### УДК 629.114

## ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ НАГРУЗОЧНОГО УСТРОЙСТВА ФИЗИЧЕСКОЙ МОДЕЛИ ТРАКТОРА С ЭЛЕКТРОМЕХАНИЧЕСКОЙ ТРАНСМИССИЕЙ

## DETERMINATION OF PARAMETERS OF THE LOAD DEVICE OF THE PHYSICAL MODEL OF A TRACTOR WITH AN ELECTROMECHANICAL POWER TRAIN

Жданович Ч. И. 1, канд. техн. наук, доц., Калинин Н. В. 2, ст. науч. сотр.,

¹Белорусский национальный технический университет, г. Минск, Республика Беларусь

²Объединенный институт машиностроения НАН Беларуси, г. Минск, Республика Беларусь

Сh. Zhdanovich¹, Ph.D. in Eng., Ass. Prof., N. Kalinin², Senior Researcher,

¹Belarusian National Technical University, Minsk, Belarus

²Joint Institute of Mechanical Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus

Предложена методика определения параметров нагрузочного устройства, предполагаемого для использования в составе физической модели электромеханической трансмиссии трактора и включающего в себя коллекторную машину постоянного тока с независимым возбуждением.

A method is proposed for determining the parameters of a load device intended for use as part of a physical model of an electromechanical power train of a tractor and including the separately excited DC commutator machine.

**Ключевые слова:** асинхронный электродвигатель, генератор постоянного тока, коробка передач, момент, магнитный поток, передаточное отношение, сопротивление, ток, частота вращения, ЭДС.

**Keywords:** amperage, DC generator, EMF, gearbox, gear ratio, induction motor, magnetic flux, resistance, rotational speed, torque.

### ВВЕДЕНИЕ

В работе [1] предложена физическая модель электромеханической трансмиссии трактора BELARUS 3023, содержащая: физическую модель тягового асинхронного электродвигателя (МТАД), тягового асинхронного генератора, ДВС. Для МТАД необходимо нагрузочное устройство (НУ), создающее требуемый момент сопротивления на валу ТАД. Возьмем в качестве НУ коллекторную машину постоянного тока 4ПБМ160МГ04 мощностью 8 кВт с независимым возбуждением [2], работающую в генераторном режиме (далее будем называть ее ГПТ – генератор постоянного тока). В состав НУ также входит регулируемое сопротивление нагрузки  $R_{\rm II}$  (рис. 1), от значения которого зависит момент на валу ГПТ  $M_{\Gamma\Pi}$ , и могут входить звенья, обеспечивающие передаточное отношение между валом МТАД и ГПТ, поскольку МТАД должен работать в широком диапазоне частот  $f_1$  напряжения (а значит, и частота вращения ротора МТАД также будет изменяться в широких пределах). Определим, можно ли соединить валы ГПТ и МТАД напрямую или потребуется редуктор или даже коробка передач, а также ориентировочно определим диапазон значений сопротивлений в цепи нагрузки  $R_{\rm II}$ .

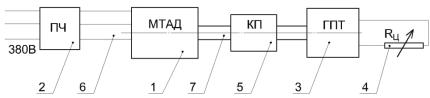



Рисунок  $1 - \Phi$ изическая модель электромеханической трансмиссии трактора (упрощенная):

1 – асинхронный электродвигатель; 2 – преобразователь частоты;
 3 – электрическая машина постоянного тока; 4 – изменяемое сопротивление нагрузки; 5 – коробка (коробки) передач; 6 – измерение электрических параметров;
 7 – измерение момента и оборотов

# ОПРЕДЕЛЕНИЕ ТРЕБУЕМЫХ ЗАВИСИМОСТЕЙ ДЛЯ РАСЧЕТА

Момент  $M_{\Gamma\Pi}$  на валу  $\Gamma\Pi T$  должен быть таким, чтобы обеспечить требуемое значение момента на валу  $MTAJ-M_{MTAJ}$ .

Момент  $M_{\Gamma\Pi}$  на валу  $\Gamma\Pi \Gamma$  с учетом передаточного отношения  $u_{\rm p}$  редуктора или включённой передачи коробки передач:

$$M_{\Gamma\Pi} = M_{\text{MTAJ}} \cdot u_{p} \cdot \eta_{p}, \qquad (1)$$

где  $\eta_p$  – КПД редуктора или коробки передач.

Электромагнитный момент генератора [3, с.378, (28.3)]:

$$M_{_{\mathcal{PM},\Gamma\Pi}} = M_{\Gamma\Pi} - M_0, \qquad (2)$$

где  $M_0$  – момент на валу генератора при работе на холостом ходу;

 $M_{\Gamma\Pi}$  – момент на валу генератора.

Таким образом, требуемый электромагнитный момент генератора:

$$M_{_{9M,\Gamma\Pi}} = M_{MTAJJ} \cdot u_{p} \cdot \eta_{p} - M_{0}$$
 (3)

Из формул [3, с. 345, (25.27)] и [3, с. 345, (25.26)] получим формулу для определения тока статора при известном электромагнитном моменте  $M_{\scriptscriptstyle 2\text{M},\Gamma\Pi}$ :

$$I_{\rm a,\Gamma\Pi} = \frac{M_{\rm \tiny 3M,\Gamma\Pi} \cdot \pi}{30 \cdot c \cdot \Phi} = \frac{M_{\rm \tiny 3M,\Gamma\Pi}}{9,55 \cdot c \cdot \Phi} \ . \tag{4}$$

Та же формула получится и по [4, с.411].

ЭДС электрической машины определяется по формуле [4, с.410, (10.4)]:

$$E_{\Gamma\Pi} = c \cdot \Phi \cdot n_{\Gamma\Pi} \,, \tag{5}$$

где  $n_{\Gamma\Pi}$  – частота вращения вала машины, об/мин;

 $\Phi$  – магнитный поток, Вб;

c – конструктивная постоянная [4, с.410].

Напряжение генератора [3, с.377, (28.1)], [4, с. 440, (10.34)]:

$$U_{\Gamma\Pi} = E_{\Gamma\Pi} - I_{a,\Gamma\Pi} \sum_{r} r , \qquad (6)$$

где  $\Sigma r$  – сумма сопротивлений всех участков цепи якоря.

Требуемое сопротивление нагрузки:

$$R_{\rm II} = \frac{U_{\Gamma\Pi}}{I_{\rm a,\Gamma\Pi}} = \frac{E_{\Gamma\Pi}}{I_{\rm a,\Gamma\Pi}} - \sum r ,$$

$$R_{\rm II} = \frac{9,55 \cdot \left(c \cdot \Phi\right)^2 \cdot n_{\Gamma\Pi}}{M_{\rm 2M,\Gamma\Pi}} - \sum r = \frac{30 \cdot \left(c \cdot \Phi\right)^2 \cdot n_{\Gamma\Pi}}{M_{\rm 2M,\Gamma\Pi} \cdot \pi} - \sum r$$
(7)

Частота вращения  $n_{\Gamma\Pi}$  определяется частотой вращения ротора МТАД  $n_{2,\text{МТАД}}$ :

$$n_{\Gamma\Pi} = n_{2,\text{MTAJ}} / u_{p} \tag{8}$$

Для расчета по формулам (2—7) необходимо знать  $M_0$  и  $\Sigma r$ , а также значения c и  $\Phi$  либо их произведение.

 $M_{\rm MTAД}$  и  $n_{2,{
m MTAД}}$  определяются для МТАД по зависимостям [5, 6], согласно методике [7]

## ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА

- 1. Определяем номинальное скольжение  $s_{\rm H}$ , если оно не задано. Берем диапазон частот  $f_{\rm I}$  напряжения для МТАД. Выбираем значения частот  $f_{\rm I,i}$  из этого диапазона, для которых будем проводить расчет. Определяем законы частотного регулирования (см. [7]).
- 2. Для каждого выбранного значения  $f_{1,i}$  по [5, 6, 7] определяем: задаваемое ПЧ напряжение для МТАД, критическое скольжение МТАД  $s_{\text{кр}(f),i}$ ,  $n_{2,\text{МТАД}}$  и  $M_{\text{МТАД}}$  при номинальном скольжении МТАД  $s_{\text{н}}$ ,  $n_{2,\text{МТАД}}$  и  $M_{\text{МТАД}}$  при  $s_{\text{кр}(f),i}$ .
- 3. Для полученных значений моментов и частот вращения МТАД для всех значений  $u_p$  определяем по (8) частоту вращения вала ГПТ  $n_{\Gamma\Pi}$ , по (1) определяем  $M_{\Gamma\Pi}$ , по (2) определяем  $M_{\text{эм,}\Gamma\Pi}$ .
- 4. Для полученных значений  $M_{{}_{{}^{9\rm M}\Gamma\Pi}}$  и  $n_{{}^{\Gamma\Pi}}$  определяем:  $I_{a,{}^{\Gamma\Pi}}$  по (4),  $E_{{}^{\Gamma\Pi}}$  по (5),  $U_{{}^{\Gamma\Pi}}$  по (6),  $R_{{}^{\Pi}}$  по (7).

#### РАСЧЕТ

Примем некоторые допущения: пренебрегаем  $M_0$  и  $\Sigma r$ , принимаем  $U_{\Gamma\Pi} \approx E_{\Gamma\Pi}$  и  $M_{\rm ЭМ, \Gamma\Pi} \approx M_{\Gamma\Pi}$ . Формула (1) для определения  $M_{\rm ЭМ, \Gamma\Pi}$  с учетом допущений:

$$M_{_{\rm ЭМ, \Gamma\Pi}} \approx M_{\rm MTAJI} \cdot u_{\rm p} \cdot \eta_{\rm p}$$
 (9)

Формула (7) для определения  $R_{\rm II}$  с учетом допущений:

$$R_{\rm II} \approx \frac{9.55 \cdot (c \cdot \Phi)^2 \cdot n_{\rm \Gamma II}}{M_{\rm PM, \Gamma II}} = \frac{30 \cdot (c \cdot \Phi)^2 \cdot n_{\rm \Gamma II}}{M_{\rm PM, \Gamma II} \cdot \pi} \tag{10}$$

Расчет будем вести без ослабления возбуждения, то есть при номинальном магнитном потоке  $\Phi_{\rm H}$  независимой обмотки возбуждения ГПТ.

Определим  $c \Phi_{\rm H}$  по данным для электрической машины 4ПБМ160МГ04 при работе в режиме двигателя. Формула (5) также справедлива и для работы машины в двигательном режиме [4, c.457, (10.44)], откуда:

$$c \cdot \Phi = E_{\Gamma\Pi} / n_{\Gamma\Pi}. \tag{11}$$

Если в формулу (11) подставить номинальное значение частоты вращения  $n_{\Gamma\Pi(H)}$ , номинальное значение ЭДС  $E_{\Gamma\Pi,H}$ , то и магнитный поток  $\Phi$  будет равен своему номинальному значению  $\Phi_H$ :

$$c \cdot \Phi_{\rm H} = E_{\Gamma\Pi \, \rm H} / n_{\Gamma\Pi(\rm H)} \tag{12}$$

Для электрической машины 4ПБМ160МГ04 при работе в двигательном режиме номинальное напряжение:  $U_{\Gamma\Pi(\pi),H}$ =220 В, номинальная частота вращения:  $n_{\Gamma\Pi(H)}$  = 3070 об/мин, напряжение на независимой обмотке возбуждения – 110 В; при этих параметрах будет  $c \cdot \Phi = c \cdot \Phi_{H}$ . Приняв  $E_{\Gamma\Pi,H} \approx U_{\Gamma\Pi(\pi),H}$ , получим по (12)  $c \cdot \Phi_{H} \approx 0.07166$ .

Возьмем в качестве МТАД асинхронный двигатель на 2,2 кВт с синхронной частотой вращения  $n_{1,\text{МТАД(H)}} = 1000$  об/мин при частоте напряжения 50  $\Gamma$ ц с тремя парами полюсов, аналогичный АИР100L6 [8]. Для него номинальная частота вращения ротора по каталогу:  $n_{2,\text{МТАД(H)}} = 940$ . Зная  $n_{1,\text{МТАД(H)}}$  и  $n_{2,\text{МТАД(H)}}$ , определим но-

минальное скольжение  $s_{\rm H}$  по [3, с. 137, (10.1)]. Параметры схемы Т-образной замещения определим расчетным путем, руководствуясь источниками [9, 10].

Диапазон частот  $f_1$  берем от 5 до 180 Гц. Номинальная частота для двигателя АИР100L6 — 50 Гц, поэтому принимаем  $f_{1,\mathrm{H}}=50$  Гц. Методика [7] также требует выбрать частоту  $f_{1,\mathrm{lim}}$ . Примем  $f_{1,\mathrm{lim}}=44$  Гц. Расчет  $s_{\mathrm{кр}(f)}$ ,  $M_{\mathrm{МТАД}}$  и  $n_{2,\mathrm{МТАД}}$  при  $s_{\mathrm{H}}$  и  $s_{\mathrm{кр}(f)}$  выполним по методике [5—7]. Для полученных значений  $M_{\mathrm{МТАД}}$  и  $n_{2,\mathrm{МТАД}}$  при  $s_{\mathrm{H}}$  и  $s_{\mathrm{кр}(f)}$  выполним расчет  $n_{\mathrm{ГП}}$  по (8),  $M_{\mathrm{эм},\mathrm{ГП}}$  по (9),  $E_{\mathrm{ГП}}$  по (5),  $I_{\mathrm{а},\mathrm{ГП}}$  по (4),  $R_{\mathrm{Ц}}$  по (10).

Расчет выполняем для всех  $u_{\rm p}$  коробки передач ЗиЛ 130, 131, 5301 [11, 12], включенной на повышение оборотов (выходной вал коробки соединен с валом МТАД, входной вал – с валом ГПТ), кроме передачи заднего хода.

Результаты расчета  $n_{\Gamma\Pi}$ ,  $E_{\Gamma\Pi}$ ,  $I_{a,\Gamma\Pi}$  для определенных значений  $f_1$  представим: в табл. 1- для  $s_{\kappa p(f)}$  (предельный режим), в табл. 2- для  $s_{\rm H}$  (номинальный режим работы МТАД). Поскольку расчетное значение критического скольжения для МТАД мощностью 2,2–4 кВт может быть достаточно большим [1], значения  $n_{2,{\rm MTA}}$ для одной и той же частоты  $f_1$  могут сильно различаться для  $s_{\rm H}$  и  $s_{\kappa p(f)}$ .

По паспортным данным, номинальный ток  $I_{\rm a,\Gamma\Pi}$  двигателя 4ПБМ160МГ04:  $I_{\rm a,\Gamma\Pi,H}=39,7$  А, напряжение: 220 В, максимальная частота вращения — 4000 об/мин. Согласно [4, с. 457, (10.43)], ЭДС коллекторной машины постоянного тока при работе в режиме двигателя будет немного меньше напряжения. Примем допустимое значение ЭДС в генераторном режиме равным напряжению в режиме двигателя, то есть 220 В.

В табл. 1, 2 подчеркнем волнистой линией значения ЭДС, превышающие 220 В, и подчеркнем прямой линией значения тока, превышающие номинальные. Зачеркнем значения  $n_{\Gamma\Pi} > 4000$  об/мин. Выделим полужирным шрифтом значения всех параметров для  $f_{1,i}$ , если при  $f_{1,i}$  требуемое скольжение МТАД достигается без превышения максимальных оборотов ГПТ ( $n_{\Gamma\Pi} \le 4000$  об/мин) и номинального тока при  $\Phi = \Phi_{\rm H}$  ( $I_{\rm a,\Gamma\Pi} \le 39$ ,7 A) и с допустимой ЭДС (30 В  $\le E_{\Gamma\Pi} \le 220$  В). Нижняя граница ЭДС взята ориентировочно: возможно, генератор может работать и при меньшей ЭДС, однако при оборотах, соответствующих  $E_{\Gamma\Pi} = 5$ ,5 В, 2,3 В гарантированно напряжения на генераторе не будет.

Расчет  $R_{\rm II}$  представим в табл. 3 для номинального и критического скольжения для каждого значения  $f_{\rm I}$ . Как и в таблицах 1, 2, подчеркнем волнистой линией значения  $R_{\rm II}$  при  $E_{\rm \Gamma II} > 220$  В, прямой линией – при  $I_{\rm a,\Gamma II} > 39,7$  А, выделим жирным значения  $R_{\rm II}$ , если соблюдаются сразу три условия:  $n_{\rm \Gamma II} \le 4000$  об/мин, 30 В  $\le E_{\rm \Gamma II} \le 220$  В и  $I_{\rm a,\Gamma II} \le 39,7$  А.

Если  $E_{\Gamma\Pi}>220~{\rm B}$ , то можно понизить значение  $E_{\Gamma\Pi}$ , ослабив магнитный поток шунтированием обмотки возбуждения. Соответственно, увеличится  $I_{\rm a,\Gamma\Pi}$  и уменьшится  $R_{\rm IL}$ . Если при  $\Phi=\Phi_{\rm H}$  и  $E_{\Gamma\Pi}<220~{\rm B}$  слишком большое значение  $I_{\rm a,\Gamma\Pi}$ , то уменьшить его можно только увеличением  $n_{\Gamma\Pi}$  путем уменьшения  $u_{\rm p}$ .

Как видно из табл. 1, для  $u_p = 1$  ток будет превышать 39,7 А при расчетном значении  $f_1 = 135$  Гц и ниже, а при  $f_1 = 35$ —75 Гц ток 39,7 А будет превышен более чем в два раза. Для  $u_p = 1$  при малых частотах  $f_1$  очень малые расчетные значения ЭДС. Получим ситуацию аналогичную той, которая возникает на подвижном составе при динамическом торможении, когда при малых скоростях движения обороты двигателя, работающего в режиме генератора, слишком малы, у него пропадает ЭДС [13, с. 93] и он не может создавать тормозной момент (останется только момент, обусловленный силами трения). Поэтому если соединить вал МТАД с валом ГПТ без коробки передач (аналогично  $u_p = 1$  с коробкой передач), то на низких частотах у ГПТ не будет ЭДС и, как следствие, момента на валу для нагрузки им МТАД, а в достаточно большом диапазоне частот должен быть превышен номинальный ток для обеспечения требуемого значения  $M_{\Gamma\Pi}$ .

Для  $u_{\rm p}=1$  / 6,45 = 0,155 при  $f_{\rm 1}=50$  Гц и выше  $n_{\rm \Gamma\Pi}$  превысит 4000 об/мин, а это недопустимо. Если вместо коробки использовать двухступенчатый редуктор с  $u_{\rm p}=1$  и  $u_{\rm p}=1$  / 6,45, то при  $f_{\rm 1}>50$  Гц нужно будет работать  $u_{\rm p}=1$  с более чем двукратным превышением тока в диапазоне 50–75 Гц. Если использовать двухступенчатый редуктор с  $u_{\rm p}>0$ ,155 (например,  $u_{\rm p}=1$  / 3,56 = 0,281) и  $u_{\rm p}=1$ , то при малых значениях  $f_{\rm 1}$  будет малая ЭДС (и может вообще пропасть). То есть двухступенчатого редуктора недостаточно: будет либо сильно превышен ток в определеном диапазоне частот  $f_{\rm 1}$  работы МТАД, либо будет слишком малая ЭДС.

Таблица 1 — Результаты расчета при  $s=s_{KD(f)}$ 

| Таоли | аолица 1 — Результаты расчета при $s=s_{\text{kD}(f)}$ |                 |                      |                 |                 |                      |                 |                 |                      |                  |                 |                      |                  |                 |                      |
|-------|--------------------------------------------------------|-----------------|----------------------|-----------------|-----------------|----------------------|-----------------|-----------------|----------------------|------------------|-----------------|----------------------|------------------|-----------------|----------------------|
| $f_1$ |                                                        | $u_{\rm p} = 1$ |                      | $u_{\rm p}$     | = 1 / 1,2       | 75                   | $u_{p}$         | = 1 / 1,        | 98                   | $u_{p}$          | = 1 / 3,        | 56                   | $u_{\rm r}$      | = 1 / 6,4       | 45                   |
| J1    | $n_{\Gamma\Pi}$                                        | $E_{\Gamma\Pi}$ | $I_{ m a,\Gamma\Pi}$ | $n_{\Gamma\Pi}$ | $E_{\Gamma\Pi}$ | $I_{ m a,\Gamma\Pi}$ | $n_{\Gamma\Pi}$ | $E_{\Gamma\Pi}$ | $I_{ m a,\Gamma\Pi}$ | $n_{\Gamma\Pi}$  | $E_{\Gamma\Pi}$ | $I_{ m a,\Gamma\Pi}$ | $n_{\Gamma\Pi}$  | $E_{\Gamma\Pi}$ | $I_{ m a,\Gamma\Pi}$ |
| 5     | 25                                                     | 1,8             | 32,7                 | 32              | 2,3             | 25,6                 | 50              | 3,5             | 16,5                 | 89               | 6,4             | 9,2                  | 161              | 12              | 5,1                  |
| 10    | 60                                                     | 4,3             | 43,8                 | 77              | 5,5             | 34,4                 | 119             | 8,5             | 22,1                 | 214              | 15              | 12,3                 | 387              | 28              | 6,8                  |
| 15    | 105                                                    | 7,5             | <u>52,6</u>          | 134             | 9,6             | <u>41,3</u>          | 208             | 15              | 26,6                 | 374              | 27              | 14,8                 | 677              | 49              | 8,2                  |
| 20    | 160                                                    | 12              | <u>61,4</u>          | 204             | 15              | <u>48,1</u>          | 317             | 23              | 31,0                 | 570              | 41              | 17,2                 | 1032             | 74              | 9,5                  |
| 30    | 324                                                    | 23              | <u>78,9</u>          | 413             | 30              | <u>61,9</u>          | 642             | 46              | 39,9                 | 1153             | 83              | 22,2                 | 2090             | 150             | 12,2                 |
| 45    | 594                                                    | 43              | <u>98,0</u>          | 757             | 54              | <u>76,8</u>          | 1176            | 84              | <u>49,5</u>          | 2115             | 152             | 27,5                 | 3831             | 275             | 15,2                 |
| 50    | 690                                                    | 49              | <u>98,0</u>          | 880             | 63              | <u>76,8</u>          | 1366            | 98              | <u>49,5</u>          | 2456             | 176             | 27,5                 | 4451             | -               | -                    |
| 55    | 773                                                    | 55              | <u>94,6</u>          | 986             | 71              | <u>74,2</u>          | 1531            | 110             | <u>47,8</u>          | 2753             | 197             | 26,6                 | 4988             | -               | -                    |
| 60    | 859                                                    | 62              | <u>91,3</u>          | 1096            | 79              | <u>71,6</u>          | 1701            | 122             | 46,1                 | 3059             | 219             | 25,6                 | <del>5542</del>  | -               | -                    |
| 65    | 948                                                    | 68              | 88,0                 | 1208            | 87              | <u>69,0</u>          | 1876            | 135             | <u>44,4</u>          | 3374             | 242             | 24,7                 | 6113             | -               | -                    |
| 70    | 1039                                                   | 74              | <u>84,7</u>          | 1325            | 95              | <u>66,4</u>          | 2057            | 147             | 42,8                 | 3698             | 265             | 23,8                 | <del>6700</del>  | -               | -                    |
| 75    | 1133                                                   | 81              | <u>81,3</u>          | 1444            | 104             | <u>63,8</u>          | 2242            | 161             | <u>41,1</u>          | 4032             | -               | -                    | 7305             | -               | -                    |
| 80    | 1229                                                   | 88              | <u>78,0</u>          | 1567            | 112             | <u>61,2</u>          | 2433            | 174             | 39,4                 | <del>4375</del>  | -               | -                    | <del>7926</del>  | -               | -                    |
| 95    | 1533                                                   | 110             | <u>68,1</u>          | 1955            | 140             | <u>53,4</u>          | 3036            | 218             | 34,4                 | <del>5459</del>  | -               | -                    | <del>9890</del>  | -               | -                    |
| 100   | 1640                                                   | 118             | <u>64,8</u>          | 2091            | 150             | <u>50,8</u>          | 3247            | 233             | 32,7                 | <del>5838</del>  | -               | -                    | <del>10578</del> | -               | -                    |
| 115   | 1927                                                   | 138             | <u>54,8</u>          | 2457            | 176             | <u>43,0</u>          | 3816            | 274             | 27,7                 | <del>6862</del>  | -               | -                    | 12432            | -               | -                    |
| 120   | 2026                                                   | 145             | <u>51,5</u>          | 2583            | 185             | <u>40,4</u>          | <del>4011</del> | -               | -                    | <del>7211</del>  | -               | -                    | <del>13065</del> | -               | -                    |
| 125   | 2125                                                   | 152             | <u>48,2</u>          | 2709            | 194             | 37,8                 | <del>4208</del> | -               | -                    | <del>7565</del>  | -               | -                    | <del>13706</del> | -               | -                    |
| 130   | 2226                                                   | 160             | <u>44,9</u>          | 2838            | 203             | 35,2                 | <del>4407</del> | -               | -                    | <del>7923</del>  | -               | -                    | 14355            | -               | -                    |
| 135   | 2327                                                   | 167             | <u>41,5</u>          | 2967            | 213             | 32,6                 | <del>4608</del> | -               | -                    | <del>8286</del>  | -               | -                    | <del>15012</del> | -               | -                    |
| 140   | 2430                                                   | 174             | 38,2                 | 3099            | 222             | 30,0                 | <del>4812</del> | -               | -                    | <del>8652</del>  | -               | -                    | <del>15676</del> | -               | -                    |
| 165   | 2937                                                   | 211             | 21,6                 | 3745            | 268             | 17,0                 | <del>5816</del> | -               | -                    | <del>10457</del> | -               | -                    | <del>18946</del> | -               | -                    |
| 170   | 3038                                                   | 218             | 18,3                 | 3873            | 278             | 14,4                 | 6014            | -               | -                    | 10814            | -               | -                    | <del>19592</del> | -               | -                    |
| 175   | 3139                                                   | 225             | 15,0                 | 4002            | 287             | 11,8                 | 6214            | -               | -                    | 11173            | -               | -                    | <del>20243</del> | -               | -                    |
| 180   | 3240                                                   | 232             | 11,7                 | 4131            | -               | -                    | 6415            | -               | -                    | 11534            | -               | -                    | <del>20898</del> | -               | -                    |

Таблица 2 — Результаты расчета при  $s=s_{H}$ 

| 140311 | 1ци 2 - 1       |                 | ты рас-г             | ета при з          |                 |                      | 1               | 1 / 1 /         | 20                   | 1                  | 1 / 0           |                      | 1                  | 1 / 6           | 4.5                  |
|--------|-----------------|-----------------|----------------------|--------------------|-----------------|----------------------|-----------------|-----------------|----------------------|--------------------|-----------------|----------------------|--------------------|-----------------|----------------------|
| $f_1$  |                 | $u_{\rm p}=1$   |                      | $u_{\mathfrak{p}}$ | = 1 / 1,2       |                      | $u_{\rm p}$     | = 1 / 1,9       |                      | $u_{\mathfrak{p}}$ | = 1 / 3,        |                      | $u_{\mathfrak{p}}$ | = 1 / 6,4       |                      |
| JI     | $n_{\Gamma\Pi}$ | $E_{\Gamma\Pi}$ | $I_{ m a,\Gamma\Pi}$ | $n_{\Gamma\Pi}$    | $E_{\Gamma\Pi}$ | $I_{ m a,\Gamma\Pi}$ | $n_{\Gamma\Pi}$ | $E_{\Gamma\Pi}$ | $I_{ m a,\Gamma\Pi}$ | $n_{\Gamma\Pi}$    | $E_{\Gamma\Pi}$ | $I_{ m a,\Gamma\Pi}$ | $n_{\Gamma\Pi}$    | $E_{\Gamma\Pi}$ | $I_{ m a,\Gamma\Pi}$ |
| 5      | 94              | 6,7             | 11,7                 | 120                | 8,6             | 9,2                  | 186             | 13              | 5,9                  | 335                | 24              | 3,3                  | 606                | 43              | 1,8                  |
| 10     | 188             | 13              | 14,6                 | 240                | 17              | 11,5                 | 372             | 27              | 7,4                  | 669                | 48              | 4,1                  | 1213               | 87              | 2,3                  |
| 15     | 282             | 20              | 17,5                 | 360                | 26              | 13,8                 | 558             | 40              | 8,9                  | 1004               | 72              | 4,9                  | 1819               | 130             | 2,7                  |
| 20     | 376             | 27              | 20,5                 | 479                | 34              | 16,0                 | 744             | 53              | 10,3                 | 1339               | 96              | 5,7                  | 2425               | 174             | 3,2                  |
| 30     | 564             | 40              | 26,3                 | 719                | 52              | 20,6                 | 1117            | 80              | 13,3                 | 2008               | 144             | 7,4                  | 3638               | 261             | 4,1                  |
| 45     | 846             | 61              | 32,7                 | 1079               | 77              | 25,6                 | 1675            | 120             | 16,5                 | 3012               | 216             | 9,2                  | <del>5457</del>    | -               | -                    |
| 50     | 940             | 67              | 32,7                 | 1199               | 86              | 25,6                 | 1861            | 133             | 16,5                 | 3346               | 240             | 9,2                  | 6063               | -               | -                    |
| 55     | 1034            | 74              | 29,7                 | 1318               | 94              | 23,3                 | 2047            | 147             | 15,0                 | 3681               | 264             | 8,3                  | <del>6669</del>    | -               | -                    |
| 60     | 1128            | 81              | 27,2                 | 1438               | 103             | 21,3                 | 2233            | 160             | 13,7                 | <del>4016</del>    | -               | -                    | <del>7276</del>    | -               | -                    |
| 65     | 1222            | 88              | 25,1                 | 1558               | 112             | 19,7                 | 2420            | 173             | 12,7                 | <del>4350</del>    | -               | -                    | <del>7882</del>    | -               | -                    |
| 70     | 1316            | 94              | 23,3                 | 1678               | 120             | 18,3                 | 2606            | 187             | 11,8                 | <del>4685</del>    | -               | -                    | 8488               | -               | -                    |
| 75     | 1410            | 101             | 21,8                 | 1798               | 129             | 17,1                 | 2792            | 200             | 11,0                 | <del>5020</del>    | -               | -                    | <del>9095</del>    | -               | -                    |
| 80     | 1504            | 108             | 20,4                 | 1918               | 137             | 16,0                 | 2978            | 213             | 10,3                 | <del>5354</del>    | -               | -                    | <del>9701</del>    | -               | -                    |
| 95     | 1786            | 128             | 17,2                 | 2277               | 163             | 13,5                 | 3536            | 253             | 8,7                  | <del>6358</del>    | -               | -                    | 11520              | -               | -                    |
| 100    | 1880            | 135             | 16,3                 | 2397               | 172             | 12,8                 | 3722            | 267             | 8,2                  | <del>6693</del>    | -               | -                    | <del>12126</del>   | -               | -                    |
| 115    | 2162            | 155             | 14,2                 | 2757               | 198             | 11,1                 | 4281            | -               | -                    | <del>7697</del>    | -               | -                    | 13945              | -               | -                    |
| 120    | 2256            | 162             | 13,6                 | 2876               | 206             | 10,7                 | 4467            | -               | -                    | <del>8031</del>    | -               | -                    | 14551              | -               | -                    |
| 125    | 2350            | 168             | 13,1                 | 2996               | 215             | 10,2                 | 4653            | -               | -                    | <del>8366</del>    | -               | -                    | 15158              | -               | -                    |
| 130    | 2444            | 175             | 12,6                 | 3116               | 223             | 9,9                  | <del>4839</del> | -               | -                    | 8701               | -               | -                    | 15764              | -               | -                    |
| 135    | 2538            | 182             | 12,1                 | 3236               | 232             | 9,5                  | 5025            | -               | -                    | <del>9035</del>    | -               | -                    | 16370              | -               | -                    |
| 140    | 2632            | 189             | 11,7                 | 3356               | 240             | 9,1                  | 5211            | -               | -                    | <del>9370</del>    | -               | -                    | <del>16976</del>   | -               | -                    |
| 165    | 3102            | 222             | 9,9                  | 3955               | 283             | 7,8                  | 6142            | -               | -                    | 11043              | -               | -                    | 20008              | -               | -                    |
| 170    | 3196            | 229             | 9,6                  | 4075               | -               | -                    | 6328            | -               | -                    | 11378              | -               | -                    | 20614              | -               | -                    |
| 175    | 3290            | 236             | 9,3                  | 4195               | -               | -                    | 6514            | -               | -                    | 11712              | -               | -                    | 21221              | -               | -                    |
| 180    | 3384            | 243             | 9,1                  | 4315               | -               | -                    | 6700            | -               | -                    | 12047              | -               | -                    | 21827              | -               | -                    |

Таблица 3 — Результаты расчета  $R_{II}$ 

| таоли | таолица 5 — Результаты расчета к <sub>Ц</sub> |                                     |                            |                                     |                            |                                            |                            |                                        |                            |                                     |
|-------|-----------------------------------------------|-------------------------------------|----------------------------|-------------------------------------|----------------------------|--------------------------------------------|----------------------------|----------------------------------------|----------------------------|-------------------------------------|
|       | $u_{\rm p}$                                   | = 1                                 | $u_{\rm p}=1$              | 1,275                               | $u_{\rm p}=1$              | / 1,98                                     | $u_{\rm p}=1$              | / 3,56                                 | $u_{\rm p}=1$              | / 6,45                              |
| $f_1$ | $R_{ m II}$ при $s_{ m H}$                    | $R_{\coprod}$ при $s_{\kappa p(f)}$ | $R_{ m II}$ при $s_{ m H}$ | $R_{\coprod}$ при $S_{\kappa p(f)}$ | $R_{ m II}$ при $s_{ m H}$ | $R_{\text{Ц}}$ при $s_{\text{\kappap}(f)}$ | $R_{ m II}$ при $s_{ m H}$ | $R_{\coprod}$ при $S_{\mathrm{kp}(f)}$ | $R_{ m II}$ при $s_{ m H}$ | $R_{\coprod}$ при $s_{\kappa p(f)}$ |
| 5     | 0,58                                          | 0,05                                | 0,94                       | 0,09                                | 2,26                       | 0,22                                       | 7,30                       | 0,70                                   | 38,36                      | 2,28                                |
| 10    | 0,92                                          | 0,10                                | 1,50                       | 0,16                                | 3,61                       | 0,38                                       | 11,69                      | 1,24                                   | 47,95                      | 4,08                                |
| 15    | 1,15                                          | 0,14                                | 1,87                       | 0,23                                | 4,52                       | 0,56                                       | 14,61                      | 1,81                                   | 54,80                      | 5,95                                |
| 20    | 1,32                                          | 0,19                                | 2,14                       | 0,30                                | 5,16                       | 0,73                                       | 16,69                      | 2,37                                   | 63,93                      | 7,77                                |
| 30    | 1,54                                          | 0,29                                | 2,50                       | 0,48                                | 6,02                       | 1,15                                       | 19,48                      | 3,73                                   | 77.23                      | 12,24                               |
| 45    | 1,86                                          | 0,43                                | 3,02                       | <u>0,71</u>                         | 7,28                       | 1,70                                       | 23,53                      | 5,51                                   | -                          | 18,07                               |
| 50    | 2,06                                          | 0,50                                | 3,35                       | 0,82                                | 8,09                       | 1,98                                       | 26.14                      | 6,40                                   | -                          | ı                                   |
| 55    | 2,50                                          | 0,59                                | 4,06                       | 0,95                                | 9,78                       | 2,30                                       | 31.63                      | 7,42                                   | -                          | -                                   |
| 60    | 2,97                                          | <u>0,67</u>                         | 4,83                       | <u>1,10</u>                         | 11,64                      | <u>2,64</u>                                | -                          | 8,55                                   | -                          | ı                                   |
| 65    | 3,49                                          | <u>0,77</u>                         | 5,67                       | <u>1,25</u>                         | 13,67                      | <u>3,03</u>                                | -                          | <u>9.78</u>                            | -                          | -                                   |
| 70    | 4,04                                          | 0,88                                | 6,57                       | <u>1,43</u>                         | 15,85                      | 3,45                                       | -                          | 11.14                                  | -                          | -                                   |
| 75    | 4,64                                          | 1,00                                | 7,54                       | <u>1,62</u>                         | 18,19                      | <u>3,91</u>                                | -                          | -                                      | -                          | -                                   |
| 80    | 5,28                                          | <u>1,13</u>                         | 8,58                       | <u>1,83</u>                         | 20,70                      | 4,42                                       | -                          | -                                      | -                          | ı                                   |
| 95    | 7,45                                          | <u>1,61</u>                         | 12,10                      | <u>2,62</u>                         | 29.19                      | 6,33                                       | -                          | -                                      | -                          | -                                   |
| 100   | 8,25                                          | <u>1,81</u>                         | 13,41                      | <u>2,95</u>                         | 32.34                      | 7.11                                       | -                          | -                                      | -                          | -                                   |
| 115   | 10,91                                         | 2,52                                | 17,74                      | <u>4,10</u>                         | -                          | 9,88                                       | -                          |                                        | -                          | -                                   |
| 120   | 11,88                                         | <u>2,82</u>                         | 19,31                      | <u>4,58</u>                         | -                          | -                                          | -                          | -                                      | -                          | -                                   |
| 125   | 12,89                                         | <u>3,16</u>                         | 20,96                      | 5,14                                | -                          | -                                          | -                          | -                                      | -                          | -                                   |
| 130   | 13,94                                         | <u>3,56</u>                         | 22.67                      | 5,78                                | -                          | -                                          | -                          | -                                      | -                          | -                                   |
| 135   | 15,04                                         | <u>4,01</u>                         | 24,44                      | 6,53                                | -                          | -                                          | -                          | -                                      | -                          | -                                   |
| 140   | 16,17                                         | 4,56                                | 26,29                      | 7.41                                | -                          | -                                          | -                          | -                                      | -                          | -                                   |
| 165   | 22,46                                         | 9,73                                | 36,51                      | 15.81                               | -                          | -                                          | -                          | -                                      | -                          | -                                   |
| 170   | 23.84                                         | 11,88                               | -                          | 19,31                               | -                          | -                                          | -                          | -                                      | -                          | -                                   |
| 175   | 25.27                                         | 14.99                               | -                          | 24.36                               | -                          | -                                          | -                          |                                        | -                          | -                                   |
| 180   | <u> 26.73</u>                                 | 19,86                               | -                          | -                                   | -                          | -                                          | -                          | -                                      | -                          | -                                   |

Но и при  $u_{\rm p}=1$  / 6,45  $E_{\rm \Gamma\Pi}=11$ ,6 В для  $f_{\rm l}=5$  Гц. Не ясно, выдаст ли напряжение генератор при такой малой ЭДС. При  $f_{\rm l}<5$  Гц обороты, а , следовательно, и ЭДС генератора, еще меньше, поэтому желательно наличие  $u_{\rm p}<0$ ,155 для возможности нагружать МТАД при малых значениях  $f_{\rm l}$ .

При работе с  $s=s_{\rm H}$  для  $f_1$  от 5  $\Gamma$ ц до 165  $\Gamma$ ц использование коробки передач ЗиЛ позволяет работать при  $E_{\Gamma\Pi} \le 220$  В,  $I_{a,\Gamma\Pi} \le 39,7$  А (см. табл. 2). Для  $f_1 \ge 165$   $\Gamma$ ц нужно ослаблять магнитный поток, чтобы снизить  $E_{\Gamma\Pi}$ . При работе с  $s=s_{\rm kp(f)}$  (см. табл. 1) ослаблять поток нужно при  $s=s_{\rm kp(f)}$  и  $f_1 \ge 175$   $\Gamma$ ц. При частоте  $f_1$ , равной 65–70  $\Gamma$ ц, можно работать с  $s=s_{\rm kp(f)}$  на  $u_{\rm p}=1$  / 3,56 с ослаблением возбуждения либо на  $u_{\rm p}=1$  / 1,98 при  $\Phi=\Phi_{\rm H}$  с превышением тока. При 100–115  $\Gamma$ ц можно работать с  $s=s_{\rm kp(f)}$  на  $u_{\rm p}=1$  / 1,98 с ослаблением возбуждения либо на  $u_{\rm p}=1$  / 2,75 при  $\Phi=\Phi_{\rm H}$  с превышением тока. Для  $f_1=75$   $\Gamma$ ц и  $f_1=120$   $\Gamma$ ц ток будет немного превышен (на 1,8 %–3,5 %).

Таким образом, при использовании коробки передач ЗиЛ-130, включенной на повышение оборотов, можно обеспечить работу ГПТ для  $f_1 > 5$ –10  $\Gamma$ ц; для отдельных значений  $f_1$  будет немного превышено номинальное значение  $I_{a,\Gamma\Pi}$ ; также потребуется шунтировать обмотку возбуждения для определенных значений  $f_1$ .

Расчеты показывают, что для всех значений  $f_1$ , при которых необходимо ослаблять поток возбуждения, соблюдается отношение  $(U_{\Gamma\Pi}\cdot I_{\mathbf{a},\Gamma\Pi}/U_{\Gamma\Pi,\mathbf{h}}) < I_{\mathbf{a},\Gamma\Pi,\mathbf{h}}$  (принято  $U_{\Gamma\Pi}\approx E_{\Gamma\Pi}$  и  $E_{\Gamma\Pi,\mathbf{h}}\approx U_{\Gamma\Pi(\mathbf{a}),\mathbf{h}}$ , откуда  $U_{\Gamma\Pi,\mathbf{h}}=220$  В), поэтому при уменьшении напряжения до  $U_{\Gamma\Pi,\mathbf{h}}$  ослаблением возбуждения номинальный ток превышен не будет.

Чтобы не ослаблять поток обмотки возбуждения и обеспечить гарантированную работу установки при низких значениях  $f_1$ , необходимо расширить диапазон передаточных отношений и увеличить количество передач.

Коробки передач легковых автомобилей имеют обычно передаточное отношение первой передачи (3,5-3,8) 1 / (3,5-3,8) < 1 / 1,645, поэтому гарантированно не будет обеспечена возможность работы для малых значений  $f_1$ . Но можно взять две коробки так, чтобы выходной вал одной коробки был соединен с входным валом другой коробки. Тогда максимальное значение  $u_p$  будет в пределах 1 / 12,25–1 / 14,44, что позволит нагружать МТАД и при  $f_1$  < 5 Гц. Также коробки передач легковых автомобилей обычно содержат повышающую передачу; при включении коробку на повышение

оборотов повышающая передача станет понижающей; это позволит при  $f_1 = 175$   $\Gamma$ ц,  $f_1 = 180$   $\Gamma$ ц уменьшить частоту вращения вала  $\Gamma$ ПТ, а следовательно, и ЭДС, что позволит не ослаблять возбуждение для снижения ЭДС.

Кроме того, масса коробки легкового автомобили обычно 32-35кг, масса коробки 3иЛ 130, 131, 5301-90 кг [11, 12], то есть даже две коробки легкового автомобиля будут легче одной коробки 3иЛ-130.

Если взять две пятиступенчатые коробки с одинаковыми передаточными отношениями, то будет меньше передаточных отношений, потому что при включении, например, первой передачи первой коробки и второй передачи второй коробки передаточное отношение будет таким же, как и при включении второй передачи первой коробки и первой передачи второй коробки. Возьмем, например, одну коробку Lada Largus JH3 540 [14] и одну коробку Lada Kalina [15]. Минимальное значение  $u_{\rm p}$  будет  $1/(3,636\cdot3,727)=1/13,55$ . Можно использовать также и передачи заднего хода — не имеет значения, в каком направлении вращается ГПТ.

Представим в таблицах 4 и 5 расчеты при  $f_1$  = 140–180  $\Gamma$ ц для случаев, когда для обеих коробок включены повышающие передачи  $(u_p = 1 / (0.82 \cdot 0.78) = 1 / 0.64)$  и когда включены передачи 1 / 0.78 и 1 / 1.029 ( $u_p = 1 / 0.81$ , что примерно соответствует использованию коробки [14] с включенной повышающей передачей и какой-либо коробки с включённой прямой передачей). Как видно из таблиц 5, 6, при  $u_p = 1 / 0.81$  может потребоваться  $R_{\rm II} = 17.6$  Ом, в то время как  $u_p = 1 / 0.64$  требует меньшего значения сопротивления: 10,9 Ом. Таким образом, применение коробок с двумя повышающими передачами позволяет использовать сопротивление  $R_{\rm II}$  меньшего значения, чем использование только одной коробки с повышающей передачей.

Проведем расчет для всех значений передаточных отношений, которые возможны при совместном использовании двух коробок передач: [14, 15]. Для каждого значения  $f_1$  выберем результаты расчета при одном из  $u_p$ , обеспечивающих значение параметров  $E_{\Gamma\Pi}$ ,  $I_{a,\Gamma\Pi}$ ,  $n_{\Gamma\Pi}$  в требуемых пределах или на столько близкие к ним значения, насколько возможно, и приведем их в табл. 6.

Как видно из табл. 6, при  $f_1 = 75$  Гц и  $f_1 = 100$  Гц значения тока незначительно превышают номинальное значение 39,7 А: 40,5 А и 40,2 А соответственно, то есть превышение порядка 2 %. В реальности значение тока может быть немного выше, поскольку при рас-

четах принято  $U_{\Gamma\Pi} \approx E_{\Gamma\Pi}$ , но для генератора  $U_{\Gamma\Pi}$  немного меньше  $E_{\Gamma\Pi}$ . При изменении значения  $u_{\rm p}$  согласно табл. 6 сопротивление  $R_{\rm II}$  должно изменяться в пределах от 4 до 10,9 Ом.

Таблица 4 — Значения  $E_{\Gamma\Pi}$ ,  $I_{a\Gamma\Pi}$ ,  $R_{\Pi}$  при  $u_{p}$ =1/0,64 и 1/0,81 для  $s_{H}$ 

| S     | $= s_{\mathrm{H}}$    |                 | $u_{\rm p} = 1/0$ | ,64               |                   |                 | $u_{\rm p} = 1/0$ | 0,81              |                   |
|-------|-----------------------|-----------------|-------------------|-------------------|-------------------|-----------------|-------------------|-------------------|-------------------|
| $f_1$ | $n_{2,\mathrm{MTAД}}$ | $n_{\Gamma\Pi}$ | $E_{\Gamma\Pi}$   | $I_{a,\Gamma\Pi}$ | $R_{\mathrm{II}}$ | $n_{\Gamma\Pi}$ | $E_{\Gamma\Pi}$   | $I_{a,\Gamma\Pi}$ | $R_{\mathrm{II}}$ |
| 140   | 2632,0                | 1684,5          | 120,7             | 18,2              | 6,6               | 2131,9          | 152,8             | 14,4              | 10,6              |
| 145   | 2726,0                | 1744,6          | 125,0             | 17,6              | 7,1               | 2208,1          | 158,2             | 13,9              | 11,4              |
| 150   | 2820,0                | 1804,8          | 129,3             | 17,0              | 7,6               | 2284,2          | 163,7             | 13,4              | 12,2              |
| 155   | 2914,0                | 1865,0          | 133,6             | 16,5              | 8,1               | 2360,3          | 169,1             | 13,0              | 13,0              |
| 160   | 3008,0                | 1925,1          | 138,0             | 15,9              | 8,7               | 2436,5          | 174,6             | 12,6              | 13,9              |
| 165   | 3102,0                | 1985,3          | 142,3             | 15,5              | 9,2               | 2512,6          | 180,1             | 12,2              | 14,7              |
| 170   | 3196,0                | 2045,4          | 146,6             | 15,0              | 9,8               | 2588,8          | 185,5             | 11,9              | 15,6              |
| 175   | 3290,0                | 2105,6          | 150,9             | 14,6              | 10,3              | 2664,9          | 191,0             | 11,5              | 16,6              |
| 180   | 3384,0                | 2165,8          | 155,2             | 14,2              | 10,9              | 2741,0          | 196,4             | 11,2              | 17,5              |

Таблица 5 — Значения  $E_{\Gamma\Pi}$ ,  $I_{a,\Gamma\Pi}$ ,  $R_{\Pi}$  при  $u_p=1/0,64$  и 1/0,81 для  $s_{KD(f)}$ 

| S     | $= s_{\text{kp}(f)}$  |                 | $u_{\rm p}=1/0,$ | 64                |                   | $u_{\rm p}=1/0,81$ |                 |                   |                   |
|-------|-----------------------|-----------------|------------------|-------------------|-------------------|--------------------|-----------------|-------------------|-------------------|
| $f_1$ | $n_{2,\mathrm{MTAД}}$ | $n_{\Gamma\Pi}$ | $E_{\Gamma\Pi}$  | $I_{a,\Gamma\Pi}$ | $R_{\mathrm{II}}$ | $n_{\Gamma\Pi}$    | $E_{\Gamma\Pi}$ | $I_{a,\Gamma\Pi}$ | $R_{\mathrm{II}}$ |
| 140   | 2430,4                | 1555,5          | 111,5            | <u>59,7</u>       | 1,9               | 1968,6             | 141,1           | <u>47,2</u>       | 3,0               |
| 145   | 2534,6                | 1622,1          | 116,2            | 54,5              | 2,1               | 2053,0             | 147,1           | 43,1              | 3,4               |
| 150   | 2640,0                | 1689,6          | 121,1            | <u>49,4</u>       | 2,5               | 2138,4             | 153,2           | 39,0              | 3,9               |
| 155   | 2738,9                | 1752,9          | 125,6            | 44,2              | 2,8               | 2218,5             | 159,0           | 34,9              | 4,6               |
| 160   | 2837,8                | 1816,2          | 130,1            | 39,0              | 3,3               | 2298,6             | 164,7           | 30,8              | 5,3               |
| 165   | 2937,3                | 1879,9          | 134,7            | 33,8              | 4,0               | 2379,2             | 170,5           | 26,7              | 6,4               |
| 170   | 3037,6                | 1944,0          | 139,3            | 28,6              | 4,9               | 2460,4             | 176,3           | 22,6              | 7,8               |
| 175   | 3138,5                | 2008,6          | 143,9            | 23,4              | 6,1               | 2542,1             | 182,2           | 18,5              | 9,8               |
| 180   | 3240,0                | 2073,6          | 148,6            | 18,3              | 8,1               | 2624,4             | 188,1           | 14,4              | 13,0              |

Как видно из табл. 3–6, расширение диапазона передаточных отношений с 1/6,45-1 до 1/13,55-1/0,64 позволяет сузить диапазон  $R_{\rm II}$  и привести ток и ЭДС к допустимым их значениям без ослабления возбуждения (то есть при  $\Phi = \Phi_{\rm H}$ ), а также увеличить обороты генератора при малых значениях  $f_1$ .

Однако при  $f_1$ =5  $\Gamma$ ц при выбранных  $f_1$  составит 24,3–26,9 В при  $n_{\Gamma\Pi}$  в пределах 338–375 об/мин. Если для  $s_{\kappa p(f)}$  уменьшать значение  $u_p$  уже некуда, то для  $s_H$  можно использовать меньшие значения  $u_p$ . Как видно из таблицы 7, при этом будет возрастать сопротивление. Кроме того, для опытов при  $s < s_H$  значение сопротивления потребуется большее; а при  $f_1 = 5$   $\Gamma$ ц снижать обороты с целью уменьшения

 $R_{\rm II}$  возможности нет – при слишком малом значении  $n_{\rm \Gamma\Pi}$  может пропасть ЭДС.

Таблица 6 – Результаты расчета при использовании двух коробок передач

| C     |               | s               | $= s_{\text{kp}(f)}$ | •                 |              | $S=S_{\mathrm{H}}$ |                 |                 |                   |                   |  |  |
|-------|---------------|-----------------|----------------------|-------------------|--------------|--------------------|-----------------|-----------------|-------------------|-------------------|--|--|
| $f_1$ | $1/u_{\rm p}$ | $n_{\Gamma\Pi}$ | $E_{\Gamma\Pi}$      | $I_{a,\Gamma\Pi}$ | $R_{\rm II}$ | $1/u_{\rm p}$      | $n_{\Gamma\Pi}$ | $E_{\Gamma\Pi}$ | $I_{a,\Gamma\Pi}$ | $R_{\mathrm{II}}$ |  |  |
| 5     | 13,55         | 338,8           | 24,3                 | 2,4               | 10,1         | 3,99               | 375,1           | 26,9            | 2,9               | 9,2               |  |  |
| 10    | 7,45          | 447,0           | 32,0                 | 5,9               | 5,4          | 2,98               | 560,2           | 40,1            | 4,9               | 8,2               |  |  |
| 15    | 7,45          | 782,3           | 56,1                 | 7,1               | 7,9          | 2,92               | 823,4           | 59,0            | 6,0               | 9,8               |  |  |
| 20    | 7,45          | 1192,0          | 85,4                 | 8,2               | 10,4         | 2,72               | 1022,7          | 73,3            | 7,5               | 9,7               |  |  |
| 25    | 5,04          | 1265,0          | 90,7                 | 13,9              | 6,5          | 2,01               | 944,7           | 67,7            | 11,6              | 5,8               |  |  |
| 30    | 5,04          | 1639,4          | 117,5                | 15,6              | 7,5          | 2,01               | 1133,6          | 81,2            | 13,1              | 6,2               |  |  |
| 35    | 5,04          | 2054,4          | 147,2                | 17,3              | 8,5          | 2,01               | 1322,6          | 94,8            | 14,5              | 6,5               |  |  |
| 40    | 5,04          | 2509,8          | 179,9                | 19,4              | 9,3          | 2,01               | 1511,5          | 108,3           | 16,2              | 6,7               |  |  |
| 45    | 3,99          | 2370,1          | 169,8                | 24,6              | 6,9          | 2,01               | 1700,5          | 121,9           | 16,2              | 7,5               |  |  |
| 50    | 3,99          | 2753,1          | 197,3                | 24,6              | 8,0          | 2,01               | 1889,4          | 135,4           | 16,2              | 8,3               |  |  |
| 55    | 2,89          | 2234,8          | 160,2                | 32,7              | 4,9          | 1,89               | 1954,3          | 140,0           | 15,7              | 8,9               |  |  |
| 60    | 2,72          | 2337,0          | 167,5                | 33,6              | 5,0          | 1,61               | 1816,1          | 130,1           | 16,9              | 7,7               |  |  |
| 75    | 2,72          | 2577,7          | 184,7                | 32,3              | 5,7          | 1,61               | 1967,4          | 141,0           | 15,6              | 9,0               |  |  |
| 70    | 2,72          | 2825,5          | 202,5                | 31,1              | 6,5          | 1,31               | 1724,0          | 123,5           | 17,8              | 6,9               |  |  |
| 75    | 2,01          | 2276,3          | 163,1                | <u>40,5</u>       | 4,0          | 1,31               | 1847,1          | 132,4           | 16,6              | 8,0               |  |  |
| 80    | 2,01          | 2469,9          | 177,0                | 38,8              | 4,6          | 1,11               | 1669,4          | 119,6           | 18,4              | 6,5               |  |  |
| 85    | 2,01          | 2668,7          | 191,2                | 37,2              | 5,1          | 1,11               | 1773,8          | 127,1           | 17,3              | 7,3               |  |  |
| 90    | 2,01          | 2872,7          | 205,9                | 35,5              | 5,8          | 1,11               | 1878,1          | 134,6           | 16,3              | 8,2               |  |  |
| 95    | 1,89          | 2897,9          | 207,7                | 36,0              | 5,8          | 0,81               | 1446,7          | 103,7           | 21,2              | 4,9               |  |  |
| 100   | 1,61          | 2640,4          | 189,2                | <u>40,2</u>       | 4,7          | 0,81               | 1522,8          | 109,1           | 20,2              | 5,4               |  |  |
| 105   | 1,61          | 2792,7          | 200,1                | 38,2              | 5,2          | 0,81               | 1598,9          | 114,6           | 19,2              | 6,0               |  |  |
| 110   | 1,61          | 2946,9          | 211,2                | 36,1              | 5,8          | 0,81               | 1675,1          | 120,0           | 18,3              | 6,5               |  |  |
| 115   | 1,4           | 2698,4          | 193,4                | 39,1              | 4,9          | 0,81               | 1751,2          | 125,5           | 17,5              | 7,2               |  |  |
| 120   | 1,4           | 2835,8          | 203,2                | 36,8              | 5,5          | 0,81               | 1827,4          | 131,0           | 16,8              | 7,8               |  |  |
| 125   | 1,4           | 2975,0          | 213,2                | 34,4              | 6,2          | 0,81               | 1903,5          | 136,4           | 16,1              | 8,5               |  |  |
| 130   | 1,31          | 2915,5          | 208,9                | 34,2              | 6,1          | 0,81               | 1979,6          | 141,9           | 15,5              | 9,1               |  |  |
| 135   | 1,31          | 3048,9          | 218,5                | 31,7              | 6,9          | 0,81               | 2055,8          | 147,3           | 14,9              | 9,9               |  |  |
| 140   | 1,11          | 2697,7          | 193,3                | 34,4              | 5,6          | 0,64               | 1684,5          | 120,7           | 18,2              | 6,6               |  |  |
| 145   | 1,11          | 2813,4          | 201,6                | 31,4              | 6,4          | 0,64               | 1744,6          | 125,0           | 17,6              | 7,1               |  |  |
| 150   | 1,11          | 2930,4          | 210,0                | 28,5              | 7,4          | 0,64               | 1804,8          | 129,3           | 17,0              | 7,6               |  |  |
| 155   | 1,11          | 3040,1          | 217,9                | 25,5              | 8,6          | 0,64               | 1865,0          | 133,6           | 16,5              | 8,1               |  |  |
| 160   | 0,81          | 2298,6          | 164,7                | 30,8              | 5,3          | 0,64               | 1925,1          | 138,0           | 15,9              | 8,7               |  |  |
| 165   | 0,81          | 2379,2          | 170,5                | 26,7              | 6,4          | 0,64               | 1985,3          | 142,3           | 15,5              | 9,2               |  |  |
| 170   | 0,81          | 2460,4          | 176,3                | 22,6              | 7,8          | 0,64               | 2045,4          | 146,6           | 15,0              | 9,8               |  |  |
| 175   | 0,81          | 2542,1          | 182,2                | 18,5              | 9,8          | 0,64               | 2105,6          | 150,9           | 14,6              | 10,3              |  |  |
| 180   | 0,64          | 2073,6          | 148,6                | 18,3              | 8,1          | 0,64               | 2165,8          | 155,2           | 14,2              | 10,9              |  |  |

Поэтому при необходимости проведения опыта  $s < s_{\rm H}$  при  $f_{\rm I} < 5$ —15  $\Gamma$ ц нужно проводить дополнительный расчет с целью определения требуемого значения  $R_{\rm IL}$ . Также следует отметить, что режим работы  $\Gamma$ ПТ при малых оборотах и малых существенно отличается от номинального режима работы  $\Gamma$ ПТ ( $n_{\Gamma\Pi} = 3070$  об/мин,  $U_{\Gamma\Pi} = 220$  В), поэтому может существенно отличаться и КПД: очевидно, что он будет ниже, чем при номинальном режиме; возможно, значительно ниже. Чем ниже КПД — тем больше мощности теряется в виде потерь в самом  $\Gamma$ ПТ и тем меньшее сопротивление  $R_{\rm IL}$  потребуется. Поэтому требуемые значения  $R_{\rm IL}$  для малых  $n_{\Gamma\Pi}$  могут оказаться ниже расчетных.

Таблица 7 — Результаты расчёта для  $s = s_{\rm H}, f_1 = 5$  Гц при различных значениях  $u_{\rm p}$ 

| $1/u_{p}$ | $n_{\Gamma\Pi}$ | $E_{\Gamma\Pi}$ | $I_{a,\Gamma\Pi}$ | $R_{\Gamma\Pi}$ |
|-----------|-----------------|-----------------|-------------------|-----------------|
| 7,45      | 700,3           | 50,2            | 1,6               | 32,0            |
| 7,27      | 683,4           | 49,0            | 1,6               | 30,5            |
| 5,06      | 475,6           | 34,1            | 2,3               | 14,8            |
| 3,99      | 375,1           | 26,9            | 2,9               | 9,2             |

#### ЗАКЛЮЧЕНИЕ

Для обеспечения работы ГПТ независимого возбуждения 4ПБМ160МГ04 мощностью 8 кВт в качестве нагрузочного устройства для МТАД необходимо изменение передаточного отношения между валами МТАД и ГПТ в широком диапазоне. Этот диапазон передаточных отношений можно обеспечить двумя коробками передач легковых автомобилей, установленных так, чтобы выходной вал первой коробки передач был соединён с валом МТАД, выходной вал второй коробки передач — с входным валом первой коробки передач, вал ГПТ — с входным валом второй коробки передач. Если хотя бы одна из коробок передач будет с повышающей передачей, то не будет необходимости шунтировать обмотку возбуждения ГПТ.

При использовании двух коробок передач [14, 15] сопротивление нагрузки требуется регулировать в пределах 4–10,9 Ом, однако при проведении опытов с  $s < s_{\rm H}$  могут потребоваться значения  $R_{\rm II} > 10,9$  Ом — для таких режимов работы нужно проводить отдельный расчет.

#### ЛИТЕРАТУРА

- 1. Жданович, Ч. И. Обоснование параметров физической модели электромеханической трансмиссии трактора / Ч. И. Жданович, Н. В. Калинин // Актуальные вопросы машиностроения: сб. научн. тр. / Объедин. ин-т машиностроения НАН Беларуси; редкол.: С. Н. Поддубко [и др.]. Минск, 2023. Вып. 12. С. 121–126.
- 2. Электродвигатель 4ПБМ160МГ 8 кВт 3070/4000 об. 220/110В IM3001. [Электронный ресурс]. Режим доступа: https://energo1.com/catalog/elektrodvigateli\_postoyannogo\_toka/elektrodvigateli\_postoyannogo\_toka/serii\_4p/elektrodvigateli\_serii\_4pbm/14703/. Дата доступа: 10.11.2023.
- 3. Кацман, М. М. Электрические машины: учеб. для студентов средн. проф. учебных заведений / М. М. Кацман. 3-е изд., испр. М.: Высш. шк., 2001. 463 с.
- 4. Брускин, Д. Э. Электрические машины и микромашины / Д. Э. Брускин, А. Е. Зорохович, В. С. Хвостов. 3-е изд., перераб. и доп. М. : Высш. шк., 1990. 528 с.
- 5. Жданович, Ч. И. Определение максимального момента на колесах трактора с электромеханической трансмиссией / Ч. И. Жданович, Н. В. Калинин // Проблемы проектирования и развития тракторов, мобильных машин, городского электротранспорта: материалы междунар. науч.-техн. конф., посвящ. 60-летию кафедры «Тракторы» БНТУ, Минск, 23–24 нояб. 2013 г. / Белорус. нац. техн. ун-т; редкол.: В. П. Бойков, Ч. И. Жданович. Минск, 2013. С. 54–59.
- 6. Жданович, Ч. И. Зависимость характеристик трактора с электромеханической трансмиссией от температуры обмоток тягового электродвигателя / Ч. И. Жданович, Н. В. Калинин // Проблемы проектирования и развития тракторов, мобильных машин, городского электротранспорта: материалы междунар. науч.-техн. конф., посвящ. 60-летию кафедры «Тракторы» БНТУ, Минск, 23–24 нояб. 2013 г. / Белорус. нац. техн. ун-т; редкол.: В. П. Бойков, Ч. И. Жданович. Минск, 2013. С. 60–67.
- 7. Жданович, Ч. И. Выбор способа регулирования тягового асинхронного электродвигателя трактора и построение механической характеристики / Ч. И. Жданович, Н. В. Калинин // Наука и техника. 2015. № 3. C. 60-64.

- 8. Трехфазные двигатели серии АИР. [Электронный ресурс]. Режим доступа: https://www.mez.by/catalog/asinkhronnye-dvigateliserii-air-aire/trekhfaznye-dvigateli-serii-air/. Дата доступа: 10.11.2023.
- 9. Прищепов, М. А. К вопросу о расчете параметров схемы замещения асинхронных двигателей по каталожным данным / М. А. Прищепов // Агропанорама. -2021. -№ 3 (145). C. 23–27.
- 10. Еремочкин, С. Ю. К вопросу выбора достоверного метода расчета параметров схемы замещения асинхронного двигателя / С. Ю. Еремочкин, А. А. Жуков, Д. В. Дорохов // Вестник НГИЭИ. 2022. № 12 (139). C. 43–53.
- 11. Коробка передач ЗИЛ 5301. [Электронный ресурс]. Режим доступа: https://гомельшина.бел/product/коробка-передач-зил-5301-432930-скоростная-д-245-9/. Дата доступа: 15.11.2023.
- 12. Коробка переключения передач ЗИЛ 130, ЗИЛ 131 в сборе. [Электронный ресурс]. Режим доступа: https://avtoxis.ru/shop/avtozapchasti\_zil/kpp-zil/korobka\_pereklyucheniya\_pere dach\_kpp\_zil130\_131/. Дата доступа: 15.11.2023.
- 13. Добровольская, Э. М. Электропоезда метрополитена: учебник для нач. проф. образования / Э. М. Добровольская. М.: ИРПО: Издат. центр «Академия», 2003. 320 с.
- 14. Передаточные числа JR5. [Электронный ресурс]. Режим доступа: https://www.remont-mkpp.ru/rubriki/cat\_45/pub\_2068/. Дата доступа: 20.11.2023.
- 15. Ремонт ВАЗ-1117-1119. [Электронный ресурс]. Режим доступа: https://wiki.zr.ru/Технические\_характеристики\_Kalina. Дата доступа: 20.11.2023.