физике, включая классическую и квантовую механики, квантовую теорию поля, теорию элементарных частиц, кристаллографию, специальную и общую теорию относительности, статистическую механику. Более того, эти представления играют не последнюю роль при исследовании подобных теории размерностей макроскопической процессов В Подавляющая фундаментальных утверждений, часть выдвинутых в теоретической физике, имеет смысл принципов инвариантности, симметрии.

За последние десятилетия XX века и первые десятилетия XXI века значительная часть научного содержания Нобелевских премий, полученных учёными в области физики и химии, была основана на использовании конструктивных непосредственно различных идей, связанных представлениями об инвариантности и симметрии, которые, по существу, констатируют или постулируют неизменность свойств,уже исследованных локальных и глобальных явлений по отношению к множествам реальных операций действий. В частности, ИЛИ мысленных ИЛИ принципы Эйнштейна относительности Галилея И являются фактически геометрическими принципами инвариантности (симметрии).

Кроме геометрических принципов инвариантности важную роль играют динамические принципы инвариантности, которые используются при исследовании различных типов взаимодействий в квантовых системах.

Литература

1. Роговцов, Н. Н. Свойства и принципы инвариантности. Приложение к решению задач математической физики. В 2-х ч.-Мн.: БГПА, 1999. –ч.1.-384 с.

УДК 517

ПРОГНОЗИРОВАНИЕ РАЗВИТИЯ ПАНДЕМИИ ПО СТАТИСТИЧЕСКИМ ДАННЫМ

Латышенко К.Е.

Научные руководители – Рудый А.Н., к.ф.-м.н., доцент, кафедра «Высшая математика»

Бань Л.В., старший преподаватель, кафедра «Высшая математика»

С начала времён одной из проблем человечества были болезни, поэтому прогнозирование хода болезни — один из инструментов борьбы с недугом.

В данной статье мы рассмотрим стохастическую модель распределения инфекции.

Для удобства понимания обычно множество в какой-то рассматриваемой местности представляют как урну с шариками. Допустим, что в урне 2 вида шариков: белые и чёрные. Для нашего случая белые — не инфицированные, а черные — инфицированные. Сама суть прогнозирования: понять, что попадётся, если взять из урны шарик. Чёрный или белый?

Для примера рассмотрим статистические данные об инфицировании COVID-19 во Франции в период первой недели мая 2020 года.

Таблица 1 Статистика за первую неделю августа 2020

01.05.2020	520
02.05.2020	791
03.05.2020	250
04.05.2020	518
05.05.2020	1062
06.05.2020	4129
07.05.2020	622

По статистике видно, что 6 мая был скачок инфицирования, поэтому для аппроксимации графика по точкам или же создания ретроспективного прогноза, надо учесть такой скачок.

Для аппроксимации рассмотрим функцию:

$$f(x) = \frac{1}{a * (x - 6.4)^2}$$

Найдём коэффициент аметодом наименьших квадратов и найдём среднее квадратичное отклонение и коэффициент детерминации для данного графика:

$$Q = 637.389$$

 $R^2 = 0.811$

Коэффициент детерминации (R^2) равен той доле разброса результатов наблюдений, относительно горизонтальной прямой $f=f_{\text{срелнее}}$, которая объясняется выборочной регрессией. Числа приемлемы, значит график нам подходит:

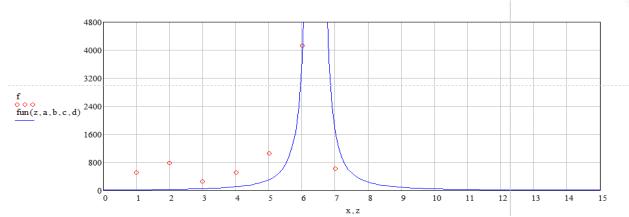


Рис. 1. График ретроспективного прогноза

Сгладим случайные отклонения, используя локально-медианный метод, для аппроксимации на всём диапазоне возьмём функцию:

$$f(x) = a * e^{\frac{-(x-6.4)^2}{b^2}}$$

Найдём коэффициенты и получим такие графики:

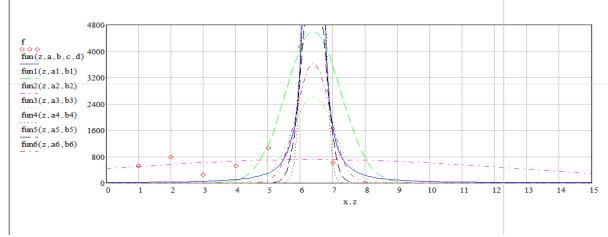


Рис. 2. График с оценками подмножеств

Данные кривые показывают прогнозируемую область, где может быть следующие числа инфицирования. Из этих кривых возьмём по локальномедианному методу среднюю кривую, которая является наиболее вероятной. Подкорректируем график, выделим верхние и нижние кривые, сравним прогноз со статистикой:

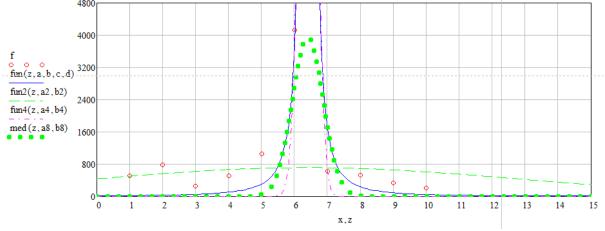


Рис. 3. График со средней кривой и поверка прогноза по статистике Как видно из графика в 8-10 дни число шло по траектории нашего прогноза, то есть прогноз достоверный, если не случится непредвиденное внезапное событие.

Литература

1. Харин, Ю. С., Волошко, В. А., Дернакова, О. В., Малюгин, В. И., & Харин, А. Ю. (2020). Статистическое прогнозирование динамики эпидемиологических показателей заболеваемости COVID-19 в Республике

Беларусь. Журнал Белорусского государственного университета. Математика. Информатика, 3, 36-50.

2. Чигарев АВ, Журавков МА, Чигарев ВА. Детерминированные и стохастические модели распространения инфекции и тестирование в изолированном контингенте. Журнал Белорусского государственного университета. Математика. Информатика. 2021;

УДК 3:57-67.

АНАЛИЗ СТАТИСТИЧЕСКИХ ДАННЫХ ОСНОВНЫХ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ ЛЭП 6–10 КВ

Сташевский А.А.

Научные руководители— канд. физ.-мат. н., доцент Рудый А. Н., канд. физ.- мат. н., доцент Лебедева Г.И.

Для контроля надежности электроснабжения потребителей показателях энергосистема должна сведения об основных иметь надежности всех элементов сети электроснабжения потребителей. С этой целью были проанализированы данные об аварийных отключениях в сетях 6-0 кВ РУП «Гомельэнерго». Основными показателями надежности ремонтируемых изделий, к которым относятся линии электропередачи, являются параметр потока отказов и среднее время восстановления. Параметр потока отказов характеризует частоту отказов и равен среднему количеству отказов ремонтируемого изделия в единицу времени. Время восстановления (средняя продолжительность отключения) – среднее время вынужденного простоя, необходимого для установления и устранения одного отказа. По этим двум показателям оценивался уровень надежности сетей 6-10 кВ РУП «Гомельэнерго». В расчет принимались только устойчивые аварийные отключения в сетях.

На рис.1 представлен график количества аварийных отключений за 8 лет, который был построен по статистическим данным посредством аппроксимации, так же был построен прогноз по локально-медианному методу.