УДК 535.6.08 (004.932) Нормирование точности в кол

НОРМИРОВАНИЕ ТОЧНОСТИ В КОЛОРИМЕТРИИ ЦИФРОВЫХ ИЗОБРАЖЕНИЙ Савкова Е. Н.

Белорусский национальный технический университет Минск, Республика Беларусь

Аннотация. Представлена лабораторная технология установления нижних и верхних границ допускаемых значений в колориметрии цветовых изображений. Технология основана на тензорном исчислении. **Ключевые слова:** цифровое изображение, координата цветности, тензор, цветовое пространство.

NORMALIZATION OF ACCURACY IN DIGITAL IMAGES COLORIMETRY Saukova Y.

Belarusian National Technical University Minsk, Republic of Belarus

Abstract. AA laboratory technology for establishing the lower and upper limits of permissible values in colorimetry of color images is presented. The technology is based on tensor calculus. **Key words:** digital image, chromaticity coordinate, tensor, color space.

Адрес для переписки: Савкова Е. Н., пр. Независимости, 65, г. Минск 220113, Республика Беларусь e-mail: savkova@bntu.by

Измерение цвета заключается в идентификации его координат в выбранном цветовом пространстве с учетом положения точки «белого», характеризующей тип освещения. Точность определения цвета оценивается смещением центра тяжести геометрического места точек в цветовом пространстве или на графике цветностей в окрестности измеренного значения от опорного значения, а также рассеянием геометрического места точек. Таким образом, решения в колориметрии принимаются исходя из геометрического положения областей охвата (результатов измерений) по отношению к областям допусков. Чаще всего в области оценки соответствия используется аппаратно не зависимое цветовое пространство XYZ.

Метрологическая прослеживаемость опорного значения в колориметрии цифровых изображений обеспечивается путем построения условных многомерных виртуальных шкал со ссылкой на опорные значения координат цветности, наиболее точно воспроизводимые первичными эталонами, например, ГПСЭ РФ: для самосветящихся объектов с $U_p(x) = 0,00177 - 0,00299,$ $U_{\rm p}(y) = 0,00216 - 0,00324$. Вторичный эталон единиц координат цветности РФ воспроизводит опорное значение с суммарным от 0,0006 до 0,0010. Пределы допускаемых абсолютных погрешностей рабочих эталонов координат цветности самосветящихся объектов составляют 0,002-0,005 для Δx и Δy . Эталонные значения длин волн для описания оптических материалов, оптических систем и средств нормируются ISO 7944:1998. Национальный эталон координат цвета и спектральных коэффициентов направленного пропускания и диффузного отражения в диапазоне длин волн (0,2-2,5) мкм Республики Беларусь НЭ РБ 3-00 (http://belgim.by) воспроизводит опорное значение несамосветящихся объектов с расширенной неопределенностью измерения: спектральных коэффициентов направленного пропускания – 0,12 %; спектральных коэффициентов диффузного отражения – 0,5 %; координат цвета прозрачных образцов – 0,10; координат цвета светоотражающих образцов – 0,25.

Нижние границы областей допусков предлагается устанавливать на основе дефинициальных неопределенностей, в качестве которых можно использовать следующие параметры:

 Приведенные выше расширенные неопределенности и средние квадратические отклонения первичных, вторичных и рабочих эталонов;

2. Эллипсы Мак-Адама, характеризующие минимальные области цветоразличения или области цветовой однородности излучения [1];

3. Бины и оптибины, построенные на основе эллипсов Мак-Адама показанные на рисунке 1 [1], применяемые для контроля качества источников света (величина порога цветоразличения в цветовом пространстве XYZ составляет 0,0059).

Рисунок 1 – 7-ступенчатые эллипсы МакАдама на цветовом графике МКО, 1931 г

4. Неопределенности определения значений зрительных *L*-, *M*-, *S*-рецепторов: для стимула *Q* со спектральным распределением света $P_{\lambda}(\lambda)$, его значения в LMS пространстве получают с точностью $L_Q(419,0 \pm 3,6 \text{ нм})$, $M_Q(530,8 \pm 3,6 \text{ нм})$ и S_Q (558,4 ± 5,2 нм). Бины и оптибины располагаются в центре графика цветностей, а удаленные от центра эллипсы МакАдама охватывают лишь его ограниченные области, что является существенным недостатком при принятии решений в измерениях. Данную проблему предлагается решить численными методами.

Верхние границы областей допусков предлагается устанавливать численными методами на основе тензорного исчисления цветового пространства. Для уменьшения неопределенности и рисков, возникающих в измерений, предлагается установить дополнительные ограничители разделяющие цветовое пространство на сектора: по принципу превалирования удельных весов координат цвета (указаны в порядке убывания интенсивности цвета): 1) RGB; 2) RBG; 3) GRB; 4) GBR; 5) BRG; 6) BGR; цвета с одной переменной составляющей (указана на первой позиции) и двумя равными по удельным весам: 7) RG'B'; 8) GR'B'; 9) BR'G'); изохроматические цвета (только одна составляющая, остальные равны нулю 10) RG₀B₀; 11) GR₀B₀; 12) BR₀G₀; цвета с одной переменной составляющей (указана на первой позиции) и двумя равными по удельным весам: 10) RG'B'; 11) GR'B'; 12) BR'G'; одна составляющая равна нулю: 13) RGB⁰; 14) RBG⁰; 15) GRB⁰; 16) GBR⁰; 17) BRG^0 ; 18) BGR^0 и так далее. Указанные сектора цветового пространства рассматриваются как наибольшие области допускаемых значений измеряемой величины. Группы точек в цветовом пространстве ХҮΖ, соответствующие координатам цвета линеек образцов во всех их состояниях от начала координат до плоскости графика цветностей, представляют наборы виртуальных мер, описываемые векторными полями. График цветностей с нанесенными численными методами точками показан на рисунке 2.

Технология тензорного исчисления позволяет автоматизировать процесс принятия решений путем нормирования точности в цветовом пространстве и на плоскости графика цветностей. Если Ψ – номер сектора цветового пространства, j– номер реализации опорного образца, соответствующая времени экспозиции T_j , то проекция структурного цветоого тензора на плоскость графика цветностей (цветового локуса) цветового пространства XYZ с применением принципа обозначений Эйнштейна могут быть записаны в виде:

$$G^{\Psi} = \begin{pmatrix} \frac{\sum_{j=1}^{m} (|x^{\Psi}|^{2} + (y^{\Psi})^{2} + (z^{\Psi})^{2})}{\prod_{j=1}^{m} x_{j}^{\Psi} + \prod_{j=1}^{m} y_{j}^{\Psi} + \prod_{j=1}^{m} Z_{j}^{\Psi}} \times \\ \times \frac{\frac{\prod_{j=1}^{m} x_{j}^{\Psi} + \prod_{j=1}^{m} y_{j}^{\Psi} + \prod_{j=1}^{m} Z_{j}^{\Psi}}{\sum_{j=1}^{m} (|x^{\Psi}|^{2} + (y^{\Psi})^{2} + (z^{\Psi})^{2})} \end{pmatrix}.$$
(1)

Пусть поверхность для уровня интенсивности, соответствующего времени экспозиции *T*, задается плоскостью Ω_T , в данном случае – для T_1 , T_2 и $T_3 - \Omega_1$, Ω_2 и Ω_3 , лежащих на оси *Z* цветового пространства XYZ на отрезках $1/m_1$, $1/m_2$ и $1/m_3$.Тогда для векторного поля $B_k = (X_k^T Y_k^T Z_k^T)$ нормальный вектор к плоскости Ω_T будет r = (0,0,1/g). Для плоскости графика цветностей r = (0,0,1). Поток векторного поля через поверхность Ω , описывающий расхождение векторного поля от начала координат до заданной плоскости, можно рассчитать с помощью поверхностного интеграла:

$$\Phi = \iint_{\Omega} B_k dB^T, \tag{2}$$

где B_k – векторное поле образца B_k ; dB^T – векторный элемент поверхности, равен произведению скалярного элемента поверхности db^T единичного нормального вектора *r* к поверхности. С учетом наибольших (x_{max} , y_{max}) и наименьших (x_{min} , y_{min}) значений координат цветности (после исключения выбросов) без учета поворота осей получим:

Рисунок 2 – Разделение цветового пространства на сектора

Литература

1. Будак, В. П. Преобразования эллипсов МакАдама в широком диапазоне яркостей / В. П. Будак, Р. А. Делян // Материалы 33-й Междунар. конф. по компьютерной графике и машинному зрению, 19–21 сентября 2023 г., Институт проблем управления им. В. А. Трапезникова РАН, г. Москва, Российская Федерация. – С. 250–255.