где $L_{\rm вып}$ — длина выпускного тракта от поршня до отражателя; c — скорость звука; $v_{\rm п}$ — скорость потока; σ — скачок фазы при отражении; $\psi_{\rm вып}$ — фаза выпуска; $a_{\rm 0}$ — угол поворота коленчатого вала двигателя за период времени от начала открытия выпускного окна до момента достижения максимального давления отработавших газов; n — частота вращения коленчатого вала двигателя.

Из приведенных на рис. 2, 3 характеристик видно, что протекание кривых эффективной мощности двигателей несколько улучщилось, а максимальная их мощность увеличилась на 3...4 %. Расчетная длина выпускного тракта $L_{\rm вып}$, полученная по формуле (1), не требует дополнительной экспериментальной корректировки и обеспечивает настройку выпускной системы в обоих случаях на необходимый скоростной режим работы. Кроме того, рассмотренный отражатель волны способствует уменьшению уровней звукового давления высокочастотных составляющих спектра шума процесса выпуска до 5...6 дБ.

ЛИТЕРАТУРА

1. Круглик В.М., Разумовский М.А. Выбор параметров и экспериментальные исследования глушителей шума процесса выпуска легких мотоциклов. – Мотовелопромышленность: Экспресс-инф., М., 1982, № 6, с. 5–9. 2. Разумовский М.А. Прогнозирование шумовых характеристик поршневых двигателей. – Минск, 1981. – 38 с. 3. Круглик В.М. К вопросу акустической настройки выпускной системы двухтактных мотоциклетных двигателей. – Минск, 1981. 6. с. Рукопись деп. в БелНИИНТИ 29.04.81, № 278-81.

УДК 629.114.4

Н.Ф. МЕТЛЮК, д-р техн.наук, С.Б. ТРИБУХОВСКИЙ (БПИ)

ДИНАМИЧЕСКИЙ РАСЧЕТ ГИДРАВЛИЧЕСКОГО ТОРМОЗНОГО ПРИВОДА НА ОСНОВЕ МОДЕЛИ С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ

Насосно-аккумуляторный гидравлический тормозной привод автомобилей и автопоездов семейства БелАЗ имеет ряд особенностей, определяющих во многом условия работы и протекающие в нем процессы. К ним относятся значительная протяженность магистралей (до 20 м), высокие средние скорости течения жидкости (10...15 м/с), широкий диапазон рабочих давлений (0...12 МПа в колесных тормозных цилиндрах), нелинейные характеристики внешних нагрузок, наличие трения, зон нечувствительности, зазоров и т.д.

Теоретические исследования тормозного гидропривода, упрощенная динамическая схема которого представлена на рис. 1, с учетом отмеченных особенностей могут быть проведены на математических моделях, описывающих неустановившееся движение жидкости, в виде систем с распределенными параметрами. Учитывая, что длина трубопроводов во много раз больше их диаметра, представляется возможным ограничиться рассмотрением движения одномерного потока жидкости, описываемого уравнениями в частных производных вида [1,2]:

Рис. 1. Расчетная динамическая схема гидроцепи управления тормозными механизмами

$$\frac{\partial p}{\partial x} = -\rho \left(\frac{\partial v}{\partial t} + 2 \xi v \right); \tag{1}$$

$$\frac{\partial p}{\partial t} = -E_c \frac{\partial v}{\partial x} , \qquad (2)$$

где p и v — давление и скорость жидкости; t — время; x — координата, отсчитываемая вдоль оси магистрали; ρ и E_c — соответственно плотность и адиабатический модуль объемной упругости жидкости; ξ — коэффициент гидравлического сопротивления магистрали.

Начальные условия (при t = 0), граничные условия (при t > 0), соотношения скоростей и давлений на границах участков гидроцепи, закон перемещения h(t) впускного клапана секции тормозного крана, изменение расхода жидкости через тормозной кран, силовая характеристика тормозного механизма записываются следующим образом:

$$p_{k} = \begin{cases} p_{\max} & \operatorname{при} 0 \leq x \leq \sum_{k=1}^{k} l_{k}; \\ 2 & 4 \end{cases}$$
(3)

$$\begin{bmatrix}
p_{a} & \operatorname{при} \Sigma \\
 & l_{k} \leq x \leq \sum_{k=1}^{k} l_{k};
\end{bmatrix}$$
(4)

$$v_{i} = 0 \operatorname{при} \ 0 \le x \le \sum_{k=1}^{4} l_{k};$$

$$\dot{v}_{a\kappa} = ((p_{i} - p_{\Gamma}) A_{a\kappa} - k_{B1} v_{a\kappa} - F_{1} \operatorname{sign} v_{a\kappa} / m_{a\kappa}, i = 1; \quad (5)$$

$$\dot{v}_{\kappa,\mathbf{u}} = (p_i A_{\kappa,\mathbf{u}} - k_{\mathbf{B}2} v_{\kappa,\mathbf{u}} - F_2 \operatorname{sign} v_{\kappa,\mathbf{u}} - F_{\mathbf{T},\mathbf{M}}(y))/m_{\mathrm{np}},$$

$$i = \frac{\sum_{k=1}^{L} l_k}{\Delta x};$$
(6)

$$v_{i+1} = \begin{cases} v_{ak} & \text{при } x = 0; \\ \frac{A_{ak}}{A_{\text{тр}}} v_{i} & \text{при } x = l_{1}; \\ v_{i} & \text{при } x = \sum_{k=1}^{2} l_{k}; \\ \frac{A_{\text{тр}}}{A_{\text{K}.\text{II}}} v_{i} & \text{при } x = \sum_{k=1}^{3} l_{k}; \\ \frac{A_{\text{тр}}}{A_{\text{K}.\text{II}}} v_{i} & \text{при } x = \sum_{k=1}^{3} l_{k}; \\ v_{\text{K}.\text{II}} & \text{при } x = \sum_{k=1}^{3} l_{k}; \end{cases}$$
(7)

$$p_{i+1} = p_i - \Delta p_n \Pi p_M \begin{cases} x = l_1, n = 1; \\ x = \sum_{k=1}^{2} l_k, n = 2; \\ k = 1 \\ x' = \sum_{k=1}^{4} l_k, n = 3; \end{cases}$$
(8)

$$h(t) = \begin{cases} h_{\max} (t - t_0) / t_{\max} & \text{при } 0 \le t \le t_0; \\ n_{\max} & \text{при } t_0 < t < t_{\max} + t_0; \\ h_{\max} & \text{при } t \ge t_{\max} + t_0; \end{cases}$$
(9)

$$f_{\rm KI} = (d_{\rm III} + h(t) \sin \alpha) \cdot 0.5 \pi h(t) \sin (2\alpha);$$
(10)

$$Q_{\mathbf{T},\mathbf{K}} = \sqrt{2|p_i - p_{i+1}|/\rho}; \qquad (11)$$

$$E_{ci} = \frac{a \left(\frac{p_0}{p_i}\right)^{\frac{1}{n}} + (1-a) \sqrt{\frac{E_{a0} + A_a p_0}{E_{a0} + A_a p_i}}}{\frac{1}{p_i}}; \qquad (12)$$

$$\frac{a}{np_i} \left(\frac{p_0}{p_i}\right)^{\frac{1}{n}} + \frac{1-a}{E_{a0} + A_a p_i},$$

$$p_{ri} = p_{3} \left(\frac{V_{max}}{V_{max} - Y_{a\kappa} A_{a\kappa}} \right)^{n};$$
(13)

$$F_{\text{T.M}}(y) = \begin{cases} c_1 (\delta_{\kappa 0} + y_{\kappa}) & \text{при } 0 < y_{\kappa} \leq \delta_{\kappa}; \\ c_1 (\delta_{\kappa 0} + y_{\kappa}) + c_2 (y_{\kappa} - \delta_{\kappa}) & \text{при } y_{\kappa} > \delta_{\kappa}, \end{cases}$$
(14)

где p_{\max} – максимальное давление в пневмогидроаккумуляторе (ПГА); p_a – атмосферное давление; l_k – длина k-го участка магистрали; A_{ak} , $A_{k,u}$, A_{pp} – площадь соответственно поршня ПГА, колесного цилиндра и проходного сечения трубопровода; Δp_n – потери давления в местных сопротивлениях на *n*-м участке гидроцепи; $k_{\rm B1}$, $\ddot{k}_{\rm B2}$ — коэффициенты вязкого трения поршней ПГА и колесных тормозных цилиндров; $p_{\rm T}$ — давление в газовой полости ПГА; $F_{\rm 1}$, F_2 – силы сухого трения поршней ПГА и колесных тормозных цилиндров; $m_{a\kappa}$, m_{np} — соответственно масса поршня и приведенная к поршню колесного цилиндра масса подвижных элементов; $F_{T.M}(y)$ — силовая характеристика колесного тормозного механизма; t_0 – момент времени, в который начинается перемещение впускного клапана; t_{\max} , h_{\max} – соответственно максимальное время перемещения и перемещение впускного клапана; $d_{_{\rm III}}$ – диаметр сферы впускного клапана; 2а – угол посадочного конуса впускного клапана; p_i, p_{i+1} – давление соответственно на входе и выходе тормозного крана; a – относительный объем газовой фазы; p_0 и p_i – соответственно начальное и текущее давление газожидкостной смеси; E_{a0} , A_a – параметры, зависящие от типа жидкости и ее температуры; n – показатель политропы; p_3 – начальное давление газа в ПГА; $V_{\rm max}$ – максимальный объем ПГА; $y_{\rm ak}$ – текущее значение перемещения поршня ПГА; c_1 и c_2 – приведенная к поршню колесного цилиндра жесткость соответственно стяжных пружин и тормозного механизма; $\delta_{\kappa 0}$ – предварительная деформация стяжных пружин; δ_{κ} – приведенный к оси тормозного цилиндра суммарный зазор между барабаном и колодками; у_к – текущее перемещение поршня колесного тормозного цилиндра.

К Система нелинейных уравнений (11)...(14) в частных производных не имеет аналитического решения даже при однородных краевых условиях. Численными методами можно получить искомые значения величин в некоторых точках области (t, x) (рис. 2), ограниченной граничными сечениями рассматриваемой гидроцепи ($x = 0, x = \sum_{\substack{k=1 \ k}} l_k$). Вместо непрерывной среды, состояние которой описывается функциями непрерывного аргумента, вводится ее разностный аналог и рассматриваются функции дискретных аргументов $f_i^j = f_i^j$ ($i \Delta x, j \Delta t$), определяемые в узлах сетки ($i \Delta x, j \Delta t$) и называемые сеточными функциями ($\Delta x, \Delta t$ – малые положительные приращения переменных $x \le t$).

В работах [3, 4] показано, насколько важны выбор шага сетки и построение сеточной области, определяющих точность решения задачи. Кроме того, погрешности, вносимые в процессе решения разностных уравнений, не должны приводить к большому искажению результата, т.е. разностные схемы должны

Рис. 2. К определению расчетных величин методом сеток

Рис. 3. Динамические характеристики гидроцепи управления тормозными механизмами:

l – при длине трубопровода 5 м; 2 – 20 м;
 эксперимент; – – – по модели
 с распределенными параметрами; – • – по модели с сосредоточенными параметрами

быть устойчивыми. В зависимости от вида формулы для аппроксимации первой производной разностные схемы могут быть явные и неявные. Явная схема устойчива при условии $\Delta t / \Delta x^2 \le 0.5$. Неявная схема всегда устойчива.

Для решения уравнений (1)...(14) приемлемо использовать явную схему с пересчетом типа предиктор-корректор [1,3]:

$$\frac{f_{i+0,5}^{j+0,5} - 0,5 (f_{i+1}^{j} + f_{i}^{j})}{0.5\Delta t} + \frac{f_{i+1}^{j} - f_{i}^{j}}{\Delta x} = 0; \quad (15)$$

$$\frac{f_i^{j+1} - f_i^j}{\Delta t} + \frac{f_{i+0,5}^{j+0,5} - f_{i-0,5}^{j+0,5}}{\Delta x} = 0.$$
 (16)

На *j*-м временном слое производится определение значений функций для *j* + 0,5-го временного слоя по уравнению (15). Затем используется уравнение (16) и определяются значения функций для *j* + 1-го временного слоя.

На основании математической модели с распределенными параметрами и предложенной в работе [2] модели с сосредоточенными параметрами были разработаны программы расчета на ЭВМ динамических характеристик гидроцепи управления колесными тормозными механизмами.

Анализ результатов расчета и сравнение их с экспериментальными данными (рис. 3) показывают, что модель с сосредоточенными параметрами дает общую качественную картину низкочастотных колебаний в тормозном приводе. Время срабатывания привода при $l_{\rm Tp} = 5$ м, $A_{\rm Tp} = 0.13 \cdot 10^{-3}$ м² на 13,3 % меньше, а перерегулирование давления в колесных тормозных цилиндрах на 7,7 % больше соответствующих значений, полученных экспериментально. Для привода с параметрами магистрали $l_{\rm Tp} = 20$ м, $A_{\rm Tp} = 0.13 \cdot 10^{-3}$ м² время срабатывания на 23 % меньше, а перерегулирование давления на 12 % больше соответствующих экспериментальных значений. Время срабатывания привода, полученное по модели с распределенными параметрами, отличается от экспериментальных значений на 6,7 % при $l_{\rm TP} = 5$ м ($A_{\rm TP} = 0,137\cdot10^{-3}$ м²) и на 10 % при $l_{\rm TP} = 20$ м, перерегулирование давления в колесных тормозных цилиндрах – соответственно на 3,8 % при $l_{\rm TP} = 5$ м и на 3,4 % при $l_{\rm TP} = 20$ м. Кроме того, исследование привода по этой модели позволяет дать количественную оценку как низкочастотных, так и высокочастотных колебаний жидкости в гидроприводе.

Таким образом, предлагаемая методика динамического расчета гидравлического тормозного привода на основе математической модели с распределенными параметрами дает хорошую сходимость с результатами экспериментальных исследований и может применяться при исследовании гидравлических тормозных приводов с длиной магистралей свыше 10 м.

ЛИТЕРАТУРА

1. Венгерский Э.В., Морозов В.А., Усов Г.Л. Гидродинамика двухфазных потоков в системах питания энергетических установок. – М., 1982. – 128 с. 2. Метлюк Н.Ф., Автушко В.П. Динамика пневматических и гидравлических приводов автомобилей. – М., 1980. – 231 с. 3. Самарский А.А., Попов Ю.П. Разностные схемы газовой динамики. – М., 1975. – 352 с. 4. Инженерные расчеты на ЭВМ/Под ред. В.А. Троицкого. – Л., 1979. – 288 с.

УДК 629.113-585-52

О.С. РУКТЕШЕЛЬ, канд. техн.наук (БПИ)

АВТОМАТИЗАЦИЯ СИНТЕЗА ФУНКЦИОНАЛЬНОЙ СТРУКТУРЫ СИСТЕМЫ АВТОМАТИЧЕСКОГО ПЕРЕКЛЮЧЕНИЯ ПЕРЕДАЧ

Понятие структуры системы автоматического переключения передач (САПП) предполагает частичную упорядоченность ее элементов относительно друг друга как в смысле их размещения по физическим узлам и уровням, так и в смысле решаемых ими функциональных задач процесса управления, т.е. речь может идти как о композиционной, так и о функциональной структуре САПП [1].

Ниже формулируется частная задача синтеза функциональной структуры САПП, решение которой позволяет оценить правильность принимаемых на интуитивном уровне решений об общей структуре САПП, наметить перспективные пути решения общей задачи и выделить область наиболее целесообразных вариантов построения всей САПП.

Функциональная структура САПП определяется ее информационными параметрами [2]. Реализация информационного сигнала в общем случае осуществляется в цепи: чувствительный элемент – датчик – промежуточный преобразователь – канал связи – измеритель – функциональный преобразователь – устройство обработки сигнала – функциональный преобразователь – канал связи – исполнительный блок. Если для увеличения надежности САПП применяются двухканальные (дуплексные) системы, в которых содержатся два идентичных канала и предусматривается сравнение их выходов, или триплекс-