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INTRODUCTION 

 

The educational-methodical manual “Mathematics. Matrices and vec-

tors” is intended for lectures, practical exercises and consultations with 

students of the first stage of training in the specialities 6-05-0716-03 

“Information and measuring instruments and systems”, 6-05-0716-04 

“Optoelectronic and laser technology”, 6-05-0716-06 “Biomedical engi-

neering” of the instrument-making faculty of the Belarusian National 

Technical University in the discipline “Mathematics”. 

This training manual includes the main topics necessary for the for-

mation of the appropriate competence of a specialist, from the sections 

“Operations on matrices”, “Vector algebra”. These competencies must be 

mastered by the student during the academic semester for further success-

ful mastering of the material in related special disciplines. 

The topics covered by this manual correspond to the current curricu-

lum for the discipline “Mathematics” for the instrument-making faculty 

of the Belarusian National Technical University. 

The authors of the teaching aid aimed at increasing the level of master-

ing the educational material, the student's independence in preparation for 

the exam in this discipline, the implementation of the basic principles  

of didactics: the accessibility and consistency of the educational process. 

Careful selection of material allows for the primary consolidation of the 

material, as well as systematize the knowledge of students. 
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§ 1 MATRICES AND MATRIX OPERATIONS.  

DIAGONAL, TRIANGULAR AND SYMMETRIC MATRICES 
 

A matrix is defined to be a rectangular array of functional or numeric 

elements, arranged in row or column order. Most important in this defi-

nition is that two subscripts are required to identify a given element:  

a row subscript and a column subscript (fig.1). 
 

11 1

1

...

... ... ...

...

n

m mn

a a

A

a a

 
 

  
 
 

 

 

  

 

 

 

 

 
 

Fig. 1. Matrix A: 

(m, n) – dimension of matrix 

 

A square matrix is a matrix with the same number of rows and  

columns.  

You learned numbers at the school. Even at the beginning of the edu-

cation, you learned how to add numbers, how to multiply them, find the 

reverse number. 

We have a new object today – a matrix. We don't know anything 

about it. We have to learn how to use matrices. We will learn how to 

add, multiply. We will answer the question whether it is possible to di-

vide matrices, how to find their inverse. 

Where you can meet the matrix? It is everywhere! In front of you is  

a phone or computer screen. It’s no secret for you that the screen con-

sists of many pixels. Before our eyes is a matrix of pixels where the pix-

el brightness value is located at the intersection of rows and columns. 

You add effects to photos often in phone applications. It means that 

you interact with image matrices. You press a button and the computer 

 

m
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o
w

s 

n columns 
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does all the work for you. A real engineer must know what happens 

when he pushes a button on a device developed by him.  

We will see how you can interact with matrices and use them, for ex-

ample, to solve systems of equations. 

Example. 

The matrix can contain an unequal number of rows and columns. It can 

have only one row, and it can only have one column. Here are examples  

of matrices. 

 

3

2
A

 
  
 

,  62B , 

8 1

0 2

1 3

C

 
 

  
 
 

. 

 

Example.  

Write out the elements of a given matrix a11, a32, a21. 

 



















3

2

1

1

10

8

A . 

 

The main diagonal of a matrix consists of those elements that lie on 

the diagonal that runs from top left to bottom right. The main diago-

nal starts at the top left and goes down to the right: 

 

 . 

 

A diagonal matrix is a matrix, in which the entries outside the main 

diagonal are all zero; the term usually refers to square matrices.  

A square matrix is called lower triangular if all the entries above  

the main diagonal are zero. Similarly, a square matrix is called up-

per triangular if all the entries below the main diagonal are zero. 
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§ 2 ADDITION  OF THE MATRICES  
 

The sum of two (or more) matrices is formed by summing corre-

sponding elements: 
 

C = A ± B, cij = aij ± bij. 
 

Example.  

Find the sum A + B, the difference of the matrices A – B. 
 

























145

260

421

A , 




















121

102

3210

B . 

 

Matrix addition is defined only when A and B have the same numbers 

of rows and columns, respectively. 

When this is the case, the matrices A and B are said to be “conforma-

ble in addition”. 

If all the elements of A are respectively the negatives of those of B, 

then the sum, C, will have all zero elements. In such case, C is known as 

a “nul” matrix. 

A square matrix whose ij elements are zero for i ≠ j and whose ele-

ments ii are unity is defined as the “unit matrix”. 

Since addition is commutative for the elements of the matrix, then 

matrix addition itself is commutative. That is,  
 

A + B = B + A. 
 

§ 3 MULTIPLICATION BY A SCALAR 
 

The matrix k·A is formed by multiplying every element of A by the 

scalar k. 

Example.  

Evaluate expression 7A + 3B. 
 

























149

210

421

A , 




















121

102

3210

B . 
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§ 4 MATRIX MULTIPLICATION 

 

For matrix multiplication, the number of columns in the first matrix 

must be equal to the number of rows in the second matrix. The resulting 

matrix, known as the matrix product, has the number of rows of the first 

and the number of columns of the second matrix (fig. 2). 

 

 
 

A·B = C. 

 

Fig. 2. Type of matrix 

 

That is, the elements of C as the product are obtained by multiplying 

term-by-term the elements of the ith row of A and the jth column of B, 

and summing these n products.  

In other words, C is the dot product of the ith row of A and the jth 

column of B. 

We match the 1st members (1 and 7), multiply them, likewise for the 

2nd members (2 and 9) and the 3rd members (3 and 11), and finally sum 

them up. 
 

 

 

 
 

We see on the first row of A and second column of B. We match the 

1st members (1 and 8), multiply them, likewise for the 2nd members  

(2 and 10) and the 3rd members (3 and 12), and finally sum them up. 
 

Dot product 
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We can do the same operations for the 2nd row and 1st column. 

 

 

Example.  

Find the product of matrices, if possible. 

 

a) 











1

5

1

3

0

2
A ,



















2

3

0

4

2

1

B . 

 

b) 
























145

250

111

A , 




















121

1102

3210

B . 

 

c) 


















2

3

0

A ,  257 B . 

 

Example.  

Find the product of matrices A·B, B·A, if possible. 

 











4

3

5

2
A , 










4

3

5

2
B . 
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The results are different, which illustrates that matrix multiplication 

is not commutative. That is, in general: 
 

A·B ≠ B·A. 

 

Because of the non-commutative nature of the matrix product, the or-

der of the product must be stated explicitly. 

Matrix multiplication is associative: 

  

A·(B·C) = (A·B)·C = A·B·C. 

 

Further, it is distributive: 

 

A·(B + C) = A·B + A·C. 

 

§ 5 MATRIX TRANSPOSITION 
 

We can swap elements across the main diagonal (rows become col-

umns). 

The matrix transpose of A is written A
T
. A

T
 is obtained by interchang-

ing the rows and columns of A. If A is an m × n (m by n) matrix, then A
T
 

is an n × m matrix. 

A square matrix whose transpose is equal to itself is called 

a symmetric matrix. 

Properties. 

Let A and B be matrices and c be a scalar. 

1. The operation of taking the transpose is an involution (self-

inverse). 
 

(A
T
)

T 
= A. 
 

2. The transpose respects addition. 
 

(A + B)
T
=A

T 
+ B

T
. 
 

3. Note that the order of the factors reverses. 

 

(A·B)
T
=B

T
·A

T
. 

https://en.wikipedia.org/wiki/Scalar_(mathematics)
https://en.wikipedia.org/wiki/Involution_(mathematics)
https://en.wikipedia.org/wiki/Inverse_matrix
https://en.wikipedia.org/wiki/Matrix_addition
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4.  The number can be placed outside the transposition sign. 

 

(c · A)
T
= c · A

T
. 

 

Example.  

Find transposed matrix A
T
. 

 

a) 
























145

250

111

A ,  b) 




















121

1102

3210

B . 

 

Example.  

Find 2A
2 
– 3A

T
, where 























145

290

111

A . 

 

TASK TO REVIEW 

 

1. Find the product of two matrices A·B and B·A, if possible. 

 













105

241
A , 










50

21
B . 

 

2. Transpose matriсes 

 















023

112
A , 







 


03

12
B . 

 

3. Find the value of the expression A
2
+7·B. 

 








 


24

12
A ,     














012

223
B . 
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4. Find the value of the expression А
Т
·В – 5·Е, where Е – unit matrix. 

 



















1

1

3

3

2

1

A , 























1

4

3

3

1

5

B . 

 

5. Find the value of the expression (C·D + D
T
·C

T
)

3
, where Е – unit  

matrix. 

 















31

21
C , 










21

11
D . 

 

§ 6 DETERMINANTS 

 

The determinant is a scalar value that can be computed from the ele-

ments of a square matrix and reflects certain properties of the linear 

transformation described by the matrix. 

The determinant helps us find the inverse of a matrix, tells us things 

about the matrix that are useful in systems of linear equations, calculus. 

The symbol for determinant is two vertical lines on either side. 

 

nnnn

n

n

aaa

aaa

aaa

A

...

............

...

...

21

22221

11211

 . 

 

The value of a second-order determinant is equal to the product of 

the elements on the main diagonal, minus the product of the elements on 

the secondary diagonal. The formula for finding the determinant of the 

second order: 

 

bcad
dc

ba
 . 
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Example. 

51274317
13

47
 . 

 

Sarrus' rule is useful for third-order determinants only (fig. 3). Once 

this is done the calculation of the determinant is computed as follows: 

multiply the diagonal elements. The descending diagonal from left to 

right has a “+” sign, while the descending diagonal from right to left has 

the “–” sign.  
 

 
 

Fig. 3. Sarrus' rule  

 

Example. 

4 1 0

2 1 1 4 1 1 2 2 0 6 ( 1) ( 1) 0 1 6 4 2 ( 1)

6 2 1

–2 1 ( 1) 4 0 6 0 8 2 20.



                   

         

 

 

§ 7 PROPERTIES OF DETERMINANTS 

 

1. A square matrix A and its transpose A
T
 have the same determinant. 

2. If any row, or column, of a determinant contains all zero elements, 

that determinant equals zero: 
 

|A| = 0. 
 

3. The determinant of a diagonal matrix is equal to the product of its 

diagonal elements.  
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4. If two rows, or columns, of a determinant are interchanged, the 

sign of the determinant is reversed.  

5. If two rows, or columns, of a determinant are identical, its expan-

sion is zero.  

6. If to any row, or column, there is added a constant factor multi-

plied by the corresponding elements of any other row, or column, the 

value of the determinant is unchanged.  

Example.  

Calculate the determinant of this matrix: 

 





















130

214

231

A . 

 

§ 8 MINORS AND COFACTORS 

 

If one, or more, rows and columns are deleted from a determinant, 

the result is a determinant of lower order and is called a “minor” of the 

original. If just one row and one column are deleted, the resulting “first 

minor” is of order (n − 1). 

Minors obtained by removing just one row and one column from 

square matrices (first minors) are required for calculating ma-

trix cofactors, which in turn are useful for computing both the determi-

nant and inverse matrix. 

Example.  

Calculate the minors M11, M23, M31 of this matrix: 

 





















130

214

231

A . 

 

The cofactor Aij of aij is defined by 

 

Aij  =  (–1)
i+j

 Mij. 
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One of the main applications of cofactors is finding the determi-

nant.  The following theorem, which we will not prove, shows us how to 

use cofactors to find a determinant. 

Theorem.  

Let A be an n × n matrix and 1 ≤ i ≤ n.  Then 

 

|A|  =  ai1Ai1 + ai2Ai2 + ... + ainAin. 

 

Example.  

Calculate the determinant of matrix A, using the expansion in terms 

of the elements of the first row: 

 





















130

214

231

A . 

 

The determinant will be equal to the sum of the products of elements 

by their cofactors. 
  

TASK TO REVIEW 
 

1. Calculate the determinant 
xx

xx

cossin

sincos


. 

2. Calculate the minors M11, M23, M31 of this matrix: 

 

























689

417

532

A . 

 

3. Calculate the cofactors A11, A23, A31 of this matrix: 

 























432

113

201

A . 
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4. Calculate the determinant of matrix A, using the expansion  

in terms of the elements of the first row: 

 

























689

417

532

A . 

 

5. Calculate the determinant of matrix A, using Sarrus' rule: 

 

























689

417

532

A . 

 

§ 9 INVERSE MATRIX 
 

Thus far, we have not defined matrix division. In the general case,  

no such operation as A/B exists (fig. 4). 

 
Fig. 4. Reciprocal number 

 

However, if A is a square matrix, then there may be a matrix, B, such 

that A·B = E, E – unit matrix. In this case, the matrix B is referred to as 

the “inverse” of A, and is written with A
−1

 in superscript (fig. 5). 

 

 
 

Fig. 5. Inverse matrix 

Reciprocal Reciprocal 

Inverse Inverse 
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The notation A/B or A = 1/B is never used. The matrices, A and B, 

shown below, are examples: 
 





















031

101

221

A ,
























253

121

263

B ,


















100

010

001

BA . 

 

B = A
–1

. A · A
–1

=A
–1 

· A = E. 
 

The inverse of A is given by 
 

*1 1
A

A
A  , 

 

where A* is a matrix composed of cofactors written in columns. 

The necessary and sufficient condition for the existence of the in-

verse of a square matrix A is that |A| ≠ 0. 

Example.  

1. Calculate the inverse matrix for  
 

























689

417

532

A . 

 

2. Find inverse matrix for  
 















 



211

112

111

A . 

 

3. Find the product 
 




































180

532

463

111

111

111

. 
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§ 10 CRAMER’S RULE 

 

Given a system of linear equations, Cramer's Rule is a handy way to 

solve system of equations. 

Let's use the following system of equations: 

 

2x + y + z = 3, 

 x – y – z = 0, 

  x + 2y + z = 0. 

 

We have the left-hand side of the system with the variables (the “co-

efficient matrix”) and the right-hand side with the answer values.  

Let D be the determinant of the coefficient matrix of the above sys-

tem, and let Dx be the determinant formed by replacing the x-column 

values with the answer-column values. Dy is obtained by replacing the 

second column with the answer column. 

 

System of equations 
Coefficient matrix’s 

determinant 
Answer column 

 

2x + 1y + 1z = 3, 

 1x – 1y – 1z = 0, 

  1x + 2y + 1z = 0. 

 
121

111

112

D  

















0

0

3

 

 

Dx: coefficient  

determinant with 

answer-column  

values in x-column 

Dy: coefficient  

determinant with  

answer-column  

values in y-column 

Dz: coefficient  

determinant with 

answer-column  

values in z-column 

120

110

113

Dx  

101

101

132

Dy  

021

011

312

Dz  

 

Cramer's Rule says that x = Dx / D, y = Dy / D, and z = Dz / D. The 

rule is used only in the case when the determinant of the system matrix 

is nonzero. 
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TASK TO REVIEW 

 

Solve the system of equation by Cramer's Rule: 

 

1. 














.623

,132

,732

321

321

321

xxx

xxx

xxx

 

2. 

1 2 3

1 2 3

1 2 3

3 2 4 12,

3 4 1,

2 4.

x x x

x x x

x x x

  


  
   

 

3. 

1 2 3

1 2 3

1 2 3

4 3 9,

2,

8 3 6 12.

x x x

x x x

x x x

  


   
   

 

4. 

1 2 3

1 2 3

1 3

2 3 4 12,

7 5 33,

4 7.

x x x

x x x

x x

  


   
   

 

5. 

1 2 3

1 2 3

1 2 3

2 2 3,

2 2 4,

4 4 3.

x x x

x x x

x x x

  


   
    

 

6. 

1 2 3

1 2 3

1 2 3

3 2 4 21,

3 4 2 9,

2 10.

x x x

x x x

x x x

  


  
   

 

7. 

1 2 3

1 2 3

1 2 3

4 4 19,

2 2 2 11,

2 8.

x x x

x x x

x x x

  


  
   

 

8. 

1 2 3

1 2 3

1 2 3

2 3 7,

2 3 1,

6 4 2 12.

x x x

x x x

x x x

  


  
   
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9. 

1 2 3

1 2 3

1 2 3

6 4 8 24,

3 4 1,

2 4.

x x x

x x x

x x x

  


  
   

 

10. 

1 2 3

1 2 3

1 2 3

4 3 9,

2 2 2 4,

8 3 6 12.

x x x

x x x

x x x

  


   
   

 

 

§ 11 RANK AND THE FUNDAMENTAL MATRIX SPACES.  

ELEMENTARY MATRIX OPERATIONS 
 

Elementary matrix operations play an important role in many matrix 

algebra applications, such as finding the inverse of a matrix and solving 

systems of equations. 

There are three kinds of elementary matrix operations: 

1. Interchange two rows (or columns). 

2. Multiply each element in a row (or column) by a non-zero number. 

3. Multiply a row (or column) by a non-zero number and add the re-

sult to another row (or column). 

A common approach to finding the rank of a matrix is to reduce it to  

a simpler form by elementary matrix operations. Row operations do not 

change the row space. The rank equals the number of non-zero rows in the 

matrix after application of elementary matrix operations. 
 



















053

132

121

A . 

 

                       



















053

132

121

   

















053

310

121

 

 

                               

















 310

310

121

         

















000

310

121

 

2R1 + R2→R2 

–3R1 + R3→R3 R2 + R3→R3 
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The final matrix has two non-zero rows and thus the rank of ma-

trix A is 2. 

Example.  

Find the rank of a matrix: 

 





















162

514

652

A . 

   

Example.  

Find the rank of a matrix: 

 































17513311

133628

42713

51802

A . 

 

TASK TO REVIEW 

 

Find the rank of the matrix of the system: 

 

1. 

1 2 3

1 2 3

1 2 3

5 6 4 0,

3 3 0,

2 3 3 0.

x x x

x x x

x x x

  


  
   

 

2. 

1 2 3

1 2 3

1 2 3

0,

2 3 4 0,

3 2 5 0.

x x x

x x x

x x x

  


  
   

 

3. 

1 2 3

1 2 3

1 2 3

3 2 3 0,

2 3 4 0,

5 0.

x x x

x x x

x x x

  


  
   
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4. 

1 2 3

1 2 3

1 3

2 0,

2 3 0,

3 0.

x x x

x x x

x x

  


  
  

 

5. 

1 2 3

1 2 3

1 2 3

5 5 4 0,

3 3 0,

2 6 0.

x x x

x x x

x x x

  


  
   

 

6. 

1 2 3

1 2 3

1 3

2 3 0,

2 0,

3 5 0.

x x x

x x x

x x

  


  
  

 

7. 

1 2 3

1 2 3

1 2 3

2 0,

3 2 4 0,

5 3 0.

x x x

x x x

x x x

  


  
   

 

8. 

1 2 3

1 2 3

1 2 3

4 3 0,

2 5 0,

4 0.

x x x

x x x

x x x

  


  
   

 

9. 

1 2 3

1 2 3

1 2 3

2 3 0,

2 0,

3 2 0.

x x x

x x x

x x x

  


  
   

 

10. 

1 2 3

1 2 3

1 2 3

2 3 0,

2 5 0,

3 2 0.

x x x

x x x

x x x

  


  
   

 

 

§ 12 GAUSSIAN ELIMINATION 

 

Gaussian elimination is probably the best method for solving systems 

of equations if you don’t have a graphing calculator or computer pro-

gram to help you. 

This technique is also called row reduction and it consists of two 

stages: forward elimination and back substitution. 
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The goals of Gaussian elimination are to make the upper-left corner 

element a one, use elementary row operations to get zeros in all posi-

tions under first one, get ones for leading coefficients in every row diag-

onally from the upper-left to lower-right corner, and get zeros under 

ones. Basically, you eliminate all variables in the last row except for one 

(the first stage: forward elimination). 

Then you can use back substitution to solve for one variable at a time 

by plugging the values you know into the equations from the bottom up 

(the second stage: back substitution). 

You accomplish this elimination by eliminating the x (or whatever 

variable comes first) in all equations except for the first one. Then elim-

inate the second variable in all equations except for the first two. This 

process continues, eliminating one more variable per row, until only one 

variable is left in the last row. Then solve for that variable. 

Example.  

If we were to have the following system of linear equations contain-

ing three equations for three unknowns: 

 

3,

2 3 0,

3 2 3.

x y z

x y z

x y z

  


  
   

 

 

we can represent such system as an augmented matrix like the one below: 

 

3,

2 3 0,

3 2 3.

x y z

x y z

x y z

  


  
   

  

















3

0

3

231

321

111

 

 

The first stage: forward elimination 

Let us row-reduce (use Gaussian elimination) so we can simplify the 

matrix. 

The ith row, multiplied by a number, is added to the jth row. 

The ith row (does not change it), multiplied by a number, is added to 

the jth row (we change it). 
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















3

0

3

231

321

111

         



















3

3

3

231

210

111

 

 



















0

3

3

120

210

111

         



















0

6

3

120

420

111

 

 



















 6

6

3

300

420

111

. 

 

The second stage: back substitution. 
 



















 6

6

3

300

420

111

   

3,

2 4 6,

3 6.

x y z

y z

z

  


  
 

 

 

From the last equation we express z. Then we substitute it into the 

second equation and find y. 
 

3

2 4 6

2.

x y z

y z

z

  


  
  

;

3

2 8 6

2.

x y z

y

z

  


  
  

;

3

1

2.

x y z

y

z

  



  

;

1 2 3

1

2.

x

y

z

  



  

;

4

1

2.

x

y

z





  

 

 

Answer: (4, 1, 2). 
 

Example.  

Solve the system of equation by Gauss reduction method: 

 

1 2 3

1 2 3

1 2 3

7 4 3 13,

6 4 6 6,

2 3 3 10.

x x x

x x x

x x x

  


  
    

 

R2 – R1→R2 R3 – R1→R3 

2R2→R2 R3 – R2→R3 
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TASK TO REVIEW 

 

Solve the system of equation by Gauss reduction method: 

 

1. 

1 2

1 2 3

1 2 3

4 6,

2 5 14,

3 4 19.

x x

x x x

x x x

  


   
    

 

2. 

1 2 3

1 2 3

2 3

4 9,

4 5 2,

3 7 6.

x x x

x x x

x x

   


   
   

 

3. 















.623

,132

,732

321

321

321

xxx

xxx

xxx

 

4. 

1 2 3

1 2 3

1 2 3

3 2 4 12,

3 4 1,

2 4.

x x x

x x x

x x x

  


  
   

 

5. 

1 2 3

1 2 3

1 2 3

4 3 9,

2,

8 3 6 12.

x x x

x x x

x x x

  


   
   

 

6. 

1 2 3

1 2 3

1 3

2 3 4 12,

7 5 33,

4 7.

x x x

x x x

x x

  


   
   

 

7. 

1 2 3

1 2 3

1 2 3

2 2 3,

2 2 4,

4 4 3.

x x x

x x x

x x x

  


   
    

 

8. 

1 2 3

1 2 3

1 2 3

3 2 4 21,

3 4 2 9,

2 10.

x x x

x x x

x x x

  


  
   
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9. 
1 2 3

1 2 3

1 2 3

4 4 19,
2 2 2 11,

2 8.

x x x
x x x

x x x

+ + =
 − + =
 + + =

10. 
1 2 3

1 2 3

1 2 3

2 2 8,
2 11,

4 4 22.

x x x
x x x

x x x

− + =
 + + =
 + + =

§ 13 VECTOR IN 2-SPACE AND 3-SPACE

A vector is an object that has both a magnitude (length) and a direc-
tion. Geometrically, we can picture a vector as a directed line segment, 
whose length is the magnitude of the vector, with an arrow indicating 
the direction (fig. 6). The direction is from its tail to its head. 

Fig. 6. Vector 

Two vectors are the same if they have the same magnitude and direc-
tion. This means that if we take a



 a vector and translate it to a new posi-
tion (without rotating it), then the vector we obtain at the end of this 
process is the same vector we had in the beginning. 

People will sometimes denote vectors using arrows as a


, or they use 
other markings. 

We denote the magnitude of the vector a by | a


| (fig. 7). 

head 

tail 
magnitude 

direction 

Fig. 7. Vector a

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The bold arrow represents a vector a


. The two defining properties of 
a vector, magnitude and direction, are illustrated by a bar and a arrow, 
respectively. 

The one exception is when a


 is the zero vector (the only vector with 
zero magnitude), for which the direction is not defined. 

A vector whose magnitude | a


| is unity is called a “unit vector”. 

§ 14 OPERATIONS ON VECTORS

We can define a number of operations on vectors geometrically with-
out reference to any coordinate system. 

Here we define addition, subtraction, and multiplication by a scalar. 
Addition of vectors. 
Given two vectors a



 and b


, we b


 is the vector a


+ b


. 
Addition of vectors satisfies two important properties: 
1. The commutative law, which states the order of addition doesn't

matter: 

a


+ b


= b


+ a


. 

This law is also called the para b + a . But both sums are equal to the 
same diagonal of the parallelogram. 

2. The associative law, which states that the sum of three vectors
does not depend on which pair of vectors is added first: 

( a


+ b


) + c


= a


+ ( b


+ c


). 

Vector subtraction. 
Before we define s b



ubtraction, we define the vector − a


, which is 
the opposite of a



. The vector − a


 is the vector with the same magnitude 
as a


 but it is pointed in the opposite direction. 
We define subtraction as addition with the opposite of a vector: 

b


− a


= b


+ (− a


). 
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This is equivalent to turning vector a  around in the applying the 
above rules for addition.  

Scalar multiplication. 
Given a vector a



 and a real number (scalar) k, we can form the vec-
tor k a



 as follows. If k is positive, then k a


 is the vector whose direction
is the same as the direction of a



 and whose magnitude is k times the mag-
nitude of a



. In this case, multiplication by k simply stretches (if k > 1) 
or compresses (if k < 1) the vector a



. 
If, on the other hand, k is negative, then we have to take the opposite 

of a


 before stretching or compressing it. 
In other words, the vector k a



 points in the opposite direction of a


, 
and the magnitude of k a



 is k times the length of a


. No matter the sign 
of k, we observe that the magnitude of k a  is k times the magnitude
of a


: |k a


|=|k|| a


|. 
Scalar multiplication satisfies many of the same properties as the 

usual multiplication.
1. s · ( a



+ b


) = s · a


+ s · b


 (distributive law). 
2. (s + t) · a



= s · a


+ t · a


 (distributive law). 
3. 1· a



 = a


. 
4. (−1) · a



 = − a


. 
5. 0 · a



= 0


. 
In the last formula, the zero on the left is the number 0, while the ze-

ro on the right is the vector 0


, which is the unique vector whose magni-
tude is zero. 

If a


= k b


for some scalar k, then we say that the vectors a


 and b


 are 
parallel. If k is negative, some people say that a



 and b


are anti-parallel, 
but we will not use that language. 

We are able to describe vectors, vector addition, vector subtraction, 
and scalar multiplication without reference to any coordinate system.  

However, sometimes it is useful to express vectors in terms of coor-
dinates, as discussed about vectors in the standard Cartesian coordinate 
systems in the plane and in three-dimensional space. 
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Often a coordinate system is helpful because it can be easier to ma-

nipulate the coordinates of a vector rather than manipulating its magni-

tude and direction directly. When we express a vector in a coordinate 

system, we identify a vector with a list of numbers, called coordinates or 

components, that specify the geometry of the vector in terms of the co-

ordinate system.  

§ 15 VECTORS IN THE PLANE

We assume that you are familiar with the standard (x, y) Cartesian 

coordinate system in the plane. Each point p in the plane is identified 

with its x and y components:  

p = (p1, p2). 

To determine the coordinates of a vector a  in the plane, the first step 

is to translate the vector so that its tail is at the origin of the coordinate 

system. Then the head of the vector will be at some point (a1, a2) in the 

plane. We call (a1, a2) the coordinates or the components of the vec-

tor a . We often write a ∈ R
2 
, to denote that it can be described by two 

real coordinates (fig. 8). 

Fig. 8. Vector a

Using the Pythagorean Theorem, we can obtain an expression for the 

magnitude of a vector in terms of its components. Given a vector  

a  = (a1, a2), the vector is the hypotenuse of a right triangle whose legs are 

length a1 and a2. Hence, the magnitude of the vector v : ),,( zyx vvvv   

in three dimensions, ),...,,( 21 nvvvv   in n dimensions. 

a

https://mathinsight.org/image/vector_2d_coordinates
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If v is composed of real components, its magnitude is defined as 
 

22
2

2
1 ...|| nvvvv +++= . 

 
As an example, consider the vector a represented by the line segment 

which goes from the point (1, 2) to the point (4, 6). Can you calculate 
the coordinates and the magnitude of this vector? 

To find the coordinates, translate the line segment one unit left and 
two units down. The line segment begins at the origin and ends at  
(4 − 1, 6 − 2) = (3, 4).  

Therefore, a = (3, 4). The magnitude of a  is 543|| 22 =+=a . 
The vector of sum is easy to express in terms of these coordinates. 

If a = (a1, a2) and b = (b1, b2), their sum is simply a + b = (a1 + b1, a2 + b2).  
It is also easy to see that b − a = (b1 − a1, b2 − a2) and k a = (ka1, ka2) for 

any scalar k. 
Another way to denote vectors is in terms of the standard unit vectors 

(basis) denoted i


 and j . A unit vector is a vector whose magnitude is 

one. The vector i  is the unit vector in the direction of the positive x-
axis. In coordinates, we can write i



 = (1, 0). Similarly, the vector j  is 

the unit vector in the direction of the positive y-axis: j  = (0, 1). We can 
write any two-dimensional vector in terms of these unit vectors as  
a = (a1, a2) = a1 i



+a2 j . 
 
§ 16 VECTORS IN THREE-DIMENSIONAL SPACE 
 

In three-dimensional space, there is a standard Cartesian coordinate 
system (x, y, z). Starting with a point which we call the origin, construct 
three mutually perpendicular axes, which we call the x-axis, the y-axis, 
and the z-axis.  

With these axes any point p in space can be assigned three coordi-
nates p = (p1, p2, p3).  
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We often write a ∈ R3 to denote that it can be described by three real 
coordinates. Sums, differences and scalar multiples of three-dimensional 
vectors are all performed on each component. 

If a = (a1, a2, a3) and b = (b1, b2, b3), then 
 

a + b = (a1 + b1, a2 + b2, a3 + b3), 
 

b − a = (b1 − a1, b2 − a2, b3 − a3), 
 

k a = (ka1, ka2, ka3). 
 

Just as in two dimensions, we can also denote three-dimensional vec-
tors is in terms of the standard unit vectors i



, j , and k . These vectors 
are the unit vectors in the positive x, y, and z direction, respectively.  

In terms of coordinates, we can write them as i


= (1, 0, 0), j  = (0, 1, 0), 

and k = (0, 0, 1). We can express any three-dimensional vector as a sum 
of scalar multiples of these unit vectors in the form  

 
a = (a1, a2, a3) = a1 i



 + a2 j + a3 k . 
 

Example.  
Find the magnitude of the vectors a , b , c  by the coordinates of 

points A, B and C for the indicated vectors. 

A(−2, 3, −4), B(3, −1, 2), C(4, 2, 4), a =
→

АС +
→

CB , b =
→
AB , c =

→
CB . 

 
TASK TO REVIEW 

 

Find the length of the vectors a , b , c  by the coordinates of points 
A, B and C for the indicated vectors. 

1. A(4, 6, 3), B(−5, 2, 6), C(4, −14, 0), a =
→

СВ −
→

AC , b =
→
AB , c =

→
CB . 

2. A(4, 3, −2), B (−3, −1, 4), C(2, 2, 1), a =
→→

+CBAC , b =
→
AB , c = 

→
AC . 



31 

3. A(−2, −2, 4), B(1, 3, −2), C(1, 4, 2), a =


 BAAC , b  =


BC , c =


BC . 

4. A(2, 0, 3), B(3, 1, −4), C(−1, 2, 2), a =


BA+


AC , b  =


BA , c  =


BC . 

5. A(2, 4, 5), B(1, −2, 3), C(−1, −2, 4), a = AB AC
 

 , b  =


BC , c =


AB . 

6. A(−1, −2, 4), B(−1, 3, 5), C(1, 4, 2), a =


BA+


AC , b =


AВ , c  =


AC . 

7. A(1, 3, 2), B(2, 4, 1), C(1, 3, 2), a =


AB+


CB , b =


AC , c  =


AB . 

8. A(4, 0, −2), B (3, −1, 4), C(2, 2, 1), a =


CBAC ,b =


AB , c = 


AC . 

9. A(−2, −2, 4), B(10, 3, −2), C(1, 0, 2), a =


 BAAC , b  =


BC , c =


BC . 

10. A(2, 0, 3), B(3, 1, −4), C(−1,  8, 2), a =


BA+


AC , b  =


BA , c = .BC


 

 

§ 17 DOT PRODUCT 

 

The most important product of two vectors is their “dot product”, or 

“scalar product”. This product results in a scalar.  

Vector dot product is equal to the sum of the products of the corre-

sponding coordinates: 
 

....2211 nnvuvuvuvu   

 

We have another definition for the dot product: 

  

 cos|||| vuvu , 

 

where φ – angle between vectors.  

 

Example.  

Calculate the dot product of a  = (1, 2, 3) and b  = (4, −5, 6). Do the 

vectors form an acute angle, right angle, or obtuse angle? 

Example.  

Calculate the dot product of a  = (−4, −9) and b  = (−1, 2). Do the 

vectors form an acute angle, right angle, or obtuse angle? 
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Example.  
If a = (6, −1, 3), for what value of c is the vector  

b  = (4, c, −2) perpendicular to vector a ? 
Properties of dot product: 
1. uvvu ⋅=⋅  (commutative property). 
2. wuvuwvu ⋅+⋅=+⋅ )(  (distributive property). 

3. )()()( vcuvucvuc ⋅=⋅=⋅  (associative property). 

4. 2| |v v v⋅ =
  

(property of magnitude). 
  

Example.  
Find the measure of the angle between each pair of vectors. 
a) kji ++  and kji 32 −− . 
b) (2, 5, 6) and (−2, −4, 4). 
Orthogonality criterion.  
The nonzero vectors u  and v  are orthogonal vector if and only  

if 0=⋅vu . 
Example. 
For which value of x is (2, 8, 1)p = −



 orthogonal to ( , 1,2)q x= − −


? 

The vector projection of v  onto u  is the vector labeled vproju .  

If φ represents the angle between u  and v , then we have: 
 

| |
| |u
v vproj v
u
⋅

=

 



 . 

 

Example. 
Find the projection of vector v  onto vector u . 
a) (3, 5,1)v =


 and ( 1, 4, 3)u = −


. 

b) jiv 23 −=  and jiu 6+= . 
When a constant force is applied to an object so the object moves in  

a straight line from point P to point Q, the work W done by the force F , 
acting at an angle φ from the line of motion, is given PQFW ⋅= . 
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Example.  
Suppose a child is pulling a wagon with a force having a magnitude 

of 8 on the handle at an angle of 60 degree. If the child pulls the wagon 
50, find the work done by the force. 

Example. 
A conveyor belt generates a force kjiF +−= 35 , that moves a suit-

case from point (1, 1, 1) to point (9, 4, 7) along a straight line. Find the 
work done by the conveyor belt. 

Example. 
Find the scalar product of vectors a  and b  by the coordinates of 

points A, B and C for the indicated vectors; the projection of the vector 
c  onto the vector d . 

 

1. A(4, 6, 3), B(−5, 2, 6), C(4, −4, −3), 

a  = 
→

СВ −
→

AC , b  =
→
AB , c = 

→
CB , d  = 

→
AC . 

 

2. A(4, 3, −2), B(−3, −1, 4), C(2, 2, 1),  

a  = AC CB
→ →

+ , b  = 
→
AB , c  = 

→
AC , d  = 

→
CB . 

 

3. A(−2, −2, 4), B(1, 3, −2), C(1, 4, 2), 

a  =
→→

− BAAC , b  =
→

BC , c =
→

BC , d  =
→

AC . 
 

4. A(2, 4, 3), B(3, 1, −4), C(−1, 2, 2),  

a =
→
BA  +

→
AC , b  =

→
BA , c  = b , d  = 

→
AC . 

 

5. A(2, 4, 5), B(1, −2, 3), C(−1, −2, 4), 

 a  = AB AC
→ →

− , b =
→

BC , c  = b , d  =
→
AB . 

 

6. A(−1, −2, 4), B(−1, 3, 5), C(1, 4, 2), 

 a = AC BC
→ →

− , c  = b = 
→
AВ , d  =

→
AC . 

7. A(−2, −2, 4), B(0, 3, 2), C(1, 4, 2), 

 a  = AC BA
→ →

− , b  =
→

BC , c =
→

BC , d  =
→

AC . 
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8. A(2, 4, 3), B(3, 1, 4), C(−1, 2, 2),  

a =


BA  +


AC , b  =


BA , c  = b , d  = 


AC . 
 

9. A(2, 9, 5), B(1, 2, 3), C(−1, −2, 4), 

 a  = AB AC
 

 , b =


BC , c  = b , d  =


AB . 
 

10. A(1, −2, 4), B(1, 3, 5), C(1, 4, 2), 

 a = AC BC
 

 , c  = b = 


AВ , d  =


AC . 

 

§ 18 CROSS PRODUCT 

  

There are two ways to take the product of a pair of vectors. One of 

these methods of multiplication is the cross product. 

The cross product is defined only for three-dimensional vectors. 

If a  and b  are two three-dimensional vectors, then their cross product 

written as ba (“a cross b”) is another three-dimensional vector.  

We define this cross product vector ba by the following three re-

quirements: 

1. ba  is a vector that is perpendicular to both a and b . 

2. The magnitude of the vector ba  written as | ba | is the area of 

the parallelogram spanned by a  and b  

 

| ba |=| a | |b | sin θ, 

 

where θ is the angle between a  and b . 

3. The direction of ba is determined by the right-hand rule. This 

means that if we curl the fingers of the right hand from a  to b , then the 

thumb points in the direction of ba . 

If a  and b  are parallel or if either vector is the zero vector, then the 

cross product is the zero vector.  

Let a = (a1, a2, a3) and b = (b1, b2, b3).  



35 

Then, the cross product  
 

1 2 3

1 2 3

i j k
a b a a a

b b b

× =

  

 

. 

 

Example.  
Find a cross product qp×  and pq×  of p



= (−1, 2, 5) and 
q


= (4, 0, −3). 
As we have seen, the dot product is often called the scalar prod-

uct because it results in a scalar. The cross product results in a vector, so 
it is sometimes called the vector product. 

Cross product is anticommutativity: 
 

pqqp ×≠× . 
 

Let’s explore some properties of the cross product.   
1. Anticommutative property: 

 

uvvu ×−=× . 
 

2. Distributive property: 
 

wuvuwvu ×+×=+× )( . 
 

3. Multiplication by a constant: 
 

)()()( vcuvucvuc ×=×=× . 
 

4. Cross product of the zero vector: 
 

000 =×=× uu . 
 

5. Cross product of a vector with itself: 
 

0=×uu . 
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To use the cross product for calculating areas, we state and prove the 
following theorem. 

Area of a parallelogram. If we locate vectors p


 and q


 such that 
they form adjacent sides of a parallelogram, then the area of the paral-
lelogram is given by | qp× |. 

Example.  
Let P = (1, 0, 0), Q = (0, 1, 0), and R = (0, 0, 1) be the vertices of  

a triangle. Find its area. 
Example.  
Find the area of the parallelogram PQRS with vertices P(1, 1, 0),  

Q(7, 1, 0),  R(9, 4, 2),  and  S(3, 4, 2). 
Torque T measures the tendency of a force to produce rotation about 

an axis of rotation. Let r be a vector with an initial point located on the 
axis of rotation and with a terminal point located at the point where the 
force is applied, and let vector F represent the force. Then torque is 
equal to the cross product of r  and F : 

 
FrT ×= . 

 
Example.  
Vectors are given. It is necessary:  
a) find the magnitude of a ;  
b) the vector product of vectors a  and b ;  
c) check whether two vectors and are collinear or orthogonal 

a  and c . 
1. a  = 2 i



 – 3 j  + k , b  = j  + 4 k , c  = 5 i


 + 2 j  – 3 k . 

2. a  = 3 i


 + 4 j  + k , b  = i


 – 2 j  + 7 k , c  = 3 i


– 6 j  + 21 k . 

3. a  = 2 i


 – 4 j  – 2 k , b  = 7 i


 + 3 j , c  = 3 i


 + 5 j  –7 k . 

4. a = –7 i


 + 2 k , b  = 2 i


 – 6 j  + 4 k , c  = –3 j  + 2 k . 

5. a  = 5 i


 – 3 j  + k , b  =5 j  + 4 k , c  = 5 i


 + 2 j  – 3 k . 

6. a  = i


 + 4 j  + k , b  = i  – 8 j  + 7 k , c  = 3 i


– 6 j  + 21 k . 
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7. a  = 2 i


 – 4 j  – 2 k , b  = 7 i


 + 9 j , c  = 3 i


 + 5 j  –7 k . 

8. a = 7 i


 + 2 k , b  = 2 i


 – 6 j  + 4 k , c  = –3 j  + 2 k . 

9. a  = 2 i


 – 3 j  + k , b  = j  + 4 k , c  = 2 j  – 3 k . 

10. a  = – 4 j  – 2 k , b  = 7 i


 + 3 j , c  = 3 i


 + 5 j  –7 k . 
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