТФЭ, обладали значениями n = 1,35-1,63, которые зависели от состава газовой среды, в частности n увеличивался с ростом давления метана. Для покрытий, полученных распылением составной мишени, n составил 1,6–2,1 и увеличивался с ростом температуры подложки. Коэффициент преломления составил 1,40–1,68 для покрытий, сформированных реактивным ИЛР мишени из графита. Увеличение парциального давления хладона, наличие положительного потенциала на мишени способствовало снижению n, а повышение температуры подложки – росту *n*.

Таким образом, проведенные исследования позволили определить основные оптические характеристики фторуглеродных покрытий, полученных ионно-лучевым распылением мишеней с разным составом.

Литература

1. Телеш, Е. В. Ионно-лучевое распыление мишени из политетрафторэтилена / Е. В. Телеш, В. А. Точеный// Приборостроение – 2021: материалы 14-й Междун. научно-технической конференции (Минск, 18–20 но-

ября 2021 г.) / Белорус. нац. техн. ун-т. – Минск, 2021 – С. 355–356.

 Шевчик, Е.В. Формирование фторуглеродных покрытий ионно-лучевым распылением составной мишени/ Е. В. Шевчик, А. Н. Потылкин, Е. В. Телеш // Электронные системы и технологии: сборник материалов 59-ой научной конференции аспирантов, магистрантов и студентов учреждения образования БГУИР. – С. 539–541.

3. Телеш, Е. В. Формирование фторуглеродных покрытий реактивным ионно-лучевым распылением мишени из графита / Е. В. Телеш, А. Н. Потылкин // Актуальные проблемы физики, электроники и энергетики [Электронный ресурс]: электронный сборник статей I международной научно-практической конференции, Новополоцк, 27–28 окт. 2022 г. / Полоцкий государственный университет имени Евфросинии Полоцкой. – Новополоцк, 2023. – С. 157–161.

УДК 621.793.18

ВЛИЯНИЕ СОСТАВА РАБОЧЕГО ГАЗА НА ХАРАКТЕРИСТИКИ ФТОРУГЛЕРОДНЫХ ПОКРЫТИЙ, ПОЛУЧЕННЫХ ПРЯМЫМ ОСАЖДЕНИЕМ ИЗ ИОННЫХ ПУЧКОВ Телеш Е. В., Шевчик Е. В., Курбако Е. Г., Перепечко Е. Ю.

Белорусский государственный университет информатики и радиоэлектроники Минск, Республика Беларусь

Аннотация. Исследовано влияние парциального давления хладона-218 на свойства фторуглеродных покрытий, полученных прямым осаждением из ионных пучков. В результате проведенных исследований определен оптимальный диапазон давления хладона-218 (7,98·10⁻²–1,06·10⁻¹) для формирования покрытий с оптической прозрачностью до 83 %, углом смачивания до 75 градусов и шириной запрещенной зоны около 2,8 эВ.

Ключевые слова: фторуглеродные покрытия, прямое осаждение, электрофизические характеристики, ширина запрещенной зоны, оптическое пропускание, угол смачивания.

INFLUENCE OF WORKING GAS COMPOSITION ON THE CHARACTERISTICS OF FLUOROCARBON COATINGS OBTAINED BY DIRECT DEPOSITION FROM ION BEAMS

Telesh E., Shevchik E., Kurbako E., Perepechko E.

Belarusian State University of Informatics and Radioelectronics Minsk, Republic of Belarus

Abstract. The influence of the partial pressure of freon-218 on the properties of fluorocarbon coatings obtained by direct deposition from ion beams has been studied. As a result of the research, the optimal pressure range of freon-218 ($7,98\cdot10^{-2}-1,06\cdot10^{-1}$) was determined for the formation of coatings with optical transparency of up to 83 %, a contact angle of up to 75 degrees and a band gap of about 2,8 eV.

Key words: fluorocarbon coatings, direct deposition, electrophysical characteristics, band gap, optical transmission, contact angle.

Адрес для переписки: Телеш Е. В., ул. П. Бровки, 6, г. Минск 220113, Республика Беларусь e-mail: etelesh@bsuir.by

Тонкопленочные фторуглеродные слои применяются в приборостроении в качестве low-k диэлектриков, оптических, гидрофобных, защитных покрытий [1]. Для синтеза фторуглеродных покрытий обычно используются плазменные разряды в углерод- и фторсодержащих газах с применением методов ВЧ плазмохимического осаждения, индуктивно-связанной плазмы, импульсной плазмы высокой плотности [2]. На характеристики покрытий определяющее влияние оказывают состав рабочего газа, мощность плазменного разряда, величина отрицательного смещения на подложке, температура подложки и т. п. Методы, основанные на нанесении тонкопленочных покрытий из ионных пучков, позволяют изменять свойства пленок посредством регулирования энергии ионов, плотности ионного потока и его состава [3]. В данной работе будет исследовано влияние парциального давления хладона-218 (C₃F₈) в рабочем газе на характеристики фторуглеродных покрытий.

Формирование фторуглеродных покрытий проводили на модернизированной установке вакуумного напыления ВУ-1А, оснащенной ионным источником на основе торцевого холловского ускорителя (ТХУ) (рисунок 1).