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The problem of finding all shortest paths between vertices in a graph (APSP) has real-life applications  
in planning, communication, economics and many other areas. APSP problem can be solved using various algo-
rithms, starting from Floyd-Warshall’s algorithm and ending with advanced, much faster blocked algorithms like 
Heterogeneous Blocked All-Pairs Shortest Path Algorithm designed to fully utilize underlying hardware resources 
and utilize inter-data relationships. In the paper, we propose a novel Blocked all-pairs Shortest Paths algorithm  
for Clustered Graphs (BSPCG) (in sequential and parallel forms) which utilizes the graph clustering information 
to significantly reduce the number of calculations by performing shortest paths search only though bridge verti-
ces between clusters. We performed a set of comparing experiments for BSPCG and standard Blocked All-Pairs 
Shortest Path (BFW) algorithm on four randomly generated graphs of 4800 and 9600 vertices with different cluster 
configurations to determine the efficiency of calculation of paths passing through bridge vertices. All experiments 
were executed on a computer with two Intel Xeon E5-2620v4 processors (8 cores, 16 hardware threads and shared  
20 MB L3 cache). In all the experiments the novel BSPCG algorithm outperformed the standard BFW algo-
rithm. In single-threaded scenarios, BSPCG outperformed BFW up to 4.6 times on graphs of 4800 vertices and  
up to 2.7 times on graphs of 9600 vertices. In the multi-threaded scenarios, BSPCG also outperformed BFW up to 
4.0 times on graphs of 4800 vertices and up to 2.7 times on graphs of 9600 vertices. The proposed algorithm can  
be used in scenarios where clustering information stays intact or slightly modified based on the changes in graph  
and can be reused for future calculation of all-pairs shortest paths in the graph. 

Keywords: shortest paths algorithm, blocked algorithm, graph clustering, single-thread application,  
multi-threaded application, speedup

Introduction

The problem of finding shortest paths between 
vertices in a graph has multiple real-life applications. 
It is used to solve mazes, optimize traffic networks, to 
improve task planning, etc [1–3]. The problem can be 
formulated as to find shortest paths originated from 
one source (Single Source Shortest Path – SSSP) and 
to find shortest paths between all-pairs of vertices (All 
Pairs Shortest Path – APSP). Dijkstra’s algorithm [4] 
is a classic solution to SSSP and Floyd-Warshall’s 
algorithm [5] is a classic solution to APSP. 

In context of the APSP problem, the Floyd-
Warshall’s algorithm demonstrate maximum efficiency 
when it is applied to dense or complete graphs and much 
less efficiency when it is applied to sparse graphs. The 
same rule applies to algorithm’s modifications, which 
are primarily focused on improving memory usage and 
effective parallelization [6–9].

In our recent research [10–12] we started to focus 
on applicability of a Blocked Floyd-Warshall algorithm 
(BFW) to sparse graphs and on utilization of additional 
information about the graph to reduce the calculation 
time and resource consumption. In this paper, we focus 
on extension of the recently proposed Blocked Shortest 
Paths algorithm [11] with Unequally Sized blocks 
(BSPUS) using information about graph clustering to 

significantly reduce the number of calculations on sparse 
graphs with weakly connected clusters.

APSP algorithms

Let a directed graph G consists of a set V of 
vertices (numbered 1…N) and a set E of edges with real 
edge-weights. A cost adjacency matrix D of size N×N 
represents G. It is initialized with weights of the edges  
in such a way, that element D[i, j] is the weight of the 
edge between vertices i and j. 

Floyd-Warshall’s (FW) algorithm [5] iterates over 
the cost adjacency matrix D and checks existence of a 
path from vertex i to vertex j through existence of paths 
from i to k and from k to j (Figure 1). The algorithm 
always iterates over all the vertices and doesn’t account 
for the density or structure of the graph.

Blocked Floyd-Warshall’s (BFW) algorithm [8] 
operates on a matrix of blocks B which is created by 
dividing a matrix D into M equally sized blocks of size L 
in such a way that M*L=N (Figure 2).

The outer loop of BFW has M iterations. Each  
of them performs (Figure 3): 

1. Calculation of “diagonal” block.
2. Calculation of “cross” blocks.
3. Calculation of “peripheral” blocks.
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Figure 1. Pseudocode of original Floyd-Warshall (FW) 
algorithm

Figure 2. Visualization of matrix D being split into matrix  
of blocks B

All calculations are performed by a single 
procedure which accepts three input blocks at a time. 
The procedure calculates the paths between all vertices 
represented by block B1 passing through the vertices 
represented by B2 and B3 (Figure 4). In scope of one 
iteration, calculations have the following effect:

● In case of diagonal block, the procedure accepts 
the single diagonal block as B1, B2 and B3. This results in 
calculation of all shortest paths between pairs of vertices 
associated with the diagonal block.

● In case of cross blocks, the procedure accepts 
the diagonal block as B3 (vertical) or B2 (horizontal) and 
the cross block as B1 and B2 or B1 and B3 respectively. 
This results in a calculation of all shortest paths between 
all vertices of horizontal and vertical blocks of cross 
through vertices of the diagonal block.

● In case of peripheral blocks, the procedure 
accepts one peripheral and two cross blocks (vertical and 
horizontal) as B1, B2 and B3 respectively. This results in 
calculation of all shortest paths between pairs of vertices 
of peripheral block through vertices of diagonal block.

It should be noted that in each iteration BFW 
calculates the shortest paths between all vertices through 
vertices of the diagonal block.

Blocked all-pairs Shortest Paths algorithm with 
Unequally Sized blocks (BSPUS) was proposed in [11]; 
it generalizes the idea of BFW for graphs divided into 
unequally sized subgraphs. It extends the capabilities of 
existing blocked APSP algorithms and allows to solve 
the APSP problem on graphs that are partitioned into 
weakly connected dense clusters. The algorithm operates 
on a matrix U of blocks, which is created by dividing 
matrix D into M unequal blocks of sizes S = {S1 … с}  
in such a way that S1 +…+ SM = 1. (Figure 5).

Figure 3. Visualization of two frist iterations of Blocked 
Floyd-Warshall (BFW) algorithm

Figure 4. Pseudocode of Blocked Floyd-Warshall (BFW) 
algorithm

Figure 5. Illustration of matrix D being split into matrix U  
of blocks with unequal sizes 

The block calculation procedure Figure 6 in 
BSPUS differs from those in BFW by considering the 
parameters such as height (the number of rows) and 
width (the number of columns) of blocks. 
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Figure 6. Pseudocodes of block calculation procedure  
in BSPUS

Analysis of algorithms. All presented algorithms 
have the same computational complexity – O(N 3) 
and space complexity – O(N 2). However, they have 
different performance and energy consumption 
characteristics [13–16]. BFW is more advanced than 
FW regarding both parameters because of the improved 
memory access pattern and spatial data locality. BFW 
also provides multiple opportunities for performance 
optimizations by using different calculation procedures 
for different blocks [7] and effective parallelization using 
blocks interdependencies [17]. 

In addition to benefits of BFW, the BSPUS 
provides an opportunity to adapt algorithms execution to 
the graph structure by splitting it into blocks based on the 
graph clusters [12]. In one of our previous works [10] we 
defined requirements for methods of graph clustering and 
demonstrated that existing, well-known graph clustering 
methods can fulfil these requirement given a sparse 
graph.

In this paper, we extend the application of graph 
clustering results to improve the methods of solving 
the all-pairs shortest path problem. We extend the 
BSPUS algorithm to a Blocked all-pairs Shortest Paths 
algorithm for Clustered Graphs (BSPCG), which uses 
the graph clustering information to reduce the number of 
calculations significantly regarding sparse graphs.

Blocked all-pairs Shortest Paths algorithm  
for Clustered Graphs

Figure 7 shows a small example graph G of 16 
vertices interconnected by 28 edges. Visually it is easy to 
spot (Figure 8) three highly interconnected clusters C1 , 
C2 and C3 where:

● C1 includes vertices 1, 5, 10, 11 and 13.
● C2 includes vertices 3, 4, 8, 9 and 15.
● C3 includes vertices 2, 6, 7, 12 and 16.
These clusters are interconnected by 4 bridge 

vertices – 3, 4 (from C2 ), 10 (from C1) and 16 (from C3), 
and 5 directed edges – 10 → 3, 4 → 10, 10 → 4, 4 → 16 
and 16 → 4.

Looking at Figure 8 it can be observed that if we 
calculate all shortest paths from vertex 4 to all vertices of 

cluster C1, then all these paths would lay straight through 
vertex 10 (which is a bridge vertex of C1 ). Absolutely 
the same is true, if we would like to calculate all shortest 
paths from any vertices of C2 or C3 to vertices of C1. 
It remains true, if we calculate all shortest paths from 
vertices 1, 5, 11 or 13 into vertices of C2 or C3. In context 
of the FW, BFW and BSPUS algorithms it means that 
when we calculate such paths we don’t need to iterate 
over all vertices of the graph, instead, we only need to 

Figure 7. Example graph G of 16 vertices and 28 edges Figure 8. Example graph G split into three clusters C1 (red), 
C2 (orange) and C3 (green) interconnected through 4 bridge 

vertices – 3, 4, 10 and 16 (in bold)
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iterate through cluster’s bridge vertices – in our case, 
vertex 10.

However, before calculating a path to or from the 
cluster through its bridge vertices we must first calculate 
all shortest paths within the cluster.

The BSPCG algorithm utilizes the opportunity 
to use unequally sized blocks (provided by BSPUS) and 
iterative mechanics of the BFW, specifically the part 
where in every iteration the diagonal block is calculated 
first, which results into calculations of all shortest paths 
between its vertices.

The algorithm we propose is as follows:
1. Represent a graph as cost-adjacency matrix 

(Figure 9a).

2. Rearrange its rows and columns to group 
clusters around matrix diagonal. Split the matrix into 
unequally sized blocks where clusters are diagonal 
blocks (Figure 9b).

3. Calculate vectors I of block relative indices of 
all bridge vertices for every diagonal block (Figure 10).

4. Calculate all-pairs shortest paths using BSPCG 
algorithm (Figure 11).

5. Rearrange rows and columns to return them to 
their original positions.

In step #2, the algorithm incorporates graph 
clusters into the matrix and makes it compatible with the 
iterative mechanics of the BFW and BSPUS algorithms 
(Figure 3).

а b

Figure 9. Representation of example graph G with cost-adjacency matrix:  
a) is original representations and b) is a cost-adjacency matrix where rows and colums are rearranged to group clusters across 

matrix diagonal, splitted into 9 unequally sized blocks (one diagonal block for each cluster)

In step #3, the algorithm transforms information 
about bridge vertices into the format compatible with the 
algorithm structure where k is not the vertex number in a 
graph but a block relative index of it.

Figure 10. Illustration of mapping diagonal block verticies (v) 
of graph G to their block relative indices (i) in index vector I 

In step #5, the algorithm reverses the changes 
made in step #2 and returns the structure of the matrix to 
its initial state.

Figure 11. Pseudocode of BSPCG algorithm with two  
calculation procedures – proc to calculate diagonal blocks and 

proc_bridges to calculate cross and peripheral blocks
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In terms of algorithmic complexity, BSPCG has 
the same space and worst-case time complexity as FW, 
BFW and BSPUS. However, it should be noticed that 
the number of computations in BSPCG depends on the 
number of bridge vertices between clusters and on the 
overall graph size. Therefore, in practical cases, the usage 
of BSPCG on sparse graphs can result in a significant 
speedup in computations.

Experiments

Environment. We implemented sequential and 
parallel versions of the BFW and BSPCG algorithms  
using C++ language. The parallel version was 
implemented using OpenMP v4.5. The source code was 
compiled by GNU GCC compiler v13.2.0 with auto-
vectorization enabled. 

Experiments were run on a computer with two 
Intel Xeon E5-2620v4 processors (8 cores, 16 hardware 
threads, L1 cache 32 KB, L2 cache 256 KB) with shared 
inclusive 20 MB L3 cache. 

Graphs. We generated four random connected 
sparse graphs with predefined cluster configurations 
(Table 1).

The sizes of clusters in each of the experimental 
graphs have been varied in a certain range, and the share 

of bridge vertices in the overall number of vertices was 
not high.

Table 1. Specification of experimental graphs that are 
randomly generated for a predefined number of clusters

Graph 1 2 3 4
Vertices 4800 4800 9600 9600
Edges 288245 153858 644198 326779

Clusters 20 41 40 80
Bridge vertices 567 620 3452 3550
Bridge edges 621 687 2374 2505

We intentionally generated pairs of graphs split 
into different number of clusters but with close number 
of bridge vertices to evaluate the influence of our above 
formulated assumption on the BSPCG complexity.

Configuration. In all experiments we set block 
size of BFW algorithm to 120×120. This size was found 
to give the best results on the selected experimental 
system [13]. In BSPCG the sizes of the blocks were 
derived from the sizes of the clusters.

Results. We performed a set of experiments, each 
repeated at least five times. The standard deviation of 
the running time has not exceeded the 0.8 % mark. All 
results for single- and multi-threaded implementations 
are presented in Table 2.

In the single-thread implementation, BSPCG 
outperforms BFW by 4.4 to 4.6 times on the graphs of 4800 
vertices and by 2.6 to 2.7 times on the graphs of 9600 vertices. 
In the multi-threaded implementation, BSPCG outperforms 
BFW by 3.2 to 4 times on the graphs of 4800 vertices and by 
2.4 to 2.7 times on the graphs of 9600 vertices. 

We can observe from the Table 2 that the execution 
time of BFW doesn’t depend on the number or clusters, 
nor the number of bridge vertices, nor the overall number 
of edges and, in general, isn’t affected by graph structure 
but only by the size of the graph. Regarding BSPCG, it 
is easy to see that the execution time depends on both the 
graph size and the bridge vertex count.

Analysis. One of the potential disadvantages  
of BSPCG  is the time required to retrieve graph  

clustering information. The potential impact of  
this depends on the algorithm used to calculate  
graph clustering information and can be nullified  
if such information exists prior to the execution.

The major advantage of the algorithm is its  
ability to reuse the same clustering information  
to recalculate shortest paths in the same graph but  
with different edge weights (a scenario for an 
optimi-zation problem). Besides reusing the same  
clustering information, it is also applicable in 
scenarios when incremental changes are made to the  
graph (eviction or addition of the edge) which can 
be reflected on the previously collected clustering 
information which then can be used to recalculate 
shortest paths. 

Graph 4800 9600 4800 9600

Clusters 20 40 40 80 20 40 40 80

Type Single Thread Multi-Threaded

BFW 38.1 38.4 305.4 305.1 3.2 3.2 25.1 25.1

BSPCG 8.2 8.7 110.5 115.6 0.8 1.0 9.1 10.4

Table 2. Experimental results of single and multi-threaded implementations of the BFW and BSPCG algorithms on 
4 experimental graphs of 4800 and 9600 vertices. Time in presented in seconds (s)
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Conclusion

In this paper we have presented a novel Blocked 
all-pairs Shortest Paths algorithm for Clustered Graphs 
(BSPCG) which can efficiently utilize information 
of graph clustering and significantly speedup  
the computation of all-pairs shortest paths in large 
sparse graphs. We implemented the BFW and  
BSPCG algorithms in single- and multi-threaded 
scenarios. We performed a set of experiments  

using four randomly generated sparse graphs of  
different sizes and different cluster configurations  
where the BSPCG  algorithm outperformed the BFW 
algorithm on all experimental graphs by 2.4 to 4.6 times  
in both scenarios. The BSPCG  algorithm opens a 
possibility for two potential use cases where clustering 
information is not recalculated each time before the 
calculation of shortest paths but instead is either 
maintained or slightly modified based on changes  
in the graph.
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КАРАСИК О.Н., ПРИХОЖИЙ А.А.

БЛОЧНЫЙ АЛГОРИТМ ПОИСКА КРАТЧАЙШИХ ПУТЕЙ МЕЖДУ ВСЕМИ 
ПАРАМИ ВЕРШИН В ГРАФАХ СО СЛАБО-СВЯЗАННЫМИ КЛАСТЕРАМИ

Белорусский национальный технический университет
г. Минск, Республика Беларусь

Задача поиска кратчайших путей между всеми парами вершин в графе (APSP) имеет применяется 
в планировании, коммуникациях, экономике и многих других сферах. На сегодняшний день существует ряд 
алгоритмов решения APSP задач, начиная с алгоритма Флойда-Уоршелла (Floyd-Warshall) и заканчивая более 
продвинутыми и быстрыми блочными алгоритмами (например, неоднородным блочным алгоритмом поиска 
кратчайших путей - Heterogeneous Blocked All-Pairs Shortest Paths), предназначенными для максимально 
эффективного использования вычислительных средств и зависимостей между данными, участвующими 
в вычислениях. В статье предлагается новый блочный алгоритм BSPCG поиска кратчайших путей в 
кластеризованных графах в однопоточном и многопоточном вариантах, который использует информацию о 
кластеризации для сокращения объема вычислений посредством поиска кратчайших путей, проходящих через 
граничные вершины кластеров. В статье проведена серия вычислительных экспериментов над стандартным 
блочным алгоритмом BFW и новым алгоритмом BSPCG с целью доказательства эффективности поиска 
кратчайших путей в случае использования граничных вершин кластеров. Эксперименты выполнялись 
с использованием графов размером 4800 и 9600 вершин с различными кластерными конфигурациями. 
Эксперименты проведены на компьютере с двумя процессорами Intel Xeon E5-2620v4 (каждый процессор 
включает 8 физических ядер и 16 аппаратных потоков, а также кэш L3 объемом 20 МБ). Во всех 
проведенных экспериментах новый алгоритм BSPCG превзошел стандартный алгоритм BFW в несколько 
раз. В однопоточных сценариях BSPCG продемонстрировал ускорение по сравнению с BFW до 4.6 раз на 
графах с 4800 вершинами и до 2.7 раз на графах с 9600 вершинами. В многопоточных сценариях BSPCG 
также продемонстрировал ускорение до 4 раз на графах с 4800 вершинами и до 2,7 раз на графах с 9600 
вершинами. Предложенный в статье алгоритм может быть использован в сценариях, где информация о 
кластеризации остается неизменной или изменяется незначительно и может быть повторно использована 
для множественных нахождений всех кратчайших путей в графе. 

Ключевые слова: поиск кратчайших путей на графе, блочный алгоритм, кластеризация графа, 
однопоточное приложение, многопоточное приложение, производительность

Karasik Oleg is a Technology Lead at ISsoft Solutions (part of Coherent Solutions) in Minsk, 
Belarus, and PhD in Technical Science. His research interests include parallel multithreaded ap-
plications and the parallelization for multicore and multiprocessor systems.

Карасик О.Н., ведущий инженер иностранного производственного унитарного 
предприятия «ИССОФТ СОЛЮШЕНЗ» (часть Coherent Solutions), г. Минск, Беларусь,  
к.т.н. (2019). В сферу его научных интересов входят параллельные многопоточные 
приложения и распараллеливание для многоядерных и многопроцессорных систем.

E-mail: karasik.oleg.nikolaevich@gmail.com

 

Anatoly Prihozhy is full professor at Computer and system software department of Belarus na-
tional technical university, Doctor of Science (1999) and Full Professor (2001). His research in-
terests include programming and hardware description languages, parallelizing compilers, and 
computer aided design techniques and tools for software and hardware at logic, high and system 
levels, and for incompletely specified logical systems. He has over 300 publications in Eastern 
and Western Europe, USA and Canada. Such worldwide publishers as IEEE, Springer, Kluwer 
Academic Publishers, World Scientific and others have published his works. 

А.А. Прихожий, профессор кафедры «Программное обеспечение информационных систем 
и технологий» Белорусского национального технического университета, д.т.н. (1999), 
диплом профессора (2001). В сферу его научных интересов входят языки программирования 
и описания аппаратуры, распараллеливающие компиляторы, методы и средства 
автоматизированного проектирования программных и аппаратных средств на логическом, 
высоком и системном уровнях, а также не полностью определенных логических систем. 
Имеет более 300 публикаций в Восточной и Западной Европе, США и Канаде. Его работы 
опубликованы в таких мировых издательствах, как IEEE, Springer, Kluwer Academic Pub-
lishers, World Scientific и других.

E-mail: prihozhy@bntu.by




