тивоположного поведения поверхностей корпуса и иглы являются напряжения разного знака, возникающие на данных деталях под действием давления в процессе эксплуатации и различный фазовый состав иглы и корпуса.

УДК: 621.375.826

- Шульце, Г. Металлофизика / Г. Шульце. М: Мир, 1971. – 603 с.
- Головин, Ю.И. Наноиндентирование и его возможности / Ю.И. Головин. – М.: Машиностроение, 2009. – 312 с.

МИКРОПАРАМЕТРЫ ПЕРЕНОСА ЭНЕРГИИ МЕЖДУ ПРИМЕСНЫМИ ИОНАМИ В КРИСТАЛЛЕ Tm,Ho:KY(WO4)2

Курильчик С.В.¹, Кулешов Н.В.¹, Зенькевич Э.И.²

¹НИЦ оптических материалов и технологий БНТУ, Минск, Республика Беларусь ²Кафедра технической физики БНТУ, Минск, Республика Беларусь

Для получения лазерной генерации в спектральной области около 2 мкм на кристаллах, соактивированных ионами Tm^{3+} и Ho^{3+} , как правило, используется накачка в полосу поглощения ионов тулия [1], в результате которой происходит заселение долгоживущего энергетического состояния ${}^{3}F_{4}$ (рисунок 1).

Вследствие близости энергии уровней ${}^{3}F_{4}$ тулия и ${}^{5}I_{7}$ гольмия имеет место безызлучательный перенос энергии на ионы гольмия, что открывает перспективы для получения генерации на переходе ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ ионов гольмия [1]. Однако на эффективность генерации негативное влияние оказывает обратный перенос энергии с уровня ${}^{5}I_{7}$ гольмия на уровень ${}^{3}F_{4}$ тулия. Поэтому для оценки перспективности использования соактивированного материала в качестве активной среды лазеров, излучающих в области 2 мкм, весьма важным является определение параметров переноса энергии между примесными ионами.

Исследование параметров переноса энергии между примесными ионами проводилось для кристалла Tm,Ho:KY(WO₄)₂ с концентрацией ионов тулия 5 ат.% и гольмия 0,4ат.% в рамках теории индуктивно-резонансного переноса энергии Фёрстера-Декстера [2,3] в приближении диполь-дипольного межионного взаимодействия. В соответствии с данной теорией вероятность переноса энергии между отдельными ионом-донором и ионом-акцептором определяется выражением:

$$W_{\mathcal{I}\mathcal{A}} = \frac{c_{\mathcal{I}\mathcal{A}}}{r_{\mathcal{I}\mathcal{A}}^6},\tag{1}$$

где $c_{\mathcal{A}A}$ - микропараметр переноса энергии для диполь-дипольного межионного взаимодействия, постоянный для данной среды; $r_{\mathcal{A}A}$ - расстояние между взаимодействующими ионами. Микропараметр переноса энергии $c_{\mathcal{A}A}$ выражается через время жизни возбужденного состояния ионадонора в отсутствии акцептора $\tau_{\mathcal{A}}$ и критическое расстояние взаимодействия $R_{\mathcal{A}A}$:

$$c_{\mathcal{A}A} = \frac{R^{6}_{\mathcal{A}A}}{\tau_{\mathcal{A}}}.$$
 (2)

Критическим расстоянием взаимодей-ствия называется такое расстояние между донором и акцептором в среде, при котором вероятность прямого резонансного переноса энергии равна вероятности спонтанной излучательной релаксации донора ($1/\tau_{\rm A}$). Выражения для критического расстояния взаимодействия $R_{\rm AA}$ и микропараметра переноса энергии $c_{\rm AA}^{6}$ определяются спектроскопичес-кими параметрами активных ионов в данной среде и, учитывая (2), могут быть записаны в следующем виде [3-5]:

$$R_{\mathcal{A}A}^{6} = \frac{9c\tau_{\mathcal{A}}\kappa^{2}}{16\pi^{4}n^{2}} \int \sigma_{\mathcal{A}}^{u_{\mathcal{A}A}}(\lambda)\sigma_{A}^{nozn}(\lambda)d\lambda, \qquad (3)$$

$$c_{\mathcal{A}A} = \frac{9c\kappa^2}{16\pi^4 n^2} \int \sigma_{\mathcal{A}}^{u_{\mathcal{A}A}}(\lambda) \sigma_{A}^{n_{\mathcal{A}A}}(\lambda) d\lambda \qquad (4)$$

где *с* - скорость света, *n* - показатель преломления среды, $\sigma_{\text{Д}^{\text{изл}}}(\lambda)$ - сечение вынужденного излучения донора, $\sigma_{A}^{no2n}(\lambda)$ - сечение поглощения акцептора, κ^2 - ориентационный фактор, характеризующий взаимную ориентацию дипольных моментов переходов в доноре и акцепторе. В случае, когда взаимная ориентация доноров и акцепторов в среде случайная, но фиксированная и не меняется за время жизни иона в возбужден-

ном состоянии, что характерно в условиях кристаллической матрицы, ориентационный фактор $\kappa^2=0,476$ [4, 6].

Выражение под знаком интеграла характеризует степень перекрытия спектра поглощения акцептора и спектра излучения донора и определяет резонансную природу процесса переноса энергии. В случае кристалла Tm,Ho:KY(WO₄)₂ необходимо рассматривать два случая: прямой и обратный перенос энергии. В случае прямого переноса в качестве донора (Д) выступают ионы Tm^{3+} , а в качестве акцептора (А) – ионы Ho³⁺. При обратном переносе энергии в качестве донора (Д) будут выступать ионы Ho³⁺, а в качестве акцептора (А) – ионы Tm^{3+} . На основании формулы (1) можно получить выражение для отношения вероятностей прямого и обратного переноса энергии:

$$\frac{W_{HoTm}}{W_{TmHo}} = \frac{c_{HoTm}}{c_{TmHo}}.$$
 (5)

Усредненные по поляризации спектры поперечных сечений стимулированного излучения ионов Tm^{3+} и поглощения ионов Ho^{3+} в кристалле KYW, рассматриваемые в случае прямого переноса энергии ($Tm \rightarrow Ho$), представлены на рисунке 2.

Рисунок 2 – Спектры поперечных сечений стимулированного излучения ионов Tm³⁺ и поглощения ионов Ho³⁺ в кристалле KYW

Усредненные по поляризации спектры поперечных сечений стимулированного излучения ионов Ho³⁺ и поглощения ионов Tm³⁺ в кристалле KYW для случая обратного переноса энергии, представлены на рисунке 3.

Путем численного интегрирования произведения спектров, представленных на рисунках 1 и 2, с использованием выражений (3) и (4) рассчитаны значения критического расстояния взаимодействия R_{дА} и микропараметра переноса энергии с_{дА} для случаев прямого и обратного переноса энергии. Полученные значения представлены в таблице 1.

Рисунок 3 – Спектры поперечных сечений стимулированного излучения ионов Ho³⁺ и поглощения ионов Tm³⁺ в кристалле KYW

Таблица 1 – Микропараметры переноса энергии в кристалле Тт(5ат.%), Ho(0,4ат.%): KYW

Направление переноса энергии	<i>R</i> _{Д4} , Å	$c_{\mathcal{I}A}, \times 10^{-40} \text{ cm}^{6} \cdot \text{c}^{-1}$	$\frac{W_{HoTm}}{W_{TmHo}}$
Тт→Но	12,52	35,08	0,061
Ho→Tm	9,95	2,16	

На основании выражения (5) рассчитана величина отношения вероятностей обратного и прямого переноса энергии между ионами тулия и гольмия, которая составила 0,061, что находится в хорошем соответствии с аналогичными значениями параметра для других кристаллов, Tm,Ho:YAG [7-9] и Tm,Ho:YLF [7], и указывает на доминирование прямого переноса энергии в исследуемом кристалле.

Таким образом, в результате исследования определены микропараметры переноса энергии между ионами тулия и гольмия в кристалле Tm(5ar.%),Ho(0,4ar.%):KY(WO₄)₂, которые подтверждают перспективность использования кристалла в качестве активной среды лазеров, излучающих в спектральном диапазоне 2 мкм при накачке в полосу поглощения ионов Tm³⁺.

- 1. A.A. Lagatsky, F. Fusari, S.V. Kurilchik, et.al. Applied Physics B. 97 (2), 321-326 (2009).
- 2. Förster, T. Annalen der Physik. 6 (2), 55-75 (1948).
- 3. Dexter, D. J. Chem. Phys. 21(5), 836-850(1953).
- Lakowicz, J. R. Principles of Fluorescence Spectroscop, 3rd ed. – Kluwer Academic Press: New York, 2006. – 954.
- J. Caird, et.al. J. Opt. Soc. Am. B. 8(7), 1391-1403 (1991).
- I.Z. Steinberg, et.al. Annu. Rev. Biochem. 40, 83-114 (1971).
- 7. B.M. Walsh, et.al. J. Lumin. 75(2), 89-92 (1997).
- S.R. Bowman, et.al. // IEEE J. Quantum Electron. 27 (9), 2142-2149 (1991).
- R.R. Petrin, et.al. // Optical Materials. 1, 111-124 (1992).