Табл. 2. Результаты оптимизации

Параметр	Гидравлический демпфер	Пружинный демпфер
Циаметр цилиндра, мм	60	70
Давление воздуха, МПа	0,6	0,65
Коэффициент демпфирования, Н. с/м	4000	
Проходное сечение трубопровода μf , м ²	8.10-5	8 ·10 ⁻⁵
Преднатяг пружины, Н		800
Жесткость пружины, Н/м	_	4,5 • 10 ⁴
Время включения передачи, с	0,62	0,57
Коэффициент динамичности	1	1,08

Таким образом, в качестве управляемых параметров принимаем коэффициент демпфирования для гидравлического демпфера и μf , для пружинного — силу предварительного сжатия и жесткость демпфирующей пружины, а также μf . В обоих случаях оптимизация должна проводиться для нескольких значений диаметров цилиндров.

Для оптимизации применялся метод стохастической аппроксимации из работы [2]. Результаты оптимизации для системы управления коробки передач ЯМЗ-201 приведены в табл. 2. Оптимизация проводилась на ЭВМ типа IBM PC/XT.

СПИСОК ЛИТЕРАТУРЫ

1. К у ц е в о л о в В.А. Выбор параметров исполнительного механизма системы автоматизированного управления синхронизированной коробкой передач // Конструирование и эксплуатация автомобилей и тракторов. 1987. Вып. 2. 2. Руктешель О.С. Анализ и синтез систем автоматического управления переключением передач автотранспортных средств: Дис. ... д-р техн. наук. Мн., 1987.

УДК 629.114.2

А.П. СТЕЦКО, А.И. СКУРТУЛ, канд. техн. наук (БПИ)

НАГРУЖЕННОСТЬ МУФТЫ СЦЕПЛЕНИЯ ТРАКТОРА КЛАССА 1,4 ПРИ РАБОТЕ С ФРОНТАЛЬНЫМ ПОГРУЗЧИКОМ

Универсально-пропашной колесный трактор класса 1,4 наряду с транспортировкой грузов и сельскохозяйственными операциями может выполнять работу фронтального погрузчика. Как показывает практика эксплуатации, в этом случае долговечность пар трения муфты сцепления (МС) трактора заметно снижается.

 $Taбл.\ 1.$ Средние значения параметров буксования МС трактора класса 1,4 при работе с фронтальным погрузчиком ДЗ-133

Максимальный момент на силовом валу, Н•м	Максимальная мощность трения, кВт	Работа буксова- ния, кДж	Время буксова- ния, с	Максимальная поверхностная температура, ОС	Выполня емая операция	
149*	13,84	13,1	2,38	70		
128,5	13,44	11,82	2,45	61	Подъезд к перемещае- мому грунту	
359,2	31,73	52,98	4,96	188	II-6	
260,4	19,23	23,56	3,06	119	Набор грунта	
236,3	24,23	36,68	3,63	122		
160,7	17,8	22,83	3,47	101	Отъезд задним ходом	
226,9	12,38	9,24	1,17	73	_	
146,6	10,78	7,64	1,74	65	Подъезд к месту разгрузки	
216,8	22,38	41,08	4,37	113		
137,8	13,53	24,96	4,37	67	Отъезд задним ходом в исходном положени	

^{*}Числитель — третья передача III диапазона при движении вперед, третья передача II диапазона заднего хода при движении назад; знаменатель — первая задача III диапазона при движении вперед, первая передача II диапазона заднего хода при движении назад.

Известно, что долговечность пар трения МС определяется энергетической нагруженностью, оцениваемой работой и мощностью буксования МС, и ее темпе ратурным режимом. Поэтому для выявления причин снижения долговечности пар трения при работе трактора с фронтальным погрузчиком необходимо исследовать динамическую и тепловую нагруженность муфты на указанных работах. С этой целью трактор класса 1,4, оснащенный двухдисковой сухой МС, был оборудован агрегатом ДЗ-133 производства ПО "Дормаш" (Минск) и подвергнут испытаниям, в ходе которых регистрировались следующие параметры: крутящий момент на силовом валу МС; частота вращения двигателя; частота вращения ведомых частей МС: поверхностная температура маховика двигателя; ход педали сцепления; время. При этом имитировалось выполнение технологического цикла "загрузка разгрузка ковша", который состоит из следующих операций: подъезд к перемещаемому грунту и набор его в ковш; отъезд задним ходом и подъезд с разворотом на 90° к месту выгрузки грунта из ковша; отъезд задним ходом с разворотом на 90° от места выгрузки в исходное положение. В качестве грунта при проведении испытаний использовалась песчано-соляная смесь.

Анализ результатов исследований показывает, что нагруженность МС трактора при работе с фронтальным погрузчиком характеризуется относительно невысоким уровнем мощности буксования. Так, данные, представленные в табл. 1, свидетельствуют о том, что максимальная мощность трения МС дости-

Табл. 2. Су ммарные значения параметров буксования МС за один цикл "загрузка – разгрузка ковша" при работе трактора класса 1,4 с фронтальным погрузчиком ДЗ-133

Диапазон, передача	суммарная работа буксования, кДж	Суммарное время буксования t_6 , с	Продолжительность цикла $t_{\rm ц}$, с	t ₆ /t _μ ,%
III-3 II 3.x 3	153,7	16,5	48,8	34
III –1 II 3.x.–1	97,1	16,6	46,5	36

гала примерно 32 кВт при работе на третьей передаче III диапазона. В то же время суммарная работа буксования МС (A_{Σ}) за цикл достигает больших значений. В частности, по данным табл. $2, A_{\Sigma}$ лежит в пределах $100 \ кДж$ при движении на первой передаче и 150 кДж – при движении на третьей передаче. При этом наиболее напряженный режим работы МС наблюдается при выполнении операций по набору грунта в ковш и перемещению его к месту выгрузки. На этих операциях работа буксования МС составляет примерно 50 % ее суммарного значения за весь щикл (см. табл. 1 и 2). При этом следует иметь в виду, что работа буксования МС на операциях по набору грунта зависит от его физико-механических свойств и может возрасти по сравнению с приведенными данными при перемещении таких грузов, как глина, навоз и т.д. Столь высокие значения суммарной работы трения МС объясняются большой длительностью буксования МС, достигающей примерно 17 с за щикл "загрузка-разгрузка ковша", что составляет около 35 % продолжительности всего цикла. Это обусловлено необходимостью корректировки скорости движения трактора путем существенного увеличения продолжительности включения МС по сравнению с рекомендуемыми его значениями, находящимися в пределах 0,8 ... 1,2 с [1].

Невысокие уровни мощности трения МС в процессе работы трактора с фронтальным погрузчиком обусловливают и небольшие поверхностные температуры пар трения МС, максимум которых наблюдается при выполнении операций по набору грунта в ковш и лежит в пределах 120...190 °С. Однако поверхностные температуры могут заметно возрасти при неточных действиях водителя в процессе выполнения отдельных операций цикла. Так, в одном из опытов была зарегистрирована поверхностная температура маховика 320 °С из-за неправильного выбора водителем режима работы.

Таким образом, основной причиной снижения долговечности пар трения МС при работе трактора с фронтальным погрузчиком является большая продолжительность буксования муфты при выполнении операций технологического цикла, что обусловливает высокий уровень ее энергозагруженности.

Как показывают результаты испытаний [2], в условиях длительных и час-

тых пробуксовок, благодаря принудительному теплоотводу от пар трения охлаждающей жидкостью, удовлетворительно работают мокрые МС. Вследствие этого одним из реальных путей повышения долговечности МС тракторов, эксплуатирующихся с фронтальными погрузчиками, является применение мокрых МС.

СПИСОК ЛИТЕРАТУРЫ

1. Пути повышения долговечности фрикционных устройств в машиностроении / А.И. Скуртул, П.А. Стецко, А.С. Поварехо и др. Мн., 1985. 2. Некоторые результаты экспериментальных исследований мокрой муфты сцепления энергонасыщенного трактора / А.И. Скуртул, А.П. Стецко, А.Б. Бруек, М.Е. Логиновский //Механизация и электрификация сел. хоз-ва. Мн., 1987. Вып. 30.

УДК 629.111-592.001.66

Г.И. МАМИТИ, канд. техн. наук (ММИ), А.Л. МАТЯШ (НПО "Центр")

РАСЧЕТ ТЕМПЕРАТУРНЫХ НАПРЯЖЕНИЙ ТОРМОЗНОГО БАРАБАНА АВТОМОБИЛЯ МЕТОЛОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ

Торможение движущегося автомобиля сопровождается нагревом тормозного барабана из-за фрикционного взаимодействия его поверхности с колодкой. В зависимости от массы автомобиля, его скорости и условий торможения меняется характер распределения температуры в различных частях барабана. Установлено, что на начальном этапе торможения температура барабана может достигать 200 °C, а ее градиент $\partial T/\partial r - 300$ °C/см [1, 2]. Во время торможения скорость автомобиля падает, а энергия нагрева уменьшается, что приводит к снижению температурного градиента. На заключительном этапе торможения температура барабана может составлять 300 °C [1].

Термическое состояние барабана близко к осесимметричному из-за малого разброса локальных температур в тангенциальном направлении.

Опыт использования метода конечных элементов (МКЭ) для расчета напряжений вращающегося барабана показал [3], что если нагрузки осесимметричны, можно использовать двухмерные осесимметричные конечные элементы. С учетом этого для анализа температурных напряжений тормозного барабана применялись двухмерные восьмиузловые элементы. Объектом исследования был выбран барабан автомобильного тормоза, размеры которого указаны на рис. 1. Механические параметры материала: модуль Юнга — $16 \cdot 10^4$ H/мм²; коэффициент Пуассона — 0,3; коэффициент температурного расширения — 0,13 · 10^{-4} 1/° С. Применительно к условиям торможения процесс нагрева и распространения температуры в барабане упрощенно можно разбить на 2 этапа. На первом этапе, согласно [2], температура контактной поверхности (рис. 2) равна 200 °C, а наружной охлаждаемой — 20 °C, на втором температура всей цилиндрической части равна 300 °C, в области закрешения барабана — 100 °C.