М.К. Балыкин, В.В. Конючков, А.Е. Кончиц

ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРНЫХ НАПРЯЖЕНИЙ В ПРОСТРАНСТВЕННЫХ ТРУБОПРОВОДАХ

При проектировании трубопроводов различного назначения часто встречаются пространственные z -образные трубопроводы (рис. 1), расчет которых способом приведения пространственной задачи к трем. плоским [1] является сравнительно громоздким.

Настоящая работа посвящена расчету на прочность такого трубопровода с любым отношением длин участков и учетом коэфлициента понижения жесткости криволинейных колен.

Рассматриваемый трубопровод с точки эрения строительной механики представляет собой упругую статически неопределимую систему с шестью лишними неизвестными. С использованием соотношений длин участков $k_1 = \frac{l}{l}, k_2 = \frac{l}{l}, \gamma = \frac{l}{R}$ система канонических уравнений метода сил может быть пред-

система канонических урарнений метода сил может быть представлена в виде

$$\begin{vmatrix} i^{3}A_{11} & i^{3}A_{12} & i^{3}A_{13} & i^{2}A_{14} & i^{2}A_{15} & i^{2}A_{16} \\ i^{3}A_{21} & i^{3}A_{22} & i^{3}A_{23} & i^{2}A_{24} & i^{2}A_{25} & i^{2}A_{26} \\ i^{3}A_{31} & i^{3}A_{32} & i^{3}A_{33} & i^{2}A_{34} & i^{2}A_{35} & i^{2}A_{36} \\ i^{2}A_{41} & i^{2}A_{42} & i^{2}A_{43} & iA_{44} & iA_{45} & iA_{46} \\ i^{2}A_{51} & i^{2}A_{52} & i^{2}A_{63} & iA_{54} & i^{2}55 & iA_{56} \\ i^{2}A_{61} & i^{2}A_{62} & i^{2}A_{63} & iA_{64} & iA_{65} & iA_{66} \\ \end{vmatrix}$$

где $\Delta = \dot{\lambda} \Delta tl$ -- температурное удлинение плеча l; λ -- коэфициент линейного температурного расширения материала

трубопровода; <u>ь</u>t — расчетный температурный перепад; Е — модуль нормальной упругости материала трубы; I — осевой момент инерции сечения трубы; А_{mn} — коэффициент, зависящий от соотношений длин участков, понижения жесткости криволиненных колен (k); определяется по соответствующим зависимостям [1, 2]. Так.

$$A_{n} = \frac{1}{3} + k_{1} + 1,3k_{2} + \frac{1}{3}k_{2}^{3} + \frac{1}{\gamma^{2}} - \frac{3,28}{\gamma} - \frac{2}{3\gamma^{3}} + \frac{1}{k} \frac{(2,36)}{\gamma} - \frac{1,14}{\gamma^{2}} + \frac{0,71}{\gamma^{3}}$$
(1)

Решение системы (1), определяемое правилом Крамера [3], дает возможность получить сормулы для нахождения неизвестных силовых факторов в виде

$$X_{i} = \frac{\Delta E I}{l^{3}} \lambda_{i}, \quad i=1, 2, 3;$$

$$X_{j} = \frac{\Delta E I}{l^{2}} \lambda_{j}, \quad j=4, 5, 6,$$
 (2)

 $^{1} \mu e \\ ^{1} i_{i}(j) = f_{i}(j)^{(k, k_{1}, k_{2}, \gamma^{c})} = \frac{\begin{pmatrix} A_{11} \cdots A_{1}, i(j) - 1 & k_{1} & A_{1,i}(j) + 1 \cdots A_{16} \\ A_{21} \cdots A_{2,i}(j) - 1 & k_{2} & A_{2,i}(j) + 1 \cdots A_{26} \\ A_{31} \cdots A_{3,i}(j) - 1 & 1 & A_{3,i}(j) + 1 \cdots A_{36} \\ A_{41} \cdots A_{4,i}(j) - 1 & 0 & A_{4,i}(j) + 1 \cdots A_{46} \\ A_{51} \cdots A_{5,i}(j) - 1 & 0 & A_{5,i}(j) + 1 \cdots A_{56} \\ A_{61} \cdots A_{6,i}(j) - 1 & 0 & A_{6,i}(j) + 1 \cdots A_{66} \\ \end{pmatrix} \\ \frac{\begin{pmatrix} A_{11} & A_{12} \cdots A_{16} \\ A_{21} & A_{22} \cdots A_{26} \\ \vdots & \vdots & \cdots & \vdots \\ A_{61} & A_{62} \cdots A_{66} \\ \end{pmatrix}}{\begin{pmatrix} A_{11} & A_{12} \cdots A_{16} \\ A_{21} & A_{22} \cdots A_{26} \\ \vdots & \vdots & \cdots & \vdots \\ A_{61} & A_{62} \cdots A_{66} \\ \end{pmatrix}}$ (2)

С использованием полученных зависимостей (2) выражения суммарных изгибающих и крутящих моментов для характерных сечений трубопровода запишутся так:

$$\begin{array}{c} M_{n}^{\mathbf{M3}} = \frac{2 \triangle EI}{12} \quad \varphi^{\mathbf{M3}} \\ M_{n}^{\mathbf{Kp}} = \frac{4 \triangle EI}{12} \quad \varphi^{\mathbf{Kp}} \\ M_{n}^{\mathbf{E}} = \frac{4 \triangle EI}{12} \quad \varphi^{\mathbf{Kp}} \\ \end{array}$$
(3)

٦

где $\varphi^{\text{из}}$, $\varphi^{\text{кр}}$ -- функции F(k,k₁,k₂, γ), зависящие от соотношения длин участков трубопровода и коэффициента понижения жесткости колен; определяются по соответствующим выражениям для определенного сечения n:

Анализ полученных выражений показал, что функции φ из в основном зависят от соотношений длин K_1, K_2 и коэффициента понижения жесткости колен, а $\varphi_n^{\rm Kp}$ --только от соотношений длин. Значения коэффициентов ψ из и $\psi_n^{\rm Kp}$ вычислены на электронной вычислительной машине "Минск-2" и представлены на рис. 2, 3. Коэффициенты ψ из и $\psi_6^{\rm M3}$ даны в табл. 1.

Таблица 1

	k 2	k ₁ = 1								^k 1 = 2				$k_1 = 3$						
8		K								K										
		0,046	0,100	0,143	0,214	0,380	1,000	0,046	0,100	0,143	0,214	0,380	1,000	0,046	0,100	0,143	0,214	0,380	1,000	
					Ψ ^{ИЗ}					φ_{3}^{N3}										
10	1	0,28	0,43	0,54	0,72	0,88	1,12	0,31	0,47	0,58	0,75	0,87	1,03	0,35	0,50	0,62	0,78	0,88	1,06	
	2	0,22	0,28	0,32	0,35	0,37	0,39	0,20	0,28	0,32	0,35	0,37	0,39	0,18	0,25	0,30	0,35	0,37	0,39	
	3	0,24	0,29	0,30	0,32	0,33	0,34	0,17	0,22	0,24	0,26	0,28	0,30	0,12	0,17	0,20	0,23	0,25	0,28	
20	1	0,43	0,60	0,72	0,88	0,97	1,13	0,48	0,64	0,75	0,91	0,98	1,04	0,52	0,69	0,80	0,92	0,99	1,09	
	· 2	0,27	0,33	0,37	0,41	0,44	0,46	0,24	0,31	0,35	0,38	0,41	0,43	0,22	0,28	0,34	0,37	0,39	0,41	
	3	0,29	0,31	0,33	0,34	0,34	0,35	0,19	0,24	0,27	0,28	0,29	0,30	0,17	0,21	0,23	0,25	0,26	0,28	
30	1	0,53	0,71	0,82	0,95	1,02	1,13	0,58	0,75	0,85	0,96	1,02	1,05	0,63	0,80	0,89	0,98	1,03	1,11	
	2	0,33	0,37	0,39	0,41	0,42	0,43	0,28	0,33	0,37	0,39	0,41	0,42	0,27	0,32	0,35	0,37	0,39	0,40	
	3	0,31	0,32	0,33	00,34	0,34	0,35	0,22	0,25	0,27	0,29	0,30	0,30	0,19	0,23	0,24	0,26	0,27	0,28	
8	k ₂	Ψ ^{1/13} 6									Ψ_6^{R3}									
10	1	0,28	0,43	0,54	0,72	0,88	1,12	0,31	0,47	0,58	0,75	0,87	1,03	0,35	0,50	0,62	0,78	0,88	1,06	
	2	0,36	0 , 55	0,68	0,88	1,01	1,21	0,31	0,46	0,57	0,72	0,81	0,95	0,32	0,41	0,56	0,69	0,76	0,86	
	3	0,46	0,65	0,79	0,98	1,10	1,27	0,32	0,46	0,57	0,70	0,77	0,88	0,30	0,42	0,51	0,61	0,68	0,77	
20	1	0,43	0,60	0,72	0,88	0,97	1,13	0,48	0,64	0,75	0,91	0,98	1,04	0,52	0,69	0,80	0,92	0,99	1,09	
	2	0,55	0,74	0,86	1,00	1,07	1,21	0,47	0,62	0,72	0,84	0,91	0,95	0,46	0,60	0,68	0,75	0,80	0,95	
	3	0,66	0,85	0,97	1,10	1,17	1,28	0,48	0,61	0,70	0,79	0,85	0,88	0,43	0,55	0,61	0,68	0,72	0,77	
30	1	0,53	0,71	0,82	0,95	1,02	1,13	0,58	0,75	0,85	0,96	1,02	1,05	0,63	0,80	0,89	0,98	1,03	1,11	
	2	0,66	0,83	0,94	1,05	1,12	1,21	0,54	0,68	0,78	0,89	0,94	0,96	0,54	0,66	0,74	0,80	0,84	0,88	
	3	0.78	0.96	1.05	1.15	1.21	1.29	0.54	0.66	074	0.84	0.88	0.89	0.50	0.60	0 66	0.71	074	077	

По известному изгибающему моменту находятся продольные температурные напряжения на криволинейных участках (сечения 3,6)

$$\mathcal{F}_{=}^{\mu} \frac{M_{3,6}^{\mu3}m_{1}}{W} = \frac{\Delta EDm_{1}}{1^{2}} \varphi^{\mu3}$$
(4)

и на прямолинейных участках (сечения жесткого закрепления)

$$\mathbf{\vec{b}}^{\mathbf{M}} = \frac{M_{1,8}^{\mathbf{M}3}}{W} = \frac{\Delta ED}{\frac{1}{2}} \quad \mathbf{\vec{\psi}}_{1,8}^{\mathbf{M}3} , \qquad (5)$$

а по известному крутящему моменту -- касательные температурные напряжения

$$\boldsymbol{\tau}_{\boldsymbol{K}}^{\boldsymbol{K}} = -\frac{M_{\boldsymbol{n}}^{\boldsymbol{K}\boldsymbol{p}}}{W_{\boldsymbol{p}}} = -\frac{\Delta ED}{l^2} \boldsymbol{\psi}_{\boldsymbol{n}}^{\boldsymbol{K}\boldsymbol{p}} , \qquad (6)$$

где D — наружный диаметр трубопровода; W, W — осевой и полярный моменты сопротивления трубы; $m_1 - \kappa_0 = \kappa_0 + \kappa_0 +$

При изгибе криволинейных колен пространственного трубопровода величина коэфсициента m_1 , входящего в формулу (4), зависит от угла β между вектором изгибающего момента и нормалью к плоскости кривизны участка 1. Зная моменты, соответствующие плоскому изгибу колена и изгибу, нормальному плоскости кривизны, можем найти угол β для сечений **3** и 6 середины колен:

$$\beta_{3} = \arctan \left\{ \frac{0,707(\lambda_{2} - \lambda_{5} - \lambda_{6})}{\lambda_{1} - \frac{0,293}{3}(\lambda_{1} + \lambda_{2}) - \lambda_{4}}, \\ \beta_{6} = \arctan \left\{ \frac{0,707(\lambda_{1} + \lambda_{2} - \lambda_{3}K_{1} - \lambda_{4} - \lambda_{5})}{\lambda_{2}K_{1} - \frac{0,293}{3}(\lambda_{1} + \lambda_{2}) - \lambda_{6}} \right\}$$
(7)

Анализ выражений (7) показал, что угол β_3 в основном зависит от отношения длин k_2 , а угол β_6^2 — от k_1 и k_2 . Значения углов приведены на рис. 4.

Полученные зависимости позволяют сравнительно быстро оценить компенсирующую способность системы при различных соотношениях длин и радиусах кривизны сварных и гнутых колен.

<u>Пример</u> Определить температурные напряжения в трубопроводе(рис. 1) с параметрами D/d =159/144 мм, 1 = 3,25 м, 1_1 =6,5 м, 1_2 =8 м, R =2 D при максимальной температуре теплоносителя Δt =400°C. Коэффициент линейного температурного расширения материала трубопровода \measuredangle = $1,38\cdot10^{-5}$ см/м·град; модуль нормальной упругости материала E=1,63·10⁶ кг/см² [2]. Коэффициент понижения криволинейных участков k =0,22 [2]. Температурное удлинение плеча 1

$$\Delta = \measuredangle \Delta t1 = 1,38 \cdot 10^{-2} \cdot 400 \cdot 325 = 1,8 \text{ см.}$$

Температурные напряжения:

на прямолинейных участках (сечения 1, 8)

$$(\mathfrak{S}^{\text{H3}})_{1} = \frac{\Delta \text{ED}}{1^{2}} \psi_{1}^{\text{H3}} = \frac{1.8 \cdot 1.63 \cdot 10^{\circ} \cdot 15.9}{325^{\circ}} 0,65 = 288 \text{ kr/cm};$$

$$(\mathfrak{T}_{\text{H}}^{\text{KD}})_{1} = \frac{\Delta \text{ED}}{1^{2}} \psi_{1}^{\text{KD}} = \frac{1.8 \cdot 1.63 \cdot 10^{\circ} \cdot 15.9}{325^{\circ}} 0,175 = 77.4 \text{ kr/cm};$$

$$(\mathfrak{S}^{\text{H3}})_{8} = \frac{\Delta \text{ED}}{1^{2}} \psi_{8}^{\text{H3}} = \frac{1.8 \cdot 1.63 \cdot 10^{\circ} \cdot 15.9}{325^{\circ}} 0,92 = 407 \text{ kr/cm};$$

$$(\mathfrak{T}^{\text{KD}})_{8} = \frac{\Delta \text{ED}}{1^{2}} \psi_{8}^{\text{KD}} = \frac{1.8 \cdot 1.63 \cdot 10^{\circ} \cdot 15.9}{325^{\circ}} 0,92 = 407 \text{ kr/cm};$$

на криволинейных участках (сечения 3,6)
(
$$\mathfrak{S}^{\text{ИЗ}}$$
)₃ = $\frac{\Delta \text{ EDm}}{1^2}$, $\psi_{3}^{\text{ИЗ}} = \frac{1.8 \cdot 1.63 \cdot 10^6 \cdot 15.9 \cdot 2.00}{325^2}$, 0,31 = 274 кг/см²;
($\mathfrak{T}, {}^{\text{KP}}$)₃ = $\frac{\Delta \text{ ED}}{1^2}$, $\psi_{3}^{\text{KP}} = \frac{1.8 \cdot 1.63 \cdot 10^6 \cdot 15.9}{325^2}$, 0,16 = 70,7 кг/см²;
($\mathfrak{S}^{\text{ II3}}$)₆ = $\frac{\Delta \text{ EDm}}{1^2}$, $\psi_{6}^{\text{II3}} = \frac{1.8 \cdot 1.63 \cdot 10^6 \cdot 15.9 \cdot 1.65}{325^2}$, 0,71 = 518 кг/см²;
($\mathfrak{T}, {}^{\text{KP}}$)₆ = $\frac{\Delta \text{ EDm}}{1^2}$, $\psi_{6}^{\text{KP}} = \frac{1.8 \cdot 1.63 \cdot 10^6 \cdot 15.9 \cdot 1.65}{325^2}$, 0,067 = 29,8 кг/см².

Значения коэффициентов $\varphi^{\text{из}}$ и $\varphi^{\text{кр}}$ принимались по табл. 1 и графикам, приведенным на рис. 2, 3, при $k_1 = \frac{l_1}{l_1} =$ $k_2 = \frac{l_2}{l} = \frac{8}{3.25} = 2,46$ M $\gamma = \frac{l}{R} = \frac{3,25}{0,318} \approx 10.$ Ko-6.5 =<u>---</u>=2; эффициенты интенсификации продольных напряжений m при-нимались по данным работы [1] при $\beta_3 = 42^\circ$ и β_6 = 3° (рис. 4).

12 Зак. 5427

жесткости

<u>1.</u> Волошин А.А. Расчет на прочность трубопроводов судовых энергетических установок. Л., 1967. <u>2</u>. Камерштейн А.Г., Рождественский В.В., Ручимский М.Н. Расчет трубопроводов на прочность. М., 1969. <u>3</u>. Филин А.П. Матрицы в статике стержневых систем. М.--Л., 1966.

В.Н. Заяц

АНАЛИЗ ВЗАИМОДЕЙСТВИЯ БАЛКИ С ПОДАТЛИВЫМ ОСНОВАНИЕМ

Балки на упругом основании относят к статически неопределимым системам. Деформации балок и оснований под нагрузками неразрывно связаны между собой, т.е. оказывают взаимное влияние друг на друга. Они выполняют общую инженерную задачу, но доля участия их в работе зависит от строительных свойств каждого элемента в отдельности. Строительные свойства включают геометрические и физические параметры балки и основания.

При расчетах балок на упругом основании различают два основных направления: по методу коэффициента упругой постели (гипотеза Винклера) и по методу упругого полупространства, предложенному значительно позже. Метод коэффициента упругой постели применяется в частности при расчетах балок на основании из слабых грунтов (ил, торф, мелкозернистые водонасыщенные пески) или на слое сжимаемого грунта незначительной мощности, опирающемся на несжимаемое основание [1--3]. В доступности практического использования второй метод уступает первому.

Рассмотрим метод коэффициента упругой постели применительно к расчету деформации колейных железобетонных плит на торфяном основании, укладываемых при строительстве дорог на осушаемых торфяных массивах. Армированная железобетонная плита размерами 300×100×15 см по существующим критериям [2] в поперечном направлении относится к жестким. Опыты показали, что под нагрузкой на торфе поперечный прогиб практически отсутствует, в связи с этим величину прогиба в продольном направлении будем определять по теории расчета балок.

178