терна алюминию высокой чистоты и ее величина несколько увеличивается с повышением плотности тока анодирования. Здесь же наблюдается лучшее совпадение толщин $d(Al_2O_3)$ измеренных и расчетных, а также более высокие значения пробивных напряжений и меньшие токи утечки.

УДК 535.34, 535.37

НОВЫЕ МАТЕРИАЛЫ С ШИРОКОПОЛОСНОЙ ИК-ЛЮМИНЕСЦЕНЦИЕЙ: СТЕКЛОКЕРАМИКА С НАНОКРИСТАЛЛАМИ Ni²⁺:ZnAl₂O4 И КРИСТАЛЛЫ Bi⁺:CsCdCl₃

Лойко П.А.¹, Романов А.Н.², Дымшиц О.С.³, Трусов Л.А.², Втюрина Д.Н.⁴, Корчак В.Н.⁴, Скопцов Н.А.¹, Юмашев К.В.¹ ¹ Белорусский национальный технический университет, Минск, Республика Беларусь ² Московский государственный университет им. М.В. Ломоносова, Москва, Российская Федерация ³ ГОИ им. С.И. Вавилова, Санкт-Петербург, Российская Федерация ⁴ Институт химической физики им. Н.Н. Семенова, Москва, Российская Федерация

Октаэдрически координированные ионы Ni²⁺ в кристаллах шпинели MgAl₂O₄ характеризуются широкой полосой люминесценции в области 1–1.4 мкм (максимум полосы соответствует длине волны излучения 1.15 мкм, а общая ширина на полувысоте FWHM более 200 нм). Эта люминесценция связана с излучательной релаксацией с низшего возбужденного состояния ${}^{3}T_{2g}$ в основное ${}^{3}A_{2g}$ и может возбуждаться излучением In-GaAs лазерных диодов с длиной волны излучения 960 нм, соответствующей полосе поглощения ${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$.

Альтернатива сложной технологии синтеза монокристаллов – управляемое выращивание в стеклянной матрице наноразменых кристаллов шпинелей XAl₂O₄ (X = Zn, Mg, Li), содержащих ионы Ni²⁺, путем вторичной термической обработки исходного никель-содержащего стекла. Под влиянием неоднородного уширения величина FWHM для полосы люминесценции достигает 250–300 нм, а искажение структуры шпинели приводит к смещению максимума полосы в области 1.1–1.3 мкм. Это обуславливает привлекательность таких материалов для широкополосного усиления лазерного излучения.

Стекла, поли- и моно-кристаллы с ионами висмута также обладают интенсивной люминесценцией в области 1-1.5 мкм (FWHM до 300 нм), а характерное время затухания люминесценции может составлять сотни мкс. Известны висмутсодержащие силикатные, боратные, фосфатные, хлоридные стекла, хлоридные кристаллы KAlCl₄, KMgCl₃, TlCl. Было показано, что ответственными за ИК люминесценцию в висмут-содержащих материалах являются соединения висмута в низкой степени окисления (субвалентные соединения): люминесценция была зарегистрирована для одновалентного катиона Bi⁺, а также поликатионов Bi5³⁺, Bi2⁴⁺, Bi8²⁺. Это обуславливает интерес к висмут-содержащим кристаллам как активным средам для лазеров с перестройкой длины волны выходного излучения.

В настоящей работе по методу Бриджмена были получены монокристаллические образцы CsCdCl₃, легированные Bi⁺. Синтез производился

на основе хлоридов CdCl₂, CsCl, BiCl₃, которые смешивались в заполненном аргоном сухом боксе и помещались в кварцевый контейнер для роста кристаллов вместе с избытком металлического висмута. В процессе плавления, некоторое количество металлического висмута реагировало с трихлоридом висмута, образуя монокатион Bi⁺ в расплаве, который в дальнейшем входил в состав кристалла CsCdCl₃ в виде изоморфной примеси замещения. Фотография полученных кристаллов показана на рисунке 1.

Рисунок 1 – Фотография синтезированных монокристаллов CsCdCl₃ с ионами Bi⁺

Исследована широкополосная ИК люминесценция данных кристаллов, рисунок 2. Спектры фотолюминесценции регистрировались на монохроматоре ARC SpectraPro SP-305 при помощи InGaAs фотодетектора.

В работе также исследованы спектральнолюминесцентные свойства стеклокерамики с нанокристаллами Ni²⁺: ZnAl₂O₄. В исходное цинково-алюмо-силикатное стекло, допированное оксидом никеля NiO (0.1–1 мол%), была введена смесь катализаторов кристаллизации, TiO₂/ZrO₂. Стекло синтезировалось при температуре ~1580 °C. Для формирования нанокристаллов исходное стекло подвергалось вторичной термообработке при температуре 800°C в течение 6ч (первая ступень) и при температурах 900–1100°C в течение 6 ч (вторая ступень). Выделение кристаллической фазы подтверждено методом РФА. Полученные образцы имели высокое оптическое качество, рисунок 3.

Рисунок 3 – Фотография прозрачной стеклокерамики с нанокристаллами ганита Ni^{2+} :ZnAl₂O₄

Структура спектров поглощения образцов стекол, прошедших термообработку, определяется поглощением преимущественно октаэдрически координированных ионов Ni²⁺, вошедших в кристаллы ганита (рисунок 4). Полосы в области 9800 см⁻¹, 12800 см⁻¹ и 15800 см⁻¹ связаны с переходами из основного ${}^{3}A_{2g}({}^{3}F)$ состояния в возбужденные ${}^{3}T_{2g}({}^{3}F)$, ${}^{1}E_{g}({}^{1}D)$ (переход запрещен по спину) и ${}^{3}T_{1g}({}^{3}F)$, соответственно. Это согласуется с поглощением «объемных» кристаллов шпинели Ni²⁺:MgAl₂O₄, изоструктурных ганиту.

Часть ионов Ni²⁺, входящих в кристаллическую фазу шпинели, находится в тетраэдрических позициях (доля тетраэдрически координированных ионов никеля в кристаллах шпинелей составляет 10-25%). Это видно по структурированию полосы в спектре поглощения, лежащей в области 15000–18000 см⁻¹. В частности, переход ³T_{1g}(³F) \rightarrow ³T_{1g}(³P) для тетраэдрически коорд. ионов проявляется в виде полосы с максимумом ~16800 см⁻¹. Плохо разрешенная полоса с максимумом ~8900 см⁻¹ также связана с поглощением тетраэдрически коорд. ионов – переход ³T_{1g}(³F).

Спектры люминесценции образцов стеклокерамики при возбуждении на длине волны 960 нм приведены на рисунке 4 (ИК люминесценция для исходных стекол отсутствует). При увеличении температуры термической обработки интегральная интенсивность люминесценции возрастает. Для стеклокерамики, обработанной при $800^{\circ}C/6^{4}+1100^{\circ}C/6^{4}$, длина волны, соответствующая максимуму полосы люминесценции, составляет 1230 нм (ширина полосы на полувысоте FWHM – 250 нм). Люминесценция связана с излучательными переходами с нижнего возбужденного состояния октаэдрически координированных ионов Ni²⁺ (канал ³T_{2g} (³F) \rightarrow ³A_{2g}(³F)).

Измерения времени затухания люминесценции в образцах никель-содержащей стеклокерамики показали, что данное время существенно зависит от концентрации NiO и достигает 100 мкс для концентрации 0.1 мол%.

Таким образом, в работе представлены данные по синтезу, исследованию оптического поглощения и люминесценции новых материалов на основе стеклокерамики с нанокристаллами ганита Ni²⁺:ZnAl₂O₄ и монокристаллов хлорида Bi⁺:CsCdCl₃, перспективных для широкополосного усиления лазерного излучения, а также раз-

работки активных сред лазеров с перестройкой длины волны выходного излучения.

Дымшиц О.С. благодарит РФФИ, грант 13-03-01289 А, за частичную поддержку работы.

УДК 621.1: 679.8

ИСПОЛЬЗОВАНИЕ УЛЬТРАЗВУКОВЫХ КОЛЕБАНИЙ ПРИ ШЛИФОВАНИИ ШАРИКОВ

Луговой В.П., Волк Н.М., Луговая И.С.

Белорусский национальный технический университет Минск, Беларусь

Использование ультразвука при абразивной обработке позволяет улучшить количественные показатели обработки поверхности в силу особенностей воздействия в зоне контакта детали и инструмента [1]. Повышение точности обработки могут быть достигнуты при комплексном управлении технологическими (скорость, давление, материала и размер абразивного зерна) и акустическими (амплитуда и частота колебаний) факторами. Каждый из них может оказывать благоприятное воздействие в определенных диапазонах и сочетаниях численных значений. Особый интерес при этом, представляет возможность управления процессом обработки воздействием ультразвука на динамику и кинематику скольжения контактирующих поверхностей

Особый интерес представляет вопрос о возможности управления точностью геометрической формы сферических поверхностей. К числу таких изделий относятся металлические шарики, используемые в различных отраслях техники, в частности, в при производстве подшипников качения, а также неметаллические, применяемые например в ювелирной промышленности для изготовления украшений из натурального камня, стекла и пр.

Сущность обработки шариков заключается в обкатке заготовок между двумя (тремя) дисковыми инструментами. Схема обработки шариков с использование ультразвука имеет некоторые особенности, заключающиеся в том, что распространение ультразвуковых волн по поверхности инструмента имеет волновой характер [2]. Подобный волновой характер распространения ультразвуковых колебаний в инструменте можно целенаправленно использовать для повышения геометрической формы. Один из инструментов присоединяется к источнику ультразвуковых колебаний таким образом, чтобы в инструменте возбуждается стоячая ультразвуковая волна, которая может оказать влияние на интенсивность обработки в зависимости от положения деталей в зоне обработки (рис. 1а). В этом случае процесс формообразования шариков зависит от расположением изделий относительно стоячей волны, возбуждаемой в материале инструмента. В результате шарики, обработанные на различных радиусах дорожек нижнего диска, имеют отличия и по размерам и по точности. В связи с этим эксцентричное положение инструментов относительно друг друга позволяет устранить этот недостаток тел качения [3], обеспечивая прохождение траектории движения шариков через различные зоны ультразвукового поля (рис.2). Очевидно, что это достигается изменением направления вращения шариков вокруг своих осей при пересечении различных зон акустической волны.

1-нижний диск, 2- ультразвуковой преобразователь, 3 –корпус, 4 - натяжной трос, 5 – противовес, 6- верхний диск.
Рисунок 1 – Схема обработки шариков с ультразвуком

верхний диск, 2- ультразвуковой преобразователь, 3 – нижний диск, 4 – шарики
 Рисунок 2 – Схема ультразвукового шлифования шариков с эксцентричным положением инструментов

От источника механических колебаний в верхнем диске возбуждаются изгибные колеба-