АРОЧНЫЕ МОСТЫ С ПРИМЕНЕНИЕМ ТЕХНОЛОГИИ CFST (ТРУБА ИЗ СТАЛИ, ЗАПОЛНЕННАЯ БЕТОНОМ)

Трусов Андрей Дмитриевич, магистрант 1-го курса кафедры «Транспортное строительство» Саратовский государственный технический университет имени Гагарина Ю.А., г. Саратов (Научный руководитель — Сурнина Е.К., канд. техн. наук, доцент)

В последние десятилетия Китай приложил большие усилия и достиг успехов области строительства автомагистралей заметных высокоскоростных дорог. В настоящее время Китай является лидером и удерживает все мировые рекорды по длине пролетов всех типов арочных мостов. Это возможно благодаря уникальным технологиям области стало транспортного строительства. В связи с этим увеличился спрос на арочные мосты, а в особенности на мосты с большими пролетами.

Арочный мост, построенный с применением технологии CFST (труба из стали, заполненная бетоном), — это арочный мост с аркой или ферменной аркой с поясами, выполненными по данной технологии. В арке этой конструкции бетон внутри труб служит для поддержания локальной устойчивости стальных труб, а стальные трубы являются ограничителями бетона и тем самым увеличивают его прочность и пластичность. Эта комбинация создает надежную сталебетонную композитную конструкцию. При этом количество стали, используемое для ребра арки с большим пролетом, как правило, составляет только половину от того, что используется для стального ферменного арочного моста. Стальные трубы в этой конструкции выполняют не только функцию каркаса, но и опалубки, следовательно, эти мосты могут похвастаться большой экономической эффективностью и меньшим весом установки, по сравнению с обычными стальными арочными мостами. Благодаря тому, что арка является самонесущей конструкцией, она возводится до заливки бетона и сразу подвергается нагрузке. Поэтому высокопрочные свойства стальных труб используются полностью, что делает их очень надежной несущей конструкцией. Исходя из этого, при определенных условиях арочные мосты с применением данной технологии обеспечивают значительные технические и экономические преимущества. На данный момент символом этой технологии является Третий мост Пиннань (Рис. 1).

Рисунок 1 – Фотография Третьего моста Пиннань

В результате статического анализа пяти арочных мостов со сверхбольшими пролетами, в которых применялась эта технология, было установлено, что их средняя стоимость на 25% ниже, чем у вантовых мостов с аналогичной длиной пролета. Учитывая преимущества данной технологии, за несколько последних десятилетий уже построено около 500 арочных мостов, в которых применялась технология CFST (труба из стали, заполненная бетоном). Из них 51 мост имеет длину пролета более 300 м, а 19 мостов – с пролетами более 400 м (Табл. 1).

Таблица 1– Перечень арочных мостов CFST с пролетами более 400 м

No	Название моста	Основной	Год
		пролет (м)	завершения
1	Третий мост Пиннань	560	2020
2	Мост Босыденг	518	2013
3	Автодорожный мост через реку Янцзы в Хэцзяне	507	2021
4	Мост через реку Уцзян, шоссе Дэцзян-Юйцин	504	2023
5	Мост через реку Янцзы в Ушане	492	2005
6	Мост Дасяоцзин	450	2019
7	Мост через реку Зангму Ярлунг Цангпо, железная дорога Лхаса-Ньинчи	430	2021
8	Мост через реку Чжицзин	430	2009
9	Мост Дафацюй, шоссе Жэньхуай-Цзуньи,	410	2022
10	Мост через реку Цяньвэй Миньцзян	400	2021
11	Мост Ляньчэн	400	2007

12	Мост через реку Синю Хэйхуэй	518	В разработке
13	Мост через реку Хуншуй, железной дороге	512	В разработке
	Хуантун-Байсэ	312	D paspaoorke
14	Мост через реку Яже Хуншуй, шоссе Лее - Вангмо	508	В разработке
15	Мост через реку Цзиньша, железная дорога	500	В разработке
13	Сычуань-Сизан	300	Б разраоотке
16	Мост через реку Байма Цюцзян, шоссе Нинлан -	420	В разработке
10	Шангри Ла	720	В разрасотке
17	Мост через реку Байма Цюцзян, шоссе Чжэньба -	418	В разработке
1 /	Гуанъань	710	ъ разраоотке
18	Второй мост через реку Минтцзян Пиншань	410	В разработке
19	Мост Шуанпу, новое шоссе Чунцин-Хунань	405	В разработке

В последние годы эта технология набирает еще большую популярность, поскольку с ее применением только за последние четыре года было построено около 100 мостов.

Литература:

- 1. Zheng J. Recent Construction Technology Innovations and Practices for Large-Span Arch Bridges in China // Engineering. 2024. Vol. 41, Pp. 110-129. https://doi.org/10.1016/j.eng.2024.05.019
- 2. Zheng J., Wang J. Concrete-filled steel tube arch bridges in China // Engineering. 2018. Vol. 4, Pp. 143-155. https://doi.org/10.1016/j.eng.2017.12.003