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Abstract. We consider the n-homogeneous C∗-algebras over a two-dimensional compact
oriented connected manifold. Suppose A be the n-homogeneous C∗-algebra with space of
primitive ideals homeomorphic to a two-dimensional connected oriented compact manifold P (A).
It is well known that the manifold P (A) is homeomorphic to the sphere Pk glued together with
k handles in the hull-kernel topology. On the other hand, the algebra A is isomorphic to the
algebra Γ(E) of continuous sections for the appropriate algebraic bundle E. The base space for
the algebraic bundle is homeomorphic to the set Pk. By using this geometric realization, we
described the class of non-isomorphic n-homogeneous (n ≥ 2) C∗-algebras over the set Pk. Also,
we calculated the number of non-isomorphic n-homogeneous C∗-algebras over the set Pk.
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Introduction

In [1] I. Gelfand and M. Naimark proved that for any C*-algebra A there exists a
Hilbert space H such that A is isomorphic to the algebra B(H) of bounded operators
on H. Furthermore, let A be a commutative C*-algebra. Thus there exists a Hausdorff
space M such that A is isomorphic to the algebra C(M) of all continuous functions on
M . Let π be an irreducible representation of the commutative C*-algebra A. Hence the
dimension of π(A) equals 1. Moreover, let A be a non-commutative C*-algebra. Consider
an irreducible representation π of the algebra. If there exists an integer n such that for
any π the dimension of π(A) equals n then the algebra A is said to be n-homogeneous.
In [2, 3] J. Fell, I. Tomiyama, M. Takesaki proved that a n-homogeneous C*-algebra A is
isomorphic to the algebra of all continuous sections for the appropriate algebraic bundle ξ.
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In [4] F. Krauss and T. Lawson described the set of algebraic bundles over the
spheres Sk.

In [5] A. Antonevich and N. Krupnik described the difference between bundles and
algebraic bundles over the sphere Sk. On the other hand, in that paper they introduced
some operations on the classes of algebraic bundles over Sk. In [6] S. Disney and I. Raeburn
described the set of algebraic bundles over the torus T 2 and T 3. In the present paper we
describe the set of algebraic bundles over two-dimensional compact oriented manifolds.

Let us remind that a triple (E,B, p) is called bundle if the following conditions hold:
(I) E and B are topological spaces.
(II) p : E → B is a continuous surjection.
The space E is called bundle space, the space B is said to be base space. The

surjection p is called projection. The set F = p−1(x) is the fiber over a point x ∈ B.
For example, consider the product-bundle E = B × F , where B and F are topological
spaces. By p denote the projection B × F → B to the first multiplier. The bundle ξ is
said to be the trivial bundle if it is isomorphic to a product-bundle. On the other hand,
consider the Mobius tape M . Note that the Mobius tape M is a non-trivial bundle. The
circle S1 is the bundle space. The interval I is the fiber. However M is not isomorphic to
the product-bundle S1 × I. At the same time M is locally trivial.

A G-bundle ξ = (E,B, p) is called algebraic bundle if the following conditions hold:
(I) The fiber Fx is the algebra Mat(n) = Cn×n of square matrices of order n.
(II) The group G is the group Aut(n) of all automorphisms for the algebra Mat(n).
Two bundles ξ1 = (E1, B1, p1) and ξ2 = (E2, B21, p2) are said to be isomorphic if there

exists a homeomorphism γ : E1 → E2 such that γ (Fx) = Fα(x). Here α : B1 → B2 is
a homeomorphism of the bases, the set Fα(x) = p−1

2 (α(x)) is the fiber over the point
α(x) ∈ B2.

1. Algebraic bundles over the compact connected two-dimensional
oriented manifolds

Proposition 1 ([7]). If M is a compact connected two-dimensional oriented manifold,
then M is homeomorphic to the sphere S2 with k handles.

We denote it by Pk (k can be equal 0). Let ξ be an algebraic bundle (E,Pk, p) over
Pk. Let n be the order of fiber F ∼= Mat(n) for ξ. Cut out the part D from Pk, where D is
homeomorphic to the disk D2. Further, we consider the set Pk as the union (Pk\D) ∪D,
where (Pk\D) ∩D = S1. The set D is contractible. Therefore, the restriction ξD of ξ to
D is trivial. Thus, the restriction ξD is isomorphic to Mat(n)×D.

Lemma 1. The restriction ξPk\D of the bundle ξ to the set Pk\D is trivial.
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Доказательство. The proof is by induction on number k of handles. Note that the case
B ∼= P0 was conside red in [5]. First consider the case B ∼= P1, where P1 is homeomorphic
to the torus. Now we realize P1 as torus. Cut out the set D from the set P1. Now let us
prove that the restriction ξP1\D of the bundle ξ to the set P1\D is trivial.

We realize the torus P1 as the square I2 with conditions of gluing u on its border:

u(1, y) = u(0, y);u(x, 0) = u(x, 1)(0 ≤ x ≤ 1; 0 ≤ y ≤ 1).

Let I2
0.5 denotes the square with the side equals 0.5. Suppose that the set I2

0.5 has the
same center as I2. Cut out the set I2

0.5 from the square I2. The set I2\I2
0.5 is homeomorphic

to the set P1\D. The homotopic class of P1\D is the same as the homotopic class of the
border δ(I2) with the functions of gluing u. It is homeomorphic to two circles; these two
circles contain a common point. Every algebraic bundle over two circles is trivial [5]. Hence
the restriction of ξ to P1\D is trivial. The base of the induction is proved.

The induction hypothesis. Let us suppose that for any integer m ≤ k any algebraic
bundle ξ over Pm\D is trivial.

The step of the induction.
Let us show that the restriction of the algebraic bundle ξ to Pk+1\D is trivial. Indeed,

cut out a handle P1\D1 from the set Pk+1\D. Here we realize the handle as the set P1

without the set D1. Let L be the intersection of Pk+1\D and P1\D1. Thus the set L is
homeomorphic to the unit interval I.

Now we have two sets: Pk\D2 and P1\D1 with the gluing function ν : L → Aut(n)

of the bundle ξ. The restrictions of the bundle ξ to the sets Pk\D2 and P1\D1 are trivial
by the induction hypothesis. The class of the bundle ξ is determined by the homotopic
class of the mapping γ : L→ Aut(n)[5]. Since the set L is contractible, it follows that the
mapping γ is homotopic to the constant mapping. �

Lemma 2. Let f be a continuous mapping from S1 to Aut(n), where S1 = δ (Pk\D).
The identity [f ] = 0 is a necessary and sufficient condition for the mapping f to have a
continuous extension to f ∗ : Pk\D → Aut(n). Here [f ] denotes the class of f from the
group π1 (Aut(n)).

Доказательство. The proof is by induction on the number of handles k.
1. The base of induction. The set P0 is homeomorphic to the sphere S2. In this

case we can extend the mapping f : S1 → Aut(n) to the disk D if and only
if [f ] = 0([5]). Moreover, we shall to prove the statement for the set P1

∼= T 2.
The set P1 is homeomorphic to the torus T 2. On the other hand, the set P1

is homeomorphic to the unit square I2 with the rule u of gluing on the border:
u(1, y) = u(0, y), u(x, 0) = u(x, 1)(0 ≤ x ≤ 1, 0 ≤ y ≤ 1). Let us cut out the square
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I2
0.5 from the set I2. The square I2

0.5 has the same center as I2. The side of I2
0.5 is equal 0.5.

The set I2\I2
0.5 is homeomorphic to the set P1\D. Now we can consider the function f

as the function on the border of I2
0.5. Let U(x, t) = f (x(1 + t), (y(1 + t))) be a homotopy

such that u(0) = f(x, y), u(1) = f ∗(x, y), where (x, y) ∈ δ(I2). Here δ(I2) denotes the
border of I2. Consider the side a = (x, 0), (0 ≤ x ≤ 1) of the square I2. The opposite side
c = (x, 1), (0 ≤ x ≤ 1) is glued with a. When we move on the border δI2 we move on the
side c in opposite direction. In addition, the same statement is true for two other sides.
Therefore, [f ∗] = [f ] = 0.

Otherwise let f be a mapping f ∈ C(δ(I2
0.5), Aut(n)) and [f ] = 0. This yields that we

can extend the mapping f to all of I2
0.5 [5]. Let f ∗ be the extension of f to the square

I2
0.5: f ∗ ∈ C(I2

0.5, Aut(n)). Denote by f2 ∈ C(Pk\D2, Aut(n)), f1 ∈ C(P1\D1, Aut(n)) the
restrictions of f ∗ to the sets Pk\D2 and P1\D1. Consider any point y ∈ I2. Since y ∈ I2,
we have y = r · x, where x ∈ δ (I2

0.5) , r ∈ [0; 2]. For all r such that r ∈ [0; 1] we have
r · x ∈ I2

0.5. By definition, put f ∗(r · x) = f ∗((2 − r) · x) for r ∈ [1; 2]. Therefore, the
mapping f ∗ is well defined with respect to the function u of gluing for the square I2.

The assumption of the induction. Suppose the lemma is true for all m ≤ k.
The step of the induction. Consider the set Pk+1\D. Cut out one handle P1\D1

from the set Pk+1\D. Let the set L1 be the intersection of Pk+1\D and P1\D1. The
set L1 is homeomorphic to the unit interval I. Now consider the set Pk+1\D as a
union Pk\D2 ∪ P1\D1 ((Pk\D2) ∩ (P1\D) = L1). Denote by f ∗ ∈ C(Pk+1\D,Aut(n)) an
extension of f to Pk+1\D, where f ∈ C (δ(Pk+1\D), Aut(n)). Let α1 : I → S1 ∪ L1

be a parametrization of δ(P1\D1) such that α1

(
[0; 1

2
]
)

= S1, α1

(
[1
2
; 1]
)

= L1,
α2

(
[0; 1

2
]
)

= L2, α2

(
[1
2
; 1]
)

= S2.
Denote by g(x) the element from the class [f1] + [f2] such that

g(x) =

{
f1 (α1(2x)) , x ∈ [0; 1

2
]

f2

(
α2(2x− 1), x ∈ [1

2
; 1]
) .

Now we define the homotopy by the next rule:

F (t, x) =

{
g
(

x
t+1

)
, x ∈ [0; 1

2
]

g
(
x+1
t+1

)
, x ∈ [1

2
; 1]

.

Thus F (0, x) = g(x), F (1;x) =

{
g
(
x
2

)
, x ∈

[
0; 1

2

]
g
(
x+1

2

)
, x ∈

[
1
2
; 1
] = f(x), because

g
(
x
2

)
= f(x) for all x ∈

[
0; 1

2

]
and g

(
x+1

2

)
= f(x) for all x ∈

[
1
2
; 1
]
. Note that

α1

([
0; 1

2

])
= S1, α2

([
1
2
; 1
])

= S2. This implies that [f ] = [f1] + [f2].
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Otherwise consider a mapping f ∈ C (δD,Aut(n)) such that [f ] = 0. In this case we
extend it to the set L1. Let S1(t) (t ∈ [0; 1]) be a parametrization of the set S1 = D\D2.
Suppose L1(t) be a parametrization of L1 = D1 ∩D2. Now we define the mapping f ∗ by
the rule: f ∗ (L1(t)) := f (S1(t)). It follows in the standard way that [f ∗] = 0 on the sets
D1 = S1 ∪ L1 and D2 = S2 ∪ L1.

By the inductive hypothesis extend the mapping f ∗ to the set Pk\D2, because
[f ∗/δD2] = 0. Finally, extend the mapping f ∗ to the set P1\D1. �

Suppose ξ1 and ξ2 be two algebraic bundles with fiberMat(n) over the set (Pk\D)∪D.
Let η12 = γ−1

2 γ1 be the gluing function for the bundle ξ1 and µ12 = u−1
2 u1 be the gluing

function for the bundle ξ2. Denote by ν1 the map from ξ1/(Pk\D) → (Pk\D) ×Mat(n)

and by ν2 the map from ξ1/D to D ×Mat(n). These maps are well defined by lemma 1.
For any point x ∈ δ(D) the image of the fiber Fx from the bundle ξ1/(Pk\D) is the fiber
(F1)x from the bundle ξ1/D. Thus the map η12 generates an automorphism (γ1)x of the
algebra Mat(n) over every point x ∈ δ(D). The mapping γ3(x) = (γ1)x : S1 → Aut(n)

is continuous, because the restriction of the bundle ξ1 to δ(D) is trivial. By the same
argument, the gluing function µ12 generates the mapping γ4 ∈ C (S1, Aut(n)). Denote
by [γ3] the class of mapping γ3 in the group π1(Aut(n)) ∼= Z/nZ. In this notation, let
θ : π1(Aut(n))→ Z/nZ be the corresponded isomorphism. Suppose −[γ4] be the element
θ−1 (−θ ([γ4])).

Theorem 1. A necessary and sufficient condition for the bundles ξ1 and ξ2 to be
isomorphic is [γ3] = ± [γ4].

Доказательство. Denote by γ : ξ1 → ξ2 the isomorphism of the bundles. Let
α : Pk → Pk be the corresponded homeomorphism of the bases for the bundles. Suppose
η12 = γ−1

2 γ1 be the gluing function for the bundle ξ1 over (Pk\D) ∪ D. Denote by
µ12 = u−1

2 u1 the gluing function for the bundle ξ2 over (Pk\α(D))∪α(D). In this notation,
u1 : ξ1/(Pk\α(D))→ (Pk\α(D))×Mat(n), u2 : ξ2/(α(D))→ (α(D))×Mat(n).

Let β be a homeomorphism Pk → Pk such that α(D) = D and α(δ(D)) has the same
orientation as δ(D).

Denote by β1 the extension of β to the isomorphism of the bundles:
β1 : ξ2/

(
Pk\α(D)

)
→ ξ2/

(
Pk\D

)
. Let us remark that it is possible, because β(D) = D

and β (Pk\D) = Pk\D. Denote by µ∗12 : ξ2/δ(Pk\D)→ ξ2/δ(D) a mapping such that the
next diagram is commutative:

“Taurida Journal of Computer Science Theory and Mathematics”, 2018, 2



On n-homogeneous C*-algebras over two-dimensional oriented compact manifolds 95

ξ2/(Pk\α(D))
µ12−→ ξ2/

(
α(D)

)
↓ β1 ↓ β2

ξ2/(Pk\D)
µ∗12−→ ξ2/D

In this case, the bundle β1 (ξ2/(Pk\α(D))) ∪
µ∗12

β2

(
ξ2/α(D)

)
is isomorphic to the

bundle ξ2.
Let β3 be the isomorphism of the bundles.
Suppose α be a homeomorphism α : Pk → Pk for the bases such that

β ◦ α
(
δ(D)

)
= δ(D). The restriction of the bundle ξ1 to the set Pk\D is trivial. Further,

let β5 ∈ C (Pk\D,Aut(n)) be a mapping defined by the isomorphism β3 ◦ γ. The image of
a fiber Fx under the mapping β5 is a fiber β3 ◦ γ(Fx) for any point x ∈ Pk\D. In addition,
let β6 ∈ C(D,Aut(n)) be a mapping defined by the isomorphism β3 ◦ γ. The image of a
fiber Fx under the mapping β6 is a fiber β3 ◦ γ (Fx) for any point x ∈ D.

We have the next commutative diagram:

ξ1/(Pk\D)
η12−→ ξ1/D

↓ β3 ◦ γ ↓ β3 ◦ γ
ξ2/(Pk\D)

µ∗12−→ ξ2/D

The image of a fiber Fx under the mapping β3 ◦γ is a fiber Fβ◦α(x). Therefore we have
γ4 (β ◦ α(x)) β5(x) = β6 ◦ γ3(x). Further,

[γ4(β ◦ α(x))] + [β5(x)] = [β6(x)] + [γ3(x)] (1)

The mappings β5(x) and β6(x) are defined on the sets Pk\D and D correspondingly.
Therefore we have [β5(x)] = [β6(x)] = 0 by the lemma 2. Using (1), we get

[γ4 (β ◦ α(x))] = [γ3(x)] (2)

Let the mapping β ◦ α changes the orientation of the circle δ
(
D
)
. Therefore

[γ4(β ◦ α(x))] = − [γ4(x)].
Otherwise, let the mapping β ◦α do not changes the orientation of the circle δ(D). In

this case, [γ4(β ◦ α(x))] = [γ4(x)]. Actually we obtain [γ4] = ± [γ3].
On the other hand, let [γ4] = ± [γ3]. Suppose we have [γ4] = − [γ3]. Denote by α

a homeomorphism Pk → Pk such that α
(
D
)

= D. Let the homeomorphism α changes
the orientation of the circle S1 = δ

(
D
)
. In this case, denote by γ1 the isomorphism

v−1
1 ◦ u1 from ξ1/(Pk\D) → ξ2/(Pk\D). Here, v1 is the isomorphism of the bundles
ξ2/(Pk\D) → (Pk\D) × Mat(n) such that restriction of v1 to Pk\D equals α. We

«Таврический вестник информатики и математики», №2 (39)’ 2018



96 M. V. Shchukin

see that the isomorphism u1 : ξ1/(Pk\D) → (Pk\D) × Mat(n) produces the identity
homeomorphism I for the bundle bases. Note that the isomorphism γ1 produces a mapping
γ5 ∈ C(Pk\D,Aut(n)). Thus the mapping (γ4(αx)) γ5(x) (γ3(x))−1 ∈ C (S1, Aut(n))

produces the isomorphism η12 ◦ γ1 ◦ µ−1
12 : ξ1/δD → ξ2/δD for the trivial bundles.

In addition, the homeomorphism α changes the orientation for the circle S1 = δD.
Now we get [γ4(αx)] = − [γ4(x)]. We obtain [γ5(x)] = 0 by the lemma 2. In addition,
the next equality has a place: [(γ3(x))−1] = − [γ3(x)]. Denote by γ7 the extension of
γ4(αx) ◦ γ5(x) ◦ (γ3(x))−1 to D by lemma 2. This means that γ7 ∈ C

(
D,Aut(n)

)
. Define

the isomorphism γ2 : ξ1/D → ξ2/D by the rule (x, y)→ (α(x), γ7(x) · y) , (x ∈ D, y ∈ Fx).
The isomorphism is well-defined with respect to the functions of gluing for the bundles

ξ1 and ξ2. Further, define a map γ : ξ1 → ξ2 by the next rule:

{
γ1 on ξ1/(Pk\D)

γ2 on ξ1/D
.

This implies that the map γ is an isomorphism of bundles. On the other hand,
let [γ4] = [γ3]. Define the homeomorphism α as identity I : Pk → Pk. Arguing
as before, we get the map γ4(αx) ◦ γ5(x) ◦ (γ3(x))−1 ∈ C (S1, Aut(n)) such that[
γ4(αx) · γ5(x) · (γ3(x))−1] = [γ4(αx)] + [γ5(x)] +

[
(γ3(x))−1] = [γ4]− [γ3] = 0. Therefore,

we can extend the map γ4(αx) ·γ5(x) ·(γ3(x))−1 to a map γ7 ∈ C
(
D,Aut(n)

)
. The map γ7

produces an isomorphism γ2 : ξ1/D → ξ2/D that is coordinated with gluing functions for
the bundles ξ1 and ξ2. At the same time the map γ7 is coordinated with the isomorphism
γ1. These isomorphisms γ1 and γ2 produce an isomorphism γ : ξ1 → ξ2. �

Theorem 2. Suppose n = 2l or n = 2l + 1(l ∈ N). Then there are l + 1 non-isomorphic
algebraic bundles with fiber Mat(n) over the set Pk.

Доказательство. Let n = 2l. In other notation, we need to find number of
classes in Z/nZ with respect to the equality l = −l. We have the next classes
{0} , {1, 2l − 1} , {2, 2l − 2} , {3, 2l − 3} , ..., {l − 1, l + 1} , {l}. There are exactly l+1 such
classes.

Further, let n = 2l + 1. In this case we have the next classes:
{0} , {1, 2l} , {2, 2l − 1} , {3, 2l − 2} , {4, 2l − 3} , ..., {l − 1, l + 2} , {l, l + 1}. There are
l + 1 such classes. �

Conclusion

In the work we described the class of non-equivalent algebraic bundles with base
space homeomorphic to the two-dimensional compact oriented connected manifold.
We calculated the number of non-isomorphic n-homogeneous C∗-algebras with space
of primitive ideals homeomorphic to the two-dimensional compact connected oriented
manifold. Further, it is interesting to know the structure of n-homogeneous C∗-algebras
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with its space of primitive ideals homeomorphic to more complicated manifolds, for
example, 3-dimensional manifolds and other.
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