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INTRODUCTION

The educational-methodical manual “Mathematics. Matrices and vec-
tors” is intended for lectures, practical exercises and consultations with
students of the first stage of training in the specialities 6-05-0716-03
“Information and measuring instruments and systems”, 6-05-0716-04
“Optoelectronic and laser technology”, 6-05-0716-06 “Biomedical engi-
neering” of the instrument-making faculty of the Belarusian National
Technical University in the discipline “Mathematics”.

This training manual includes the main topics necessary for the for-
mation of the appropriate competence of a specialist, from the sections
“Operations on matrices”, “Vector algebra”. These competencies must be
mastered by the student during the academic semester for further success-
ful mastering of the material in related special disciplines.

The topics covered by this manual correspond to the current curricu-
lum for the discipline “Mathematics” for the instrument-making faculty
of the Belarusian National Technical University.

The authors of the teaching aid aimed at increasing the level of master-
ing the educational material, the student's independence in preparation for
the exam in this discipline, the implementation of the basic principles
of didactics: the accessibility and consistency of the educational process.
Careful selection of material allows for the primary consolidation of the
material, as well as systematize the knowledge of students.



§ 1 MATRICES AND MATRIX OPERATIONS.
DIAGONAL, TRIANGULAR AND SYMMETRIC MATRICES

A matrix is defined to be a rectangular array of functional or numeric
elements, arranged in row or column order. Most important in this defi-
nition is that two subscripts are required to identify a given element:
a row subscript and a column subscript (fig.1).
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Fig. 1. Matrix A:
(m, n) — dimension of matrix

A square matrix is a matrix with the same number of rows and
columns.

You learned numbers at the school. Even at the beginning of the edu-
cation, you learned how to add numbers, how to multiply them, find the
reverse number.

We have a new object today — a matrix. We don't know anything
about it. We have to learn how to use matrices. We will learn how to
add, multiply. We will answer the question whether it is possible to di-
vide matrices, how to find their inverse.

Where you can meet the matrix? It is everywhere! In front of you is
a phone or computer screen. It’s no secret for you that the screen con-
sists of many pixels. Before our eyes is a matrix of pixels where the pix-
el brightness value is located at the intersection of rows and columns.

You add effects to photos often in phone applications. It means that
you interact with image matrices. You press a button and the computer
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does all the work for you. A real engineer must know what happens
when he pushes a button on a device developed by him.

We will see how you can interact with matrices and use them, for ex-
ample, to solve systems of equations.

Example.

The matrix can contain an unequal number of rows and columns. It can
have only one row, and it can only have one column. Here are examples
of matrices.

A:@J,B:(\E ), c= z _21

1 3

Example.
Write out the elements of a given matrix a1, as,, a1.

8 1
A=|10 2.
1 3

The main diagonal of a matrix consists of those elements that lie on
the diagonal that runs from top left to bottom right. The main diago-
nal starts at the top left and goes down to the right:

1L 7 5 8
8 2 0 10 2
-9 1 10 1 3

A diagonal matrix is a matrix, in which the entries outside the main
diagonal are all zero; the term usually refers to square matrices.

A square matrix is called lower triangular if all the entries above
the main diagonal are zero. Similarly, a square matrix is called up-
per triangular if all the entries below the main diagonal are zero.



§ 2 ADDITION OF THE MATRICES

The sum of two (or more) matrices is formed by summing corre-
sponding elements:

C:Aﬁ:B, c,»j=a,»ji blj

Example.
Find the sum 4 + B, the difference of the matrices 4 — B.

1 -2 4 10 2 3
A=|{0 6 =-2|,B=2 0 -1].
5 -4 1 1 -2 -1

Matrix addition is defined only when A4 and B have the same numbers
of rows and columns, respectively.

When this is the case, the matrices 4 and B are said to be “conforma-
ble in addition”.

If all the elements of 4 are respectively the negatives of those of B,
then the sum, C, will have all zero elements. In such case, C is known as
a “nul” matrix.

A square matrix whose ij elements are zero for i # j and whose ele-
ments ii are unity is defined as the “unit matrix”.

Since addition is commutative for the elements of the matrix, then
matrix addition itself is commutative. That is,

A+B=B+A.
§ 3 MULTIPLICATION BY A SCALAR

The matrix k-4 is formed by multiplying every element of A4 by the
scalar k.

Example.

Evaluate expression 74 + 3B.

1 -2 4 10 2 3
A=|{0 1 =2|,B=|2 0 -1].
-4 1 1 -2 -1



§ 4 MATRIX MULTIPLICATION

For matrix multiplication, the number of columns in the first matrix
must be equal to the number of rows in the second matrix. The resulting
matrix, known as the matrix product, has the number of rows of the first
and the number of columns of the second matrix (fig. 2).

m n

n

A-B=C.

Fig. 2. Type of matrix

That is, the elements of C as the product are obtained by multiplying
term-by-term the elements of the ith row of 4 and the jth column of B,
and summing these » products.

In other words, Cis the dot product of the ith row of 4 and the jth
column of B.

We match the 1st members (1 and 7), multiply them, likewise for the
2nd members (2 and 9) and the 3rd members (3 and 11), and finally sum
them up.

Dot product
8
58 *
X 10 =
4 56 *oOx
12

We see on the first row of 4 and second column of B. We match the
Ist members (1 and 8), multiply them, likewise for the 2nd members
(2 and 10) and the 3rd members (3 and 12), and finally sum them up.
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We can do the same operations for the 2nd row and 1st column.

7 8
Nl 1ol_(58 64
6" “1134 154
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Example.
Find the product of matrices, if possible.

10
235
a) A:( j,B: -2 3.
01-1
4 2
-1 -1 1 10 2 3
b) A=| 0 5 -2|,B=|2 10 -1|.
5 -4 1 1 -2 -1
0
c) A=|3|, B=(7 5 -2).
2
Example.

Find the product of matrices 4-B, B-A, if possible.

(L)



The results are different, which illustrates that matrix multiplication
is not commutative. That is, in general:

A-B# B-A.

Because of the non-commutative nature of the matrix product, the or-
der of the product must be stated explicitly.
Matrix multiplication is associative:

A(B-C)=(4'B)-C=4-B-C.
Further, it is distributive:
A(B+C)=AB+A-C.
§ 5 MATRIX TRANSPOSITION

We can swap elements across the main diagonal (rows become col-
umns).

The matrix transpose of A is written A". A" is obtained by interchang-
ing the rows and columns of 4. If 4 is an m x n (m by n) matrix, then A"
is an n X m matrix.

A square matrix whose transpose is equal to itself is called
a symmetric matrix.

Properties.

Let 4 and B be matrices and ¢ be a scalar.

1. The operation of taking the transpose is an involution (self-
inverse).

AH"=4.
2. The transpose respects addition.
(A+B)'=4"+B".
3. Note that the order of the factors reverses.

(A4'B)'=B"-4".


https://en.wikipedia.org/wiki/Scalar_(mathematics)
https://en.wikipedia.org/wiki/Involution_(mathematics)
https://en.wikipedia.org/wiki/Inverse_matrix
https://en.wikipedia.org/wiki/Matrix_addition
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4. The number can be placed outside the transposition sign.
(c-A)'=c- A"

Example.
Find transposed matrix A".

-1 -1 1 0 2 3
a) A=| 0 5 -2|,b)B=|2 10 -1|.
5 -4 1 1 -2 -1
Example.
1 -1 1
Find 24>— 34", where A={0 9 -2].
5 4 1
TASK TO REVIEW

1. Find the product of two matrices 4-B and B-A, if possible.

14 2 12
A= ,B= .
(5 0 —J (o 5)

2. Transpose matrices

2 -1 1 2 -1
A= , B= .
[3 -2 OJ (3 oJ

3. Find the value of the expression 4°+7-B.

2 -1 3 -2 2
A: N B= .
(4 2) {2 -1 Oj



4. Find the value of the expression A'-B — 5-E, where E — unit matrix.

1 3 -5 3
A=|-2 -1|, B=| -1 —-4/.
301 301

5. Find the value of the expression (C-D + D'-C")’, where E — unit

(5 e[

§ 6 DETERMINANTS

matrix.

The determinant is a scalar value that can be computed from the ele-
ments of a square matrix and reflects certain properties of the linear
transformation described by the matrix.

The determinant helps us find the inverse of a matrix, tells us things
about the matrix that are useful in systems of linear equations, calculus.

The symbol for determinant is two vertical lines on either side.

all a12 cee aln

ann [25%) )
4= "I

Ay Apa - Ay

The value of a second-order determinant is equal to the product of
the elements on the main diagonal, minus the product of the elements on
the secondary diagonal. The formula for finding the determinant of the

second order:

a b

‘zad—bc.
c d
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Example.

7 4
=71-3-4=7-12=-5.
301

Sarrus' rule is useful for third-order determinants only (fig. 3). Once
this is done the calculation of the determinant is computed as follows:
multiply the diagonal elements. The descending diagonal from left to
right has a “+” sign, while the descending diagonal from right to left has

the “— sign.
«+» =
Fig. 3. Sarrus' rule
Example.
4 -1 0
2 1 -1|=411+2-2-0+6-(-1)-(-1)-0-1-6-4-2-(-1) -
6 2 1

-2:1-(-1)=4+0+6-0+8+2=20.
§ 7 PROPERTIES OF DETERMINANTS

1. A square matrix 4 and its transpose A" have the same determinant.
2. If any row, or column, of a determinant contains all zero elements,
that determinant equals zero:

14] = 0.

3. The determinant of a diagonal matrix is equal to the product of its
diagonal elements.

12



4. If two rows, or columns, of a determinant are interchanged, the
sign of the determinant is reversed.

5. If two rows, or columns, of a determinant are identical, its expan-
sion is zero.

6. If to any row, or column, there is added a constant factor multi-
plied by the corresponding elements of any other row, or column, the
value of the determinant is unchanged.

Example.

Calculate the determinant of this matrix:

1 3 2
A= 1 2
-3 1

§ 8 MINORS AND COFACTORS

If one, or more, rows and columns are deleted from a determinant,
the result is a determinant of lower order and is called a “minor” of the
original. If just one row and one column are deleted, the resulting “first
minor” is of order (n — 1).

Minors obtained by removing just one row and one column from
square matrices (first minors) are required for calculating ma-
trix cofactors, which in turn are useful for computing both the determi-
nant and inverse matrix.

Example.

Calculate the minors M, M,3, M3, of this matrix:

1 3 2
A= 1 2
0 -3 1

The cofactor 4;; of a;; is defined by

4; = )7 My
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One of the main applications of cofactors is finding the determi-
nant. The following theorem, which we will not prove, shows us how to
use cofactors to find a determinant.

Theorem.

Let A be an n x n matrix and 1 <i <n. Then

|A| = apdn + apdn + ... + apdi.

Example.
Calculate the determinant of matrix A4, using the expansion in terms
of the elements of the first row:

1 3 2
A= 1 2
-3 1

The determinant will be equal to the sum of the products of elements
by their cofactors.

TASK TO REVIEW

) cosx sinx
1. Calculate the determinant

SiINX —COSX

2. Calculate the minors M, M3, M5, of this matrix:

-2 3 5
A= 7 -1 4
9 -8 -6

3. Calculate the cofactors 4, A»3, A3; of this matrix:

-1 0 2
A= 3 1 1
2 -3 4

14



4. Calculate the determinant of matrix A4, using the expansion
in terms of the elements of the first row:

-2 3 5
A=| 7 -1 4
9 -8 -6

5. Calculate the determinant of matrix A4, using Sarrus' rule:

-2 3 5
A=| 7 -1 4
9 -8 -6

§ 9 INVERSE MATRIX

Thus far, we have not defined matrix division. In the general case,
no such operation as A/B exists (fig. 4).

8

Reciprocal Reciprocal
1
8

Fig. 4. Reciprocal number

However, if 4 is a square matrix, then there may be a matrix, B, such
that 4-B = E, E — unit matrix. In this case, the matrix B is referred to as
the “inverse” of 4, and is written with 4~ in superscript (fig. 5).

Inverse InVerSe
A—l
Fig. 5. Inverse matrix
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The notation A/B or A = 1/B is never used. The matrices, 4 and B,
shown below, are examples:

1 2 2 -3 6 =2 1 00
A=|1 1,B=|-1 2 -1|,4-B=|{0 1 0
1 -3 0 3 -5 2 0 0 1

B=A'."4-A"'=4"-A=E.

The inverse of 4 is given by

where A* is a matrix composed of cofactors written in columns.

The necessary and sufficient condition for the existence of the in-
verse of a square matrix A is that |4] # 0.

Example.

1. Calculate the inverse matrix for

-2 3 5
A=| 7 -1 4
9 -8 -6
2. Find inverse matrix for
1 -1 1
A=|2 1 1
1 1 2
3. Find the product
11 1)Y(3 6 4
1 1 1] 3 -5
1 11)l0 -8 1

16



§ 10 CRAMER’S RULE

Given a system of linear equations, Cramer's Rule is a handy way to
solve system of equations.
Let's use the following system of equations:

2x+y+z=3,
x—y—z=0,
x+2y+z=0.

We have the left-hand side of the system with the variables (the “co-
efficient matrix”) and the right-hand side with the answer values.

Let D be the determinant of the coefficient matrix of the above sys-
tem, and let Dx be the determinant formed by replacing the x-column
values with the answer-column values. Dy is obtained by replacing the
second column with the answer column.

Coefficient matrix’s

System of equations

Answer column

determinant
2x+ 1y +1z=3, 2 1 1 3
Ix—1y—1z=0, D=1 -1 -1 0
1x+2y+ 1z=0. 1 2 1 0

Dx: coefficient
determinant with
answer-column
values in x-column

Dy: coefficient
determinant with
answer-column

Dz: coefficient
determinant with
answer-column
values in z-column

values in y-column

31 1 2 3 1 2 1 3
Dx=|0 -1 -1 Dy=|1 0 -1 Dz=1 -1 0
0 2 1 1 0 1 1 2 0

Cramer's Rule says thatx=Dx / D,y=Dy / D, andz= Dz / D. The
rule is used only in the case when the determinant of the system matrix
is nonzero.

17
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TASK TO REVIEW

Solve the system of equation by Cramer's Rule:

2x1 + Xy +3X3 = 7,
2x;4+3x, +x3 =1,
3x1 _2X2 +4X3 = 12,
3x1 +4X2 _X3 :1,
2x1 — Xy — X3 =4,
4x1 +x2 _3X3 :9,
X1 +X2 — X3 2—2,
7x1 _SXZ +X3 :_33,
2x1 _xZ + 2X3 :3,
xl + 2x2 + 2X3 = _4,
4x1 +x2 +4X3 :_3
3x1 _ZXZ _4X3 = 21,
3x1 +4x2 _2X3 = 9,
2x1 _XZ _X3 210
2x1 +x2 +3X3 = 7,
2x1 +3X2 +X3 :1,



6x1 - 4X2 + 8X3 = 24,
9. 3x1 + 4X2 —X3= 1,

2x1 _.)CZ _X3 :4

4x1 +x2 _3X3 = 9,
8x; +3x, —6x3 =12.

§ 11 RANK AND THE FUNDAMENTAL MATRIX SPACES.
ELEMENTARY MATRIX OPERATIONS

Elementary matrix operations play an important role in many matrix
algebra applications, such as finding the inverse of a matrix and solving
systems of equations.

There are three kinds of elementary matrix operations:

1. Interchange two rows (or columns).

2. Multiply each element in a row (or column) by a non-zero number.

3. Multiply a row (or column) by a non-zero number and add the re-
sult to another row (or column).

A common approach to finding the rank of a matrix is to reduce it to
a simpler form by elementary matrix operations. Row operations do not
change the row space. The rank equals the number of non-zero rows in the
matrix after application of elementary matrix operations.

A=|-2 -3 1
35 0
1 2 1 2R, + Ry—R, 121
-2 -3 1 >0 1 33—
35 0 350

v

—~

O =
S = N
S W o=
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The final matrix has two non-zero rows and thus the rank of ma-
trix A4 1s 2.

Example.

Find the rank of a matrix:

Example.
Find the rank of a matrix:

-2 0 8 1 =5
3 -1 7 2 4
-8 2 -6 -3 13|
11 -3 13 5 17

TASK TO REVIEW

Find the rank of the matrix of the system:

le - 6x2 + 4X3 = 0,
1. 3x1—3x2 +X3=0,
2x1 - 3x2 + 3X3 = 0
xl + xZ + X3 = 0,

2. 2x1 - 3x2 + 4X3 = 0,
3x1 - 2x2 + 3X3 = 0,
3. 2)61 + 3x2 - 4X3 = 0,

le +x2 _X3 =0

20



—Xy +2x3 =0,
2x1 + Xy — SX3 = 0,

-x;=0.
5xy +4x3 =0,
3. {3% + x5 +3x3 =0,
—6x, +x3 =0.

2x) + x5 +3x3 =0,
6 {1 Xy +2x3=0,

3x +5x;=0.

2x; +xy —x3 =0,
7. {3x12x2 +4x; =0,

5x; —xy +3x3=0.
X +4x, —3x3 =0,
8. 92x +5x, +x3 =0,
X +xy +4x;=0.
X +2x, +3x3 =0,
9. 42x —xy, —x3 =0,
3x +x, +2x3 =0.
2x) —x, +3x3 =0,
10. < x; +2x, —5x3 =0,
3x +x, —2x3 =0.

§ 12 GAUSSIAN ELIMINATION

Gaussian elimination is probably the best method for solving systems
of equations if you don’t have a graphing calculator or computer pro-
gram to help you.

This technique is also called row reduction and it consists of two
stages: forward elimination and back substitution.

21



The goals of Gaussian elimination are to make the upper-left corner
element a one, use elementary row operations to get zeros in all posi-
tions under first one, get ones for leading coefficients in every row diag-
onally from the upper-left to lower-right corner, and get zeros under
ones. Basically, you eliminate all variables in the last row except for one
(the first stage: forward elimination).

Then you can use back substitution to solve for one variable at a time
by plugging the values you know into the equations from the bottom up
(the second stage: back substitution).

You accomplish this elimination by eliminating the x (or whatever
variable comes first) in all equations except for the first one. Then elim-
inate the second variable in all equations except for the first two. This
process continues, eliminating one more variable per row, until only one
variable is left in the last row. Then solve for that variable.

Example.

If we were to have the following system of linear equations contain-
ing three equations for three unknowns:

xX+y+z=3,
x+2y+3z=0,
x+3y+2z=3.

we can represent such system as an augmented matrix like the one below:

xX+y+z=3, 111

x+2y+3z=0,—> 1 2 3|0
x+3y+2z=3. 1 3 23

The first stage: forward elimination

Let us row-reduce (use Gaussian elimination) so we can simplify the
matrix.

The ith row, multiplied by a number, is added to the jth row.

The ith row (does not change it), multiplied by a number, is added to
the jth row (we change it).

22



1 113 1 13
1 2 30 Ry— Ri—R, 01 2-3 R3;— R\—R;
13 23 - 3 23 g
1 1|3 113
01 2/-3] 2Rk 0 2 al-6| RRRs
02 10 ~ o 2 1]o0 -
1 1 113
0 2 4|-6/
0 0 -3/6
The second stage: back substitution.
113 X+y+z=3,

11

0 2 4l|-¢| —» 2y+4Z=—6,

0 0 -3/6 -3z=6.
From the last equation we express z. Then we substitute it into the

second equation and find y.

xX+y+z=3 |[x+y+z=3 [x+y+z=3 |[x+1-2=3 [x=4
2y+4z=-6;92y—-8=-6 ;<y=1 sy =1 ;ay=1
z=-2. z=-2. z=-2. z=-2. z=-2.

Answer: (4, 1, 2).

Example.
Solve the system of equation by Gauss reduction method:

7.x1 +4X2 _3X3 = 13,
6x; +4x, +6x3 =6,

23
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TASK TO REVIEW

Solve the system of equation by Gauss reduction method:

4x; —xy =06,

X +2xy +5x;3 =14,
x; —3xy +4x; =-19.
X +4x, —x3=-9,
4x) —xy +5x3 =2,
3xy, —7x3 =—6.

2x, +x, +3x, =7,
2x, +3x, +x; =1,
3x,+2x, +x; =6.
3x —2x, +4x; =12,
3x +4x, —x3 =1,
2x =%y —x3=4.
4x +xy —3x3 =9,
X +Xy —x3 =2,
8x; +3x, —6x3 =12.
2x +3x, +4x;3 =12,
Tx; —5x5 + x5 =33,
4x) +x3 =-T.

2x) —xy +2x3 =3,
X +2x, +2x; =4,
4x) +xy +4x3 =-3.
3x —2xy —4x; =21,
3x +4x, —2x3 =9,

2x1 —x2 _X3 =10



4% + X, +4%3 =19,
9. 42x% — 2%, +2%3 =11,
X + Xy +2X3 =8.
2% — Xy +2X%3 =8,
10. <X + Xy +2%3 =11,
4% + Xy + 4%y = 22.

8§ 13 VECTOR IN 2-SPACE AND 3-SPACE

A vector is an object that has both a magnitude (length) and a direc-
tion. Geometrically, we can picture a vector as a directed line segment,
whose length is the magnitude of the vector, with an arrow indicating
the direction (fig. 6). The direction is from its tail to its head.

magnV head
tail

Fig. 6. Vector

Two vectors are the same if they have the same magnitude and direc-

tion. This means that if we takea a vector and translate it to a new posi-
tion (without rotating it), then the vector we obtain at the end of this
process is the same vector we had in the beginning.

People will sometimes denote vectors using arrows as a, or they use
other markings.

We denote the magnitude of the vector a by |a | (fig. 7).

direction
[@1=3.61
22 1 1 2 3 4

Fig. 7. Vector a
25



The bold arrow represents a vector a . The two defining properties of
a vector, magnitude and direction, are illustrated by a bar and a arrow,
respectively.

The one exception is when a is the zero vector (the only vector with
zero magnitude), for which the direction is not defined.

A vector whose magnitude | a | is unity is called a “unit vector”.
§ 14 OPERATIONS ON VECTORS

We can define a number of operations on vectors geometrically with-
out reference to any coordinate system.

Here we define addition, subtraction, and multiplication by a scalar.

Addition of vectors.

Given two vectors a and b, web is the vector a +b.

Addition of vectors satisfies two important properties:

1. The commutative law, which states the order of addition doesn't
matter:

This law is also called the parab+a . But both sums are equal to the
same diagonal of the parallelogram.

2. The associative law, which states that the sum of three vectors
does not depend on which pair of vectors is added first:

(a+b)+c=a+(b+c).

Vector subtraction.

Before we define sb ubtraction, we define the vector —a, which is
the opposite of a. The vector —a is the vector with the same magnitude
as a but it is pointed in the opposite direction.

We define subtraction as addition with the opposite of a vector:

b—a=b+(-a).
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This is equivalent to turning vector a around in the applying the
above rules for addition.
Scalar multiplication.

Given a vector a and a real number (scalar) k, we can form the vec-
torka as follows. Ifk is positive, then ka is the vector whose direction
is the same as the direction of a and whose magnitude is k times the mag-
nitude of a. In this case, multiplication by k simply stretches (ifk > 1)

or compresses (if k < 1) the vector a .
If, on the other hand, k is negative, then we have to take the opposite

of a before stretching or compressing it.

In other words, the vector ka points in the opposite direction of a,
and the magnitude of ka is k times the length of a. No matter the sign
of k, we observe that the magnitude ofk a isk times the magnitude
of a:lkal=lk||a|.

Scalar multiplication satisfies many of the same properties as the
usual multiplication.

1.s-(a+b)=s-a+s-b (distributive law).

2.(s+1)- a=s-a+t-a (distributive law).

3.1-a = a.

4.(-1)-a=-a.

5.0-a=0.

In the last formula, the zero on the left is the number 0, while the ze-

ro on the right is the vector 0, which is the unique vector whose magni-
tude is zero.

If a=kb for some scalar k, then we say that the vectors a and b are

parallel. If k is negative, some people say that a and bare anti-parallel,
but we will not use that language.
We are able to describe vectors, vector addition, vector subtraction,
and scalar multiplication without reference to any coordinate system.
However, sometimes it is useful to express vectors in terms of coor-
dinates, as discussed about vectors in the standard Cartesian coordinate
systems in the plane and in three-dimensional space.
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Often a coordinate system is helpful because it can be easier to ma-
nipulate the coordinates of a vector rather than manipulating its magni-
tude and direction directly. When we express a vector in a coordinate
system, we identify a vector with a list of numbers, called coordinates or
components, that specify the geometry of the vector in terms of the co-
ordinate system.

§ 15 VECTORS IN THE PLANE

We assume that you are familiar with the standard (x, y) Cartesian
coordinate system in the plane. Each point p in the plane is identified
with its x and y components:

P = (p1, p2)-

To determine the coordinates of a vector a in the plane, the first step
is to translate the vector so that its tail is at the origin of the coordinate
system. Then the head of the vector will be at some point (a;, a,) in the
plane We call (a,, az) the coordinates or the components of the vec-

tor a . We often write a € R, to denote that it can be described by two
real coordinates (fig. 8).

4
a, (a1,82)

A X
Fig. 8. Vector a

Using the Pythagorean Theorem, we can obtain an expression for the
magnitude of a vector in terms of its components. Given a vector

a = (ay, ay), the vector is the hypotenuse of a right triangle whose legs are

length a; and a,. Hence, the magnitude of the vector v: v=(v,,v,v,

in three dimensions, v = (v}, v,,...,v,) in n dimensions.
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If v is composed of real components, its magnitude is defined as

|C/|=1/vf V3 4V

As an example, consider the vector a represented by the line segment
which goes from the point (1, 2) to the point (4, 6). Can you calculate
the coordinates and the magnitude of this vector?

To find the coordinates, translate the line segment one unit left and
two units down. The line segment begins at the origin and ends at
(4-1,6-2)=(3,4).

Therefore, a = (3, 4). The magnitude of a is |a|=+32+42 =5.

The vector of sum is easy to express in terms of these coordinates.
If a= (a1, @) and b= (b, b2) thelrsum is simply a+b= (a1+ by, ax+ by).

It is also easy to see that b-a= (by— &y, b,— ay) and ka= (kay, kay) for

any scalar k.
Another way to denote vectors is in terms of the standard unit vectors

(basis) denoted i and ] A unit vector is a vector whose magnitude is
one. The vector i is the unit vector in the direction of the positive x-
axis. In coordinates, we can write i = (1, 0). Similarly, the vector ] is
the unit vector in the direction of the positive y-axis: ] =(0, 1). We can
erte any two- dlmensmnal vector in terms of these unit vectors as
a= (az, &) = a1 i +a, J

8 16 VECTORS IN THREE-DIMENSIONAL SPACE

In three-dimensional space, there is a standard Cartesian coordinate
system (x, y, z). Starting with a point which we call the origin, construct
three mutually perpendicular axes, which we call the x-axis, the y-axis,
and the z-axis.

With these axes any point p in space can be assigned three coordi-

nates B= (P, P2, P3)-
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We often write a € R*to denote that it can be described by three real
coordinates. Sums, differences and scalar multiples of three-dimensional
vectors are all performed on each component.

If a=(ay, a, as) and b= (by, by, bs), then
a+b=(a;+by, a,+ by, ag+ by),
b—a=(b;— ay, b,— a, by— ay),

ka = (kay, kay, ka).

Just as in two dimensions, we can also denote three-dimensional vec-
tors is in terms of the standard unit vectors T, ] and E . These vectors
are the unit vectors in the positive x, y, and z direction, respectively.

In terms of coordinates, we can write them as i= (1,0,0), ] =(0,1,0),

and k = (0, 0, 1). We can express any three-dimensional vector as a sum
of scalar multiples of these unit vectors in the form

az(al:azaa3):alT +ap j+ask.

Example.

Find the magnitude of the vectors 5,5,5 by the coordinates of
points A, B and C for the indicated vectors.

- L >

- e d e d -
A(-2, 3,-4), B(3, -1, 2), C(4, 2, 4), a= AC+CB, b=AB, c=CB.
TASK TO REVIEW

Find the length of the vectors 5, 5, c by the coordinates of points
A, B and C for the indicated vectors.

-~ A
1. A(4, 6, 3), B(-5, 2, 6), C(4,~14,0), a=CB—~AC, b=AB, c=CB.
e T -
2.A(4,3,-2),B(-3,-1,4),C(2,2,1), a=AC+CB,b=AB, c= AC.
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- d

T e -
3. A(-2,-2,4), B(1,3,-2), C(1,4,2), a=AC-BA, b =BC, ¢c=BC.
B > o > o -
4.4(2,0,3), B3, 1,-4), C(~1,2,2), a=BA+AC, b =BA, ¢ =BC.
I - e
5.4(2,4,5),B(1,-2,3), C(~1,-2,4), a= AB — AC, b =BC, ¢ = AB.
- -> L. o . -
6. A(-1,-2,4), B(-1,3,5), ((1,4,2), a=BA+ AC, b=AB, ¢ = AC.
s S
7.4(1,3,2), B2,4, 1), C(1,3,2), a= AB+CB, b=AC, ¢ = AB.
s -
8. 4(4,0,-2),B(3,-1,4),C2,2,1), a=AC+CB ,b=AB, c= AC.
e - L >
9. A(-2,-2,4), B(10,3,-2), C(1,0,2), a=AC—BA, b =BC, ¢c=BC.
S > -> S - -
10. 4(2,0,3), B3, 1,~4), C(-1, 8,2), a=BA+AC, b =BA, ¢= BC.

§ 17 DOT PRODUCT

The most important product of two vectors is their “dot product”, or
“scalar product”. This product results in a scalar.

Vector dot product is equal to the sum of the products of the corre-
sponding coordinates:

- -

U-V=uv, +usvy +...4u,v,.
We have another definition for the dot product:
;-\:=|;|-|\:|coscp,
where ¢ — angle between vectors.

Example.

Calculate the dot product of a= (1,2,3)and b= (4, -5, 6). Do the
vectors form an acute angle, right angle, or obtuse angle?
Example.

Calculate the dot product of a= (-4, —9) and b= (-1, 2). Do the
vectors form an acute angle, right angle, or obtuse angle?
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Example.
If a = (6, -1, 3), for what value ofcis the vector

b= (4, ¢, —2) perpendicular to vector a?
Properties of dot product:

1 u-v=v-u (commutative property).

2. G-(§+Vv) —U-VHU-W (distributive property).

3. c(G-Q):(cG)-Q:G-(CQ) (associative property).

4. v-v=|v? (property of magnitude).

Example.

Find the measure of the angle between each pair of vectors.

a)i+j+k and 2i—j-3k.

b) (2,5, 6) and (-2, —4, 4).

Orthogonality criterion.

The nonzero vectors u and v are orthogonal vector if and only
if u-v=0.

Example.

For which value of x is p =(2,8,—1) orthogonal to q=(-x, —1,2)?

The vector projection of v onto u is the vector labeled proja\7.

If ¢ represents the angle between uand v , then we have:

[ projgvl=.

Example.

Find the projection of vector v onto vector u.

a) v=(3,5,1) and u=(-14,3).

b) v=3i-2j and u=i+6].

When a constant force is applied to an object so the object moves in
a straight line from point P to point Q, the work W done by the force F ,
acting at an angle ¢ from the line of motion, is given W = E-PTQ .
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Example.

Suppose a child is pulling a wagon with a force having a magnitude
of 8 on the handle at an angle of 60 degree. If the child pulls the wagon
50, find the work done by the force.

Example.

A conveyor belt generates a force F =5i —3] +k , that moves a suit-
case from point (1, 1, 1) to point (9, 4, 7) along a straight line. Find the
work done by the conveyor belt.

Example.

Find the scalar product of vectors a and b by the coordinates of
points A, B and C for the indicated vectors; the projection of the vector

E onto the vector a.

1. A(4, 6, 3), B(-5, 2, 6), C(4, 4, -3),

- > L >
a=CB-AC,b=AB,c=CB,d = AC.
2.A(4,3,-2),B(-3,-1,4),C(2, 2,1),

—

— d —> - - N -
a=AC+CB,b=AB,c=AC,d =CB.
3.A(-2,-2,4),B(1,3,-2),C(1, 4, 2),

I - - —

- - L. > -
a =AC-BA, b =BC,c=BC, d =AC.
4.A(2, 4,3),B(3,1,-4),C(-1, 2, 2),

- - —

-~ - — - - o
a=BA+AC,b=BA,c=b,d = AC.
5.A(2, 4, 5), B(1, 2, 3), C(-1, -2, 4),

- d - —

- -> o -
a =AB-AC, b=BC,c =b, d =AB.
6. A(-1, —2, 4), B(-1, 3, 5), C(1, 4, 2),

- — - o - - o —
a=AC-BC,c=b=AB,d =AC.
7.A(-2, -2, 4), B(0, 3, 2), C(1, 4, 2),

- - -

- — > L > -
a =AC-BA,b=BC,c=BC,d =AC.
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8.4(2,4,3),B(3,1,4),C(-1,2,2),
- > L > -

a=BA+AC,b=BA,c=b,d = AC.
9.4(2,9,5), B(1,2,3), C(—1,-2,4),

N — - 5 - - - - e
a =AB—-AC,b=BC,c=b,d =AB.
10. 4(1,-2,4), B(1, 3, 5), C(1, 4, 2),

- e —> - - — - -
a=AC—-BC,c=b= AB,d =AC.

§ 18 CROSS PRODUCT

There are two ways to take the product of a pair of vectors. One of
these methods of multiplication is the cross product.
The cross product is defined only for three-dimensional vectors.

If ¢ and b are two three-dimensional vectors, then their cross product
written as axb (“a cross b”) is another three-dimensional vector.

We define this cross product vector axb by the following three re-
quirements:

1.axb is a vector that is perpendicular to both ¢ and 5.
2. The magnitude of the vector axb written as |axb | is the area of

the parallelogram spanned by a and b
laxb|=|a||b|sin6,

where 0 is the angle between a and b.

3. The direction of axbis determined by the right hand rule. This
means that if we curl the ﬁngers of the right hand from a to b then the
thumb pomts in the direction of axb .

If @ and b are parallel or if either vector is the zero vector, then the
cross product is the zero vector.

Let ;: (al, ay, a3) and Z: (bl, bg, b3)
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Then, the cross product

i j kK
axb=|a; a, a4
b by by
Example.
Find a cross product pxq and gxp of p = (-1, 2, 5)and
q=(4,0,-3).

As we have seen, the dot product is often called the scalar prod-
uct because it results in a scalar. The cross product results in a vector, so
it is sometimes called the vector product.

Cross product is anticommutativity:

pxa#axp.

Let’s explore some properties of the cross product.
1. Anticommutative property:

- - > -

UXV=-VXU.
2. Distributive property:
Gx(§+ﬁ):ﬁx§+ﬁxw.

3. Multiplication by a constant:

c(UxV) = (CU)xV = Ux (cv).
4. Cross product of the zero vector:

Ux0=0xu=0.

5. Cross product of a vector with itself:

- - -

uxu=0.
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To use the cross product for calculating areas, we state and prove the
following theorem.

Area of a parallelogram. If we locate vectors B and a such that
they form adjacent sides of a parallelogram, then the area of the paral-
lelogram is given by | pxq|.

Example.

LetP =(1,0,0), Q=(0, 1, 0),andR = (0, 0, 1) be the vertices of
a triangle. Find its area.

Example.

Find the area of the parallelogram PQRS with vertices P(1, 1, 0),
Q(7,1,0), R(9,4,2), and S(3, 4, 2).

Torgue T measures the tendency of a force to produce rotation about
an axis of rotation. Let r be a vector with an initial point located on the
axis of rotation and with a terminal point located at the point where the

force is applied, and let vector F represent the force. Then torque is
equal to the cross product of r and F :

T=rxF.
Example.
Vectors are given. It is necessary:

a) find the magnitude of a ;

b) the vector product of vectors a and 5;
c) check whether two vectors and are collinear or orthogonal

aand c.
1.a=2i-3j+k,b=j+4k,c=5i +2j -3k
2.a=31+4j+k,b=7-2]+7k, c=31-6] +21k
3.a=21-4j-2k,b=7i+3j,c=37 +5] -7k.
4.a=-71 +2k, b =27 -6] +4k, c =-3] +2kK.
5.a=5i-3j+k,b=5] +4k,c=5i +2] -3k
6.a=i+4]j+k,b=i-8]j+7k,c=3i-6] +21k
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