во Белоруссии. Минск, 1965. З. Соломония О.Г. Основы проектирования оптимальной ирригационной системы методами математического программирования. Автореф. докт. дис. — М., 1968. 4. Т р о ф и м о в В.В. К вопросу определения оросительной способности незарегулированных рек. — Гидротехника и мелиорация, 1952, № 5. 5. Чернявский В.С. Некоторые задачи оптимизации ирригационных систем. Автореф. канд. дис. - М., 1969. 6. Ш а в в а К.И. Определение оптимальных вариантов водохозяйственных объектов и рациональных схем использования водных ресурсов. — Фрунзе, 1972. 7. Богаченко И.В. Методические вопросы взаимосвязи показателей сравнительной и абсолютной эффективности при оптимизации технико-экономических решений в гидростроительстве. — Тр. координац. совещ. по гидротехнике. Л., 1974, вып. 88. 8. Инструкция (методика) по определению экономической эффективности капитальных вложений в орошение и осущение земель и обводнение пастбиш. — 1972. 9. Коваленко Б.Г., Меренков В.З., Завгородний В.М. К созданию экономико-математической модели оросительной системы.— Тр. КиргНИИВХ, Фрунзе, 1972, вып. 28, 10. Методические указания по определению экономической эффективности капитальных вложений в орошение земель в нечерноземной зоне. - Минск, 1974. 11. ХалбаеваР.А. Совершенствование планирования водопользования и водораспределения.-Ташкент, 1975. 12. Меренков В.З., Коваленко Б.Г. Расчеты водораспределения и оперативного управления оросительной системой. — Тр. КиргНИИВХ. Фрунзе, 1972, вып. 28.13. Шишокин С.А. К расчету дефицита незарегулированного стока и площади неполитых земель. -В сб. :Мелиорация, гидротехника и водоснабжение.-Горки, 1975, вып. 3.14. Голченко М.Г., Стельмах Е.А. Методические рекомендации по определению расчетной обеспеченности орошения в Белоруссии. - Горки, 1978. 15. Инструкция по проектированию лиманного орошения. ВСН ІІ-24-75.—М., 1975.

УДК 551.48

Г.Н. Молчан, А.В. Клебанов

ОПРЕДЕЛЕНИЕ РАСЧЕТНОЙ ПРОДОЛЖИТЕЛЬНОСТИ ВЕСЕННЕГО ПОЛОВОДЬЯ РЕК ПОЛЕСЬЯ

Согласно действующим нормам [1,2], расчетные гидрографы половодий строятся по равнообеспеченным значениям объемов и максимальных расходов. Продолжительность половодья, соответствующая этим гидрографам, является основным элементом весеннего стока при его регулировании с целью обеспечения уровенного режима в водоприемнике, определяющего площадь и длительность затопления и подтопления земель. Поэтому возникает задача нахождения расчетной продолжительности весеннего половодья дифференцированно, в зависимости от различной водности иссны, т.е. от сочетания максимального расхода Q и слоя стока h. Для рек равнинных районов, изученных и не изученных в гидрологическом отношении, можно использовать предлагаемый в данной работе метод, апробированный на 5 речных водосборах, расположенных на левобережье р. При-

пять в Белорусском Полесье, по которым установлено, что мелиоративные мероприятия не влияют на режим весеннего половодья.

Максимальные расходы воды, слои стока и продолжительность половодья (по годам) приняты по данным Гидрометслужбы БССР [3, 4, 5].

Границы половодья устанавливались по гидрографам стока в соответствии с [6]. За начало половодья принимался первый день со значительным увеличением расхода воды, а за окончание—день в конце кривой спада половодья, когда интенсивность спада уже резко снизилась. Объем весеннего половодья был принят суммарным, включая поверхностный и грунтовый сток.

Для сглаживания и экстраполяции эмпирических кривых обеспеченности максимальных расходов и слоя стока за половодье применены кривые трехпараметрического гамма-распределения, параметры которых установлены непосредственно по имеющимся рядам наблюдений, согласно [1], и сведены в табл. 1.

При статистическом анализе многолетних колебаний максимальных расходов половодий некоторые члены были исключены, как резко выделяющиеся согласно параметрическому критерию. Как указано в [7], наступление экстремных значений характеристик стока может явиться следствием особых гидрометеорологических процессов, способствующих появлению вариантов малой вероятности (нерепрезентативных для данной выборки) или генетически не совместимых с остальными членами ряда.

Продолжительность весеннего половодья рек (Т в сутках) может быть выражена следующей функциональной зависимостью:

$$T = -\frac{h}{86,4} \frac{F}{Q} - \gamma , \qquad (1)$$

где h — слой стока, мм; F — площадь водосбора, км 2 ; Q — максимальный среднесуточный расход, м 3 /с; γ — коэффициент полноты формы гидрографа, принимаемый в качестве одной из характеристик формы гидрографа и равный отношению Q к среднему расходу за период половодья

$$\overline{Q} \left(\gamma = -\frac{Q}{\overline{Q}} \right) [7].$$

Исследованиями установлено, что величина коэффициента γ зависит от водности весны и с достаточной для практических расчетов точностью аппроксимируется уравнением:

$$\gamma = a + b \cdot Q + ch, \qquad (2)$$

где а, b, с — постоянные коэффициенты для данного водосбора.

Подставив (2) в (1), получаем формулу для определения продолжительности весеннего половодья для каждого конкретного года:

$$T = \frac{h \cdot F}{86,4 \cdot Q} (a + b \cdot Q + c \cdot h).$$
 (3)

Т а б л. 1. Максимальные среднесуточные расходы воды и слои стока весеннего половодья рек

Река — пункт	Площадь	Период наб	людений	4		$C_{\mathbf{v}}$	C _S
	водосбо- ра,км ²	годы	число лет	поло- водья	Q _{, м³/с h, мм}	,	C _v
Р. Бобрик-	1450	1925-1933,	44	Q	35,0	0,54	1,0
с. Парохонск		1940-1941 1945-1977	43	h	66,0	0,47	1,0
Р. Птичь —	8770	1895-1917,	, 71	Q	257	0,58	2,0
с. Лучицы		1926-1941,	, 70	h	85	0,41	1,0
		1945-1976					
Р. Ясельда —	916	1928-1933	, 39	Q	33,1	0,60	2,0
г . Береза		1941,1945- 1977	•	h	83	0,46	1,5
P. Opecca -	520	1926-1939	, 44	Q	21,9	0,58	2,0
с. Верхутин	o	1947-1960	,	h	73	0,45	1,0
		1962-1977					
P. Opecca -	3580	1926-1941	, 48	Q	81,3	0,62	2,0
с. Андреевка		1945-1976		h	65	0,48	1,5

Табл. 2. Значение коэффициентов а, b, c зависимости (2)

Река — пункт	Число лет наблюдений, вошедших в расчет	a	b-10 ²	c-10 ²	Коэффи- циент множест- венной корреля- ции	К _д	$ \delta_{\mathrm{T}} $,%
Р. Бобрик — с. Парохонск	42	1,80	4,230	-1,163	0,78	12,8	13,5
Р. Птичь— с. Лучицы	69	1,63	0,401	-0,222	0,79	17,3	14,8
Р. Ясельда— г. Береза	38	2,26	5,020	-1,310	0,78	12,1	15,2
Р. Оресса — с. Верхутино	44	2,18	5,230	-0,915	0,91	34,7	11,1
Р. Оресса— с. Андреевка	48	1,42	0,700	0,208	0,74	11,2	15,1

В табл. 2 приведены коэффициенты a, b, c зависимости (2), вычисленные методом наименьших квадратов, коэффициенты корреляции, а также средние относительные ошибки / δ_T / (в процентах) в определении продолжительности половодий по (3) по сравнению с наблюдавшимися данными конкретных лет.

Оценку достоверности коэффициента корреляции проведем с помощью коэффициента достоверности $K_{\underline{\eta}}$, равного отношению коэффициента корреляции к его среднему квадратическому отклонению:

$$K_{\pi} = \frac{/r/\sqrt{n-1}}{1-r^2}$$
 , (4)

где /r/- абсолютная величина коэффициента корреляции; n- число членов ряда.

В гидрологических расчетах при $K_{\rm д}>3$ значение коэффициента корреляции считается достоверным; $3>K_{\rm д}>1$ — имеется тенденция связи коррелируемых величин; $K_{\rm д}<1$ — связь отсутствует [8]. Из таблицы следует, что для всех расчетных случаев $K_{\rm д}>3$, и, следовательно, наше утверждение о найденной с помощью коэффициента корреляции тесноте связи достоверно.

Следует отметить, что при определении продолжительности весеннего периода в подвижных границах установление конца весны представляет определенные трудности (часто в это время появляются новые подъемы

Табл. 3. Расчетная продолжительность весеннего половодья рек

Река — пункт	Элемент	Обеспеченность Q и h, %						
	половодья	0,5	1	5	10	25		
Р. Бобрик — ст. Па-	γ	3,81	3,68	3,32	3,12	2,83		
рохонск	T	110	107	97	93	84		
Р. Птичь — с. Лу-	γ	4,42	4,14	3,48	3,17	2,73		
чицы	T	104	1 02	95	93	89		
Р. Ясельда - г. Бе-	γ	4,91	4,58	3,83	3,48	3.05		
реза	T	100	96	87	84	79		
P. Opecca - c. Bepxy-	γ	4,20	3,96	3,40	3,13	2 ,81		
тино	Т	62	61	58	57	56		
Р. Оресса — с. Андре-	γ	3,64	3,43	2,92	2,69	2,34		
евка	T	93	90	83	80	76		

дождевого происхождения), из-за которых невозможно избежать элемента субъективности. Все это в конечном счете ведет к ослаблению связи (2) и снижению точности расчета продолжительности половодья по (3). Поэтому фактические значения $|\delta_{\rm T}|$ могут быть меньше приведенных в табл. 2.

В табл. 3 даны вычисленные по (2) и (3) коэффициенты γ и продолжительность весенних половодий с равнообеспеченными значениями максимальных расходов Q и слоев стока h.

Как следует из табл. 3, с уменьшением обеспеченности коэффициенты полноты формы гидрографа и продолжительность весеннего половодья увеличиваются. Возрастание коэффициента γ свидетельствует об увеличении крутизны (неравномерности) гидрографа, и наоборот — уменьшение γ указывает на его распластывание.

Для не изученных в гидрологическом отношении рек расчетная продолжительность половодья, соответствующая заданной обеспеченности Q и h, определяется по (1).

Значение расчетного коэффициента полноты формы гидрографа (γ_p) следует принимать по ближайшей изученной в гидрологическом отношении реке-аналогу $(\gamma_p = \gamma_a)$ [1,9].

В заключение необходимо подчеркнуть, что в настоящий момент в научной литературе многими исследователями приводятся формулы для определения только средней многолетней продолжительности весеннего половодья [10, 11, 12]. Полученная нами зависимость (3) позволяет дифференцированно, в зависимости от различной водности весны, т.е. от сочетания максимального расхода Q и слоя стока h, рассчитывать искомую продолжительность T.

Литература

1. Руководство по определению расчетных гидрологических характеристик. ГУГМС. — Л., 1973. 2. Указания по определению расчетных гидрологических характеристик (СН 435-72). - Л,. 1972. 3. Гидрологические ежегодники. Бассейн Черного моря. — Л., 1933—1975, т. 2, вып. 2 и 3. 4. Ресурсы поверхностных вод СССР. Основные гидрологические характеристики. Л., 1966, 1974. Т. 5. Белоруссия и Верхнее Преднепровье. 5. Там же, ч. І. — Л., 1966. 6. Методические рекомендации к составлению справочника по водным ресурсам СССР. – Л., 1962. Вып. 7. ч. І. Половодье. 7. Артемьева Н.П., ЛившицИ.М. Применение статистических критериев для исключения резко выделяющихся членов гидрологических рядов. — В сб.: Водное хозяйство Белоруссии. Минск, 1972, вып. 2. 8. И в а н о в А.Н., Неговская Т.А. Гидрология и регулирование стока. — М., 1970. 9. Шебеко В.Ф., Брагилевская Э.А. Расчетные гидрографы весеннего половодья рек-водоприемников. — В сб.: Мелиорация переувлажненных чемель. Тр. БелНИИМиВХ. — Минск, 1976, Т. XXIV. 10. Боголю бов С.Н. Методика проектирования гидрографов снегового половодья. Тр . ІІИУ ГУГМС. — Л., 1946. Сер. IV, вып. 29. 11. Огиевский А.В. Гидрология суши. — М., 1951. 12. Соколовский Д.Л. Речной сток. — Л., 1968.