УДК 621.793:621.785.532

СТРУКТУРНО-ФАЗОВОЕ СОСТОЯНИЕ МОДИФИЦИРОВАННЫХ ИОНАМИ АЗОТА ГАЗОТЕРМИЧЕСКИХ ПОКРЫТИЙ ИЗ ВЫСОКОХРОМИСТЫХ СТАЛЕЙ, НАПЫЛЕННЫХ С ИСПОЛЬЗОВАНИЕМ ВЫСОКОЭНТАЛЬПИЙНОГО ГОРЮЧЕГО ГАЗА

М.А. БЕЛОЦЕРКОВСКИЙ¹, доктор техн. наук, доцент А.Н. ГРИГОРЧИК¹, канд. техн. наук В.А. КУКАРЕКО¹, доктор физ.-мат. наук, профессор В.М. КОНСТАНТИНОВ², доктор техн. наук, профессор (¹ Объединенный институт машиностроения НАН Беларуси, г. Минск, Беларусь ² Белорусский национальный технический университет г. Минск, Беларусь)

Кукареко В.А. – 220072, г. Минск, ул. Академическая, 12 Государственное научное учреждение "Объединенный институт машиностроения Национальной академии наук Беларуси", e-mail: v_kukareko@mail.ru

Проведено сравнительное исследование структурно-фазового состояния и микротвердости модифицированных ионами азота высокохромистых проволочных сталей 40Х13, *Lastifil* 812, 02Х17Н11М2 и напыленных из этих сталей с использованием горючего газа МАФ газотермических покрытий. Показано, что повышенная глубина азотированных слоев в газотермических покрытиях из высокохромистых сталей связана с ускорением диффузии азота в покрытиях из этих сталей вследствие пониженного содержания в них хрома, а также с высокой дефектностью кристаллических решеток матричных фаз покрытий.

Ключевые слова: газотермические покрытия, ионно-плазменное азотирование, глубина азотированного слоя, структурно-фазовое состояние, микротвердость

Введение

Метод высокоскоростной металлизации (ВМ) с целью получения покрытий из проволочных материалов относится к экономичным аддитивным технологиям, которые основаны на распылении расплавленных капель металла продуктами сгорания горючих газов [1-2]. ВМ позволяет формировать поверхностные слои деталей машин и механизмов машиностроительного профиля с требуемыми физико-механическими характеристиками из различных токопроводящих материалов, и, в частности, проволочных сталей.

В работах [2-3] показано, что в целях формирования плотных газотермических покрытий с повышенной адгезией к основе при ВМ вместо традиционно использующегося высокоэнтальпийные пропана целесообразно использовать горючие газы типа метилацетилен-алленовой фракции (МАФ), представляющей собой смесь метилацетилена и аллена с добавлением ≈ 25 об.% пропана. В частности, использование горючего газа МАФ позволяет повысить скорость полета расплавленных частиц до ≈ 500 м/с, что в свою очередь приводит к напылению покрытия с низкой остаточной пористостью не превышающей 2-4 об.%. Вместе с тем, несмотря на преимущества метода ВМ, триботехнические и дюрометрические свойства получаемых покрытий значительно ниже. чем y соответствующих монолитных материалов. В связи с этим, газотермические покрытия подвергают различным видам упрочняющей обработки. В частности, в работах [4-6] рассмотрено влияние ионного азотирования на структурно-фазовое состояние и трибомеханические свойства газотермических покрытий напыленных с использованием пропана. В работах [4-6] отсутствуют данные о структуре и фазовом составе модицифированных ионами азота исходных проволочных сталей, из которых напылялись газотермические покрытия. В связи с этим, интерес представляет сопоставление данных по структурно-фазовому состоянию ионно-модифицированных проволочных материалов и соответствующих покрытий, полученных с использованием газа МАФ. Целью данной работы являлось исследование структурно-фазового состояния газотермических покрытий и исходных проволочных материалов из высокохромистых сталей, подвергнутых ионно-плазменному азотированию.

Образцы и методики исследований

Для исследований были выбраны проволочные материалы 40X13, Lastifil 812 и 02X17H11M2 (d=1,2-2,0 мм) и напыленные из них методом BM с помощью газа МАФ газотермические покрытия (таблица 1). Для нанесения газотермических покрытий методом BM использовалась установка АДМ-10, разработанная в ОИМ НАН Беларуси [2]. Скорость полета напыляемых частиц составляла > 500 м/с, размер частиц 5 – 40 мкм. С целью повышения прочности сцепления покрытий с основой наносился промежуточный слой напылением проволоки из сплава X20H80. Покрытия подвергались механической шлифовке с финишной обработкой на абразивной бумаге (Р320). Толщина напыленных покрытий составляла $\approx 1,0 \div 1,5$ мм.

Таблица 1

Марка	Содержание элементов, масс, %					,)	
проволочной стали	С	Cr	Мо	Ni	Mn	Si	Fe
40X13	0,42	13,20	-	0,60	0,35	0,40	основа
Lastifil 812	0,40	17,50	1,10	0,50	0,40	0,40	основа
02X17H11M2	0,025	16,20	1,65	11,30	0,40	0,45	основа

Химический состав распыляемых проволочных материалов

Ионно-плазменное азотирование (ИПА) образцов исходных проволок и напыленных из них покрытий проводилось в среде 15% N₂ + 80% Ar + 5% CH₄. Параметры ИПА: V=395 В, I=7,4 А, температура 740 К, время обработки – 8 часов.

Исследование фазового состава проволочных материалов и газотермических покрытий из высокохромистых сталей в исходном состоянии и после ИПА осуществлялось на дифрактометре ДРОН-2.0 в монохроматизированном кобальтовом (СоК_α) излучении при напряжении 30 кВ и анодном токе 15 мА. Расшифровка рентгенограмм осуществлялось при помощи программного обеспечения *Crystallographica Search-Match* с картотекой *PDF*-2.

Металлографические исследования проводились на оптическом микроскопе АЛЬТАМИ МЕТ 1МТ и сканирующем электронном микроскопе *TESCAN VEGA* 3 *LMH*. Для проведения микроанализа использовался энергодисперсионный спектрометр *X-Max* 150 производства *Oxford Instruments* с программным обеспечением *AZtec Automated*. Точность определения химического состава составляла $\pm 0.05 \div 0,1$ % масс. Травление образцов проволок и покрытий после ионно-плазменного азотирования осуществлялось в 4%-ом спиртовом растворе пикриновой кислоты.

Результаты исследований и их обсуждение

Напыление проволочных материалов методом высокоскоростной металлизации приводит к формированию плотного покрытия с пористостью не превышающей $\approx 2-4$ об.%. Содержание оксидов в покрытии составляет ≈ 25 об.%. Характерные микроструктуры покрытий, напыленных из проволочных сталей 40Х13, *Lastifil* 812, 02Х17Н11М2, представлены на рисунке 1.

В фазовый состав покрытия, напыленного из мартенситной стали 40Х13, после завершающей механической шлифовки входит 58 об.% α -Fe, 18 об.% γ -Fe и 24 об.% FeO+Fe₃O₄ (рисунок 2, *a*). Твердость покрытия составляет 400 HV 10. Газотермическое покрытие из проволоки Lastifil 812 включает в себя 58 об.% α -Fe, 19 об.% γ -Fe и 23 об.% FeO+Fe₃O₄ (рисунок 2, δ) и имеет твердость 375 HV 10. В покрытии из стали 02Х17H11M2 содержится 7 об.% α -Fe, 66 об.% γ -Fe и 27 об.% FeO+Fe₃O₄ (рисунок 2, δ). Твердость покрытия из стали 02Х17H11M2 составляет 270 HV 10. Из данных рентгеноструктурного анализа можно видеть, что покрытия из мартенситных сталей 40Х13 и Lastifil 812 содержат аномально высокое количество аустенитной фазы (рисунок 2). Повышенное содержание γ -фазы в покрытиях обусловлено особыми условиями их формирования, заключающимися в реализации в процессе напыления изотермической выдержки покрытия в области температур бейнитного превращения, что приводит к стабилизации γ -фазы [7].

Рис.1. Характерные микроструктуры газотермических покрытий из различных сталей, полученных методом BM с использованием горючего газа МАФ: а – покрытие из стали 40Х13; б – покрытие из стали *Lastifil* 812; в – покрытие из стали 02Х17Н11М2

Характерные микроструктуры газотермических покрытий после ионно-плазменного азотирования представлены на рисунке 3.

Puc.2. Фрагменты рентгеновских дифрактограмм (*CoK*_α) от поверхностных слоев газотермических покрытий (после механической шлифовки) из различных высокохромистых сталей, полученных высокоскоростной металлизацией с использованием газа МАФ:
 а – покрытие из стали 40Х13; б – покрытие из стали *Lastifil* 812; в – покрытие из стали 02Х17Н11М2

Рис. 3. Характерные микроструктуры газотермических покрытий из различных сталей, полученных методом BM с использованием горючего газа МАФ, прошедших ионно-плазменное азотирование при 740 К (8 часов): а – покрытие из стали 40Х13; б – покрытие из стали Lastifil 812; в – покрытие из стали 02Х17Н11М2

Глубина азотированных слоев в исходных проволоках и в напыленных из них газотермических покрытиях, а также микротвердость слоев приведены в таблице 2.

7	аблииа	2
-	cicilitititi	_

Глубина азотированных слоев в проволоке и в покрытиях, напыленных из высокохромистых проволочных сталей (в скобках указана микротвердость азотированного слоя)

Материал	Глубина азотированного слоя в	Глубина азотированного слоя в		
	покрытии, мкм	проволоке, мкм		
40X13	30-40 (1050 HV 0,01)	15-20 (1100 HV 0,01)		
Lastifil 812	25-35 (1000 HV 0,01)	10-20 (1050 HV 0,01)		
02X17H11M2	15-20 (1100 HV 0,01)	5-10 (1150 HV 0,01)		

Из данных, представленных в таблице 2, можно видеть, что глубина азотированных слоев в проволочных сталях в ≈ 2 раза меньше, чем глубина слоя в газотермических покрытиях, сформированных из этих проволок (рисунок 3, 4). При этом значения микротвердости азотированных проволок несколько превышают значения микротвердости соответствующих газотермических покрытий (таблица 2). Для объяснения указанных различий в глубине азотированных слоев и в значениях их микротвердости необходимо рассмотреть данные фазовому составу ионно-модифицированных по покрытий. Рентгеновские дифрактограммы от поверхностных слоев проволок и покрытий, подвергнутых ионно-плазменному азотированию, представлены на рисунке 5. Фазовый состав проволок и покрытий после ионно-плазменного азотирования приведен в таблице 3. Из данных рентгеноструктурного анализа можно видеть, что в процессе ионного азотирования во всех проволочных материалах наряду с нитридами железа ε -(*Fe*, *Cr*)₂₋₃*N* и γ' -(*Fe*, Cr)₄N выделяется большое количество нитрида CrN, а в молибденсодержащих сталях образуется нитрид Мо₂N (таблица 3). В то же время в газотермических покрытиях из этих же сталей после азотирования образуется относительно повышенное количество легированного хромом нитрида железа ε -(*Fe*, *Cr*)₂₋₃*N*, а также присутствуют нитриды *CrN*, *Mo*₂*N* и γ' -(*Fe*, $Cr)_4N$ (таблица 3). По-видимому, с указанным различием в фазовом составе азотированных слоев связаны относительно пониженные значения микротвердости ионномодифицированных газотермических покрытий по сравнению с проволоками. Кроме этого, необходимо отметить, что в фазовом составе азотированной проволоки из стали 02X17H11M2 и покрытия из этой стали регистрируется твердый раствор азота в матричной у-фазе с гексагонально искаженной ГЦК решеткой (у'_N-(Fe, Cr)) [8]. По данным [9] указанные искажения кристаллической решетки матричной у-фазы вызваны высокой концентрацией двойников и дефектов упаковки, генерируемых в процессе ионной обработки [10].

Рис. 4. Характерная микроструктура проволоки из стали 02X17H11M2, подвергнутой ионноплазменному азотированию при 740 К (8 часов)

Puc.5. Фрагменты рентгеновских (*CoK_α*) от поверхностных слоев проволок и газотермических покрытий, подвергнутых ионно-плазменному азотированию при 740 К (8 часов):
а, в, д – проволоки из сталей 40Х13, *Lastifil* 812, 02Х17Н11М2, соответственно; б, г, е – покрытия из сталей 40Х13, *Lastifil* 812, 02Х17Н11М2, соответственно

Таблица 3

Фазовый состав газотермических покрытий и исходных проволочных материалов после ионно-	
плазменного азотирования при 740 К (8 часов)	

Моторион	Фазовый состав				
материал	Проволока	Покрытие			
40X13	α-(Fe, Cr), CrN, ε-(Fe, Cr) ₂₋₃ N,	α -(Fe, Cr), ε -(Fe, Cr) ₂₋₃ N,			
	γ' -(Fe, Cr) ₄ N, γ -(Fe, Cr)	γ' -(Fe, Cr) ₄ N, CrN, γ -(Fe, Cr), Fe ₃ O ₄			
Lastifil 812	α-(Fe, Cr), CrN, ε-(Fe, Cr) ₂₋₃ N,	α-(Fe, Cr), ε-(Fe, Cr) ₂₋₃ N, CrN,			
	γ -(Fe, Cr), γ '-(Fe, Cr) ₄ N, Mo ₂ N	γ' -(Fe, Cr) ₄ N, Mo ₂ N, γ -(Fe, Cr), Fe ₃ O ₄			
02X17H11M2	CrN, γ'_N -(Fe, Cr), ε -(Fe, Cr) ₂₋₃ N,	ε -(Fe, Cr) ₂₋₃ N, γ'_N -(Fe, Cr), CrN, γ' -(Fe,			
	γ' -(Fe, Cr) ₄ N, γ -(Fe, Cr), α -(Fe, Cr), Mo ₂ N	$Cr)_4N$, γ -(Fe, Cr), α -(Fe, Cr), Mo_2N , Fe_3O_4			

Пониженная глубина азотированных слоев в проволочных высокохромистых сталях по сравнению с глубиной слоев в газотермических покрытиях из этих сталей связана с относительно более низкой диффузионной подвижностью атомов азота в монолитных материалах. При этом повышенная скорость диффузии атомов азота в напыленных газотермических покрытиях обусловлена высокой концентрацией дефектов кристаллической решетки в матричных фазах покрытий (вакансий, дислокаций), а также пониженным содержанием в них атомов хрома, который существенно снижает диффузионную подвижность атомов азота [11]. Уменьшение концентрации хрома в матричных фазах покрытий связано с окислением хрома в процессе газотермического распыления проволок [11]. В [11] показано, что напыленные металлические частицы покрытия содержат концентрацию этого легирующего элемента, а оксидные прослойки пониженную характеризуются его повышенным содержанием. В частности, на рисунке 6 представлено распределение хрома по глубине поверхностного слоя газотермического покрытия из стали 40Х13, напыленного методом BM с использованием пропана. Можно видеть, что в тонких (\approx 1,5-3,0 мкм) металлических прослойках, регистрируется пониженная концентрация хрома, составляющая $\approx 10,0-12,5$ масс.% (рисунок 6). При этом, оксидные прослойки, вследствие высокого сродства хрома к кислороду, содержат относительно повышенную концентрацию хрома (до ≈ 23 масс.%), которая существенно (в ≈ 2 раза) превышает его номинальное содержание в исходном проволочном материале (таблица 1, рисунок 6). Принимая во внимание, что в процессе напыления происходит интенсивное окисление частиц распыляемой стали можно полагать, что на металлических частицах малого диаметра (до \approx 20 мкм), которые характеризуются высокой удельной площадью поверхности (рисунок 7, *a*), образуется оксидный слой, составляющий до 30-80 % объема всей частицы (рисунок 7, б). Таким образом, значительная часть атомов хрома, в газотермическом покрытии, сформированном преимущественно из мелких частиц, будет находиться в оксидных прослойках, а металлические слои будут содержать относительно пониженную концентрацию хрома, что способствует ускорению диффузионного переноса азота в процессе ИПА.

Рис. 6. Распределение хрома по глубине (*h*) поверхностного слоя газотермического покрытия из стали 40X13, полученного методом ВМ с использованием пропана

Рис. 7. Зависимость удельной площади поверхности ($S_{yd} = S_{u}/V_{u}$, где S_{u} – площадь поверхности частицы; V_{u} – объем частицы) (*a*) и удельного окисленного объема V_{ok}/V_{u} (*б*) от размера *d* напыляемых частиц

Кроме того, вклад в уменьшение диффузионной подвижности атомов азота в проволочных высокохромистых сталях может быть связан с явлением восходящей диффузии атомов хрома в азотированный слой в процессе ИПА [11]. При этом, общая концентрация хрома в азотированных слоях существенно повышается относительно его номинального содержания. В то же время в газотермических покрытиях процессы диффузионного переноса атомов хрома из более глубоких слоев к азотированному слою затруднены, так как между отдельными напыленными частицами покрытия находятся непроницаемые/полупроницаемые для диффузии оксидные прослойки Fe_3O_4 [12].

Таким образом, можно сделать вывод, что ионное азотирование газотермических покрытий из высокохромистых сталей будет приводить к формированию в них относительно более глубоких азотированных слоев по сравнению с монолитными проволочными сталями. Формирование более глубоких азотированных слоев в газотермических покрытиях из высокохромистых сталей связано с пониженным содержанием в них хрома относительно их концентрации в исходных проволочных сталях, наличием большого количества пор и дефектов кристаллического строения матричных фаз, а также с замедлением процессов восходящей диффузии хрома оксидными прослойками, расположенными на границах напыленных частиц.

Заключение

Исследовано структурно-фазовое состояние и дюрометрические свойства проволочных сталей 40X13, *Lastifil* 812, 02X17H11M2, а также газотермических покрытий, полученных методом высокоскоростной металлизации этих проволок с использованием высокоэнтальпийного горючего газа МАФ, в исходном состоянии и после ионноплазменного азотирования при 740 К. Установлено, что напыление газотермических покрытий из мартенситных сталей 40X13 и *Lastifil* 812 приводит к формированию покрытий с аномально высоким содержанием γ -фазы, составляющим 18 и 19 об.%, соответственно.

Проведено ионно-плазменное азотирование газотермических покрытий из высокохромистых сталей 40X13, *Lastifil* 812 и 02X17H11M2, напыленных методом высокоскоростной металлизации с использованием горючего газа МАФ. Показано, что в результате ионного азотирования покрытий в их поверхностных слоях образуются модифицированные азотом слои толщиной до 40 мкм, содержащие легированные хромом нитриды железа ε -(*Fe*, *Cr*)₂₋₃*N*, γ' -(*Fe*, *Cr*)₄*N*, а также нитриды *CrN*, *Mo*₂*N*. Кроме того в

фазовом составе покрытия из аустенитной стали 02X17H11M2 регистрируется твердый раствор азота в матричной γ -фазе с гексагонально искаженной ГЦК решеткой (γ'_N -(*Fe*, *Cr*)). Установлено, что глубина азотированных слоев, в газотермических покрытиях из высокохромистых сталей в ≈ 2 раза больше глубины слоев, формирующихся в аналогичных проволочных сталях. Сделано заключение, что повышенная глубина азотированных слоев в газотермических покрытиях из высокохромистых сталей связана с пониженным содержанием в них хрома, повышенной концентрацией дефектов кристаллического строения матричных фаз покрытий, а также с замедлением процессов восходящей диффузии атомов хрома оксидными прослойками, располагающимися на границах металлических напыленных частиц.

Список литературы

1. Белоцерковский М.А., Прядко А.С. Активированное газопламенное и электродуговое напыление покрытий проволочными материалами // Упрочняющие технологии и покрытия. – 2006. – № 12 – С. 17–23.

2. Белоцерковский М.А. Технологии активированного газопламенного напыления антифрикционных покрытий. – Минск: Технопринт, 2004. – 200 с.

3. Белоцерковский М.А., Прядко А.С., Черепко А.Е. Методы и оборудование для формирования высокоэнергетических двухфазных потоков // Физика плазмы и плазменные технологии. – Минск, 1997. – Т. 4. – С. 670–673.

4. Влияние ионно-лучевого азотирования на структурно-фазовое состояние и триботехнические свойства экономичных газотермических покрытий из проволочных сталей различных классов / В.А. Кукареко, М.А. Белоцерковский, А.В. Белый, А.Н. Григорчик // Трение и износ. – 2013. – Т. 34, № 6. – С. 621–627.

5. Григорчик А.Н., Кукареко В.А., Белоцерковский М.А. Износостойкость гиперзвуковых газотермических покрытий из сталей различных классов, подвергнутых ионно-плазменному азотированию // Вестник Белорусского государственного университета транспорта. – 2016. – № 1. – С. 308–311.

6. Структурно-фазовое состояние и износостойкость в условиях граничного трения обработанных ионами азота газотермических покрытий из сталей различных классов / В.А. Кукареко, А.В. Белый, М.А. Белоцерковский, А.Н. Григорчик // Трение и износ. – 2015. – Т. 36, № 6. – С. 661–670.

7. О природе формирования метастабильной аустенитной структуры при газотермическом напылении высокохромистой стали мартенситного класса 95Х18 / В.А. Кукареко, А.Н. Григорчик, М.А. Белоцерковский, А.В. Сосновский // Упрочняющие технологии и покрытия. – М., 2017. – Т. 13, № 7 (151). – С. 318–322.

8. Белый А.В., Кукарек В.А., Патеюк А. Инженерия поверхностей конструкционных материалов концентрированными потоками ионов азота. – Минск: Белорусская наука, 2007. – 244 с.

9. Формирование и свойства наноструктурных поверхностных слоев в аустенитных сталях подвергнутых ионно-лучевому азотированию / А.В. Белый, В.А. Кукареко, И.И. Таран, С.К. Ших, С.Г. Сандомирский // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. – 2006. – № 7. – С. 100–106.

10. *Riviere J.P., Meheust P., Villain J.P.* Wear resistance after low-energy high-flux nitrogen implantation of AISI 304L stainless steel // Surface and Coatings Technology. – 2002. – Vol. 158–159. – P. 647–652.

11. Закономерности диффузии азота в процессе ионно-лучевого азотирования газотермического покрытия из аустенитной стали 06Х19Н9Т / А.Н. Григорчик, В.А.

Кукареко, А.В. Белый, М.А. Белоцерковский, Б.Б. Хина // Механика машин, механизмов и материалов. – 2016. – № 2. – С. 75–80.

12. Особенности формирования модифицированного азотом слоя при ионно-лучевой обработке гиперзвукового газотермического покрытия из аустенитной стали / А.Н. Григорчик, В.А. Кукареко, А.В. Белый, М.А. Белоцерковский // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. – 2016. – № 7. – С. 41–46.

STRUCTURAL-PHASE STATE OF THERMAL SPRAYED COATINGS FROM HIGH-CHROMIUM STEELS DEPOSITED USING HIGH-ENTHALPY COMBUSTIBLE GAS

Belotserkovskii M.A.¹, D.Sc. (Engineering), Associate Professor, e-mail: mbelotser@gmail.com **Grigorchik A.N.¹**, Ph.D. (Engineering), e-mail: Grigorchik_a_n@mail.ru **Kukareko V.A.¹**, D.Sc. (Physics and Mathematics), Professor, e-mail: v_kukareko@mail.ru **Konstantinov V.M.**² D.Sc. (Engineering), Professor, e-mail: v_m konst@mail.ru

¹ The State Scientific Institution "Joint Institute of Mechanical Engineering of the National Academy of Sciences of Belarus", 12 Akademicheskaya str., Minsk, 220072, Republic of Belarus

² Belorussian national technical university, 65 Nezavisimosty Avenue, Minsk, 220137, Republic of Belarus

Abstract

Comparative study of the structural-phase state and microhardness of modified nitrogen ions wire steel and thermal sprayed coatings deposited using combustible gas MAF from high-chromium steel 40Cr13, Lastifil 812, 02Cr17Ni11Mo2 was conducted. It is shown that the increased depth of nitride layers in thermal sprayed coatings from high-chromium steel is associated with the acceleration of nitrogen diffusion in coatings of these steel due to a lower content of chromium in them and high defectiveness of crystal of matrix coating phases.

Keywords

thermal spray coating, ion-plasma nitriding, depth of nitrided layer, structural-phase state, microhardness