УДК 621.311

OCOБЕННОСТИ ДИММИРОВАНИЯ ВО ВНУТРЕННЕМ OCBEЩЕНИИ FEATURES OF DIMMING IN INTERIOR LIGHTING

Д. В. Лагунов, Д. А. Козловская
Научный руководитель – В. Н. Калечиц, старший преподаватель
Белорусский национальный технический университет,
г. Минск, Беларусь
D. Lagunov, D. Kozlovskaya
Supervisor – V. Kalechyts, Senior Lecturer
Belarusian national technical university, Minsk, Belarus

Аннотация: в статье приведен пример светотехнического расчета коридорного помещения общественного здания с учетом естественного освещения и без учета.

Abstract: the article provides an example of a lighting calculation of a room with and without natural light.

Ключевые слова: освещение, диммирование, светильник, электропотребление. **Keywords:** lighting, dimming, luminaire, power consumption.

Введение

В общественных зданиях, как правило, используются светильники небольшой мощности до 150 Вт.

Диммирование — это регулировка светового потока источников света (от английского слова dimming—затемнение). В качестве устройства для диммирования рассмотрим диммер Modbus RTUWB-MDM3.

Основная часть

Диммирование позволяет сделать комфортный уровень освещенности в помещении и создает дополнительные варианты световых сцен для разных ситуаций.

В данной работе произвели расчет коридора:

- высота 2,8 м;
- длина 15 м;
- ширина 5 м;
- число светильников в ряду 2;
- число рядов светильников 2.

Рассмотрено сравнение расчетных значений освещенности (табл. 1) для двух вариантов установки светодиодных светильников коридора (рис. 1) [1].

Рисунок 1 – Проект коридора

Первый вариант светотехнического расчета: рассмотрен коридор в ночное время, принято время работы 6 часов.

Второй вариант светотехнического расчета: рассмотрен коридор в дневное время с использованием диммера (принято, что небо чистое), время работы 8 часов.

Во втором варианте нет обходимости использовать светильники (рис. 2) на полную мощность, так как естественный свет проходит через окно и будет освещать часть коридора. Поэтому использован диммер Modbus RTU WB-MDM3, который уменьшает на 48 % световой поток светильников [2]. Характеристика светильника и результаты для двух вариантов расчета приведены в табл. 1.

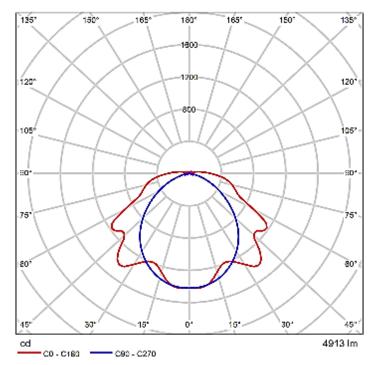


Рисунок 2 – Тип КСС светильника Glamox – MIRZ54-1200 LED 5000

Таблица 1 – Характеристика светильника и результаты для двух вариантов расчета

Название	Светодиодный светильник Glamox–MIRZ54-1200 LED 5000	
Светотехни	ческие данныесветильнии	ка
Световой поток, лм	4913	
Потребляемая мощность, Вт	33	
Световая отдача, лм/Вт	148,9	
Результаты светоте	хнического расчета свет	гильников
	Вариант 1	Вариант 2
Е _{ср} , лк	118	129
E _{min} , лк	4,63	7,16
Е _{тах} , лк	219	385
Е _{тіп/ср} , лк	0,039	0,056
E _{min/max} , лк	0,021	0,019
Расход электроэнергии за время работы, кВт·ч	0,792	0,55

В первом варианте рассмотренного светотехнического расчета средняя освещенность по коридору составляет 118 лк, минимальная освещенность равна 4,63 лк, а максимальная достигает 219 лк. Во втором варианте рассмотренного светотехнического расчета средняя освещенность по коридору составляет 129 лк, минимальная освещенность равна 7,16 лк, а максимальная достигает 385 лк. Распределение освещенности в коридоре представлено на рис. 3 и рис. 4 соответственно, вид сверху.

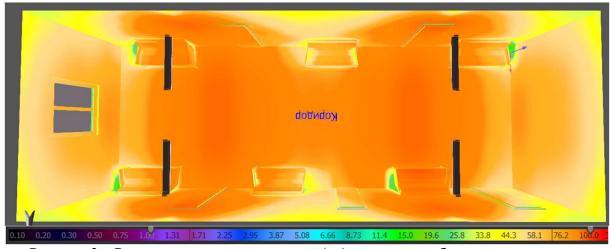


Рисунок 3 — Распределение освещенности (лк) в коридоре общественного здания без диммирования

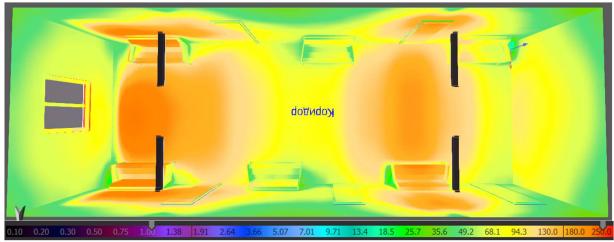


Рисунок 4 — Распределение освещенности (лк) в коридоре общественного здания с использованием диммера (48 %)

Заключение

В данном помещении размещены 4 светильника и произведен светотехнический расчет для двух вариантов установки.

Второй вариант, как и следовало ожидать, вышел с наименьшим электропотреблением и с наименьшими затратами.

В течение дня естественное освещение меняется, диммербудет изменять световой поток, что приводитк снижению электропотребления. Как видно из табл. 1 для первого варианта светотехнического расчета расход электроэнергии за время работы равен 0,792 кВт·ч, а для второго варианта светотехнического расчета составляет 0,55 кВт·ч.

Литература

- 1. DIALuxLuminaireFinder [Электронный ресурс]. Режим доступа: https://luminaires.dialux.com/ru/article/qGqDz1LtQ7m-Ts1Bh4mr8Q?_ Y=600. Дата доступа: 17.04.2023.
- 2. Автоматизация освещения [Электронный ресурс]. Режим доступа: https://wirenboard.com/ru/pages/lighting/. Дата доступа: 14.04.2023.
- 3. Схема управления освещения [Электронный ресурс]. Режим доступа: https://ddecad.ru/osnovnye-vidy-shem-upravleniya-osvescheniem/. Дата доступа: 15.04.2023.