равенстве касательных усилий, развиваемых колесами противоположных бортов. Дальнейшее увеличение наклона трактора вновь приводит к появлению разворачивающего момента, правда противоположно направленного. При этом его величина также несколько выше для блокированного привода, чем для дифференциального (рис. 1,6).

Тяговые свойства трактора оценивались по величине буксо – вания колес заднего моста. Установлено, что изменение положения остова и ходовой части трактора в поперечной плоскости влияет на его буксование, составившее, например, при нормальном расположении трактора 18 и 20% против 14,8 и 15,9% при вертикальном положении соответственно для блокированного и дифференциального приводов. При дальнейшем наклоне трактора в сторону вершины склона буксование возрастает. Так, наклону в 0,175 рад соответствует буксование уже 16 и 16,9%.

Таким образом, результаты полевых исследований дают основание считать в качестве выходного параметра системы автоматической стабилизации крутосклонных тракторов наклонное в сторону вершины склона положение остова и ходовой части в функции крутизны склона.

Литература

1. Яцкевич В.В., Зеленый П.В. Автоматическая система повышения курсовой устойчивости крутосклонного трактора. – В сб.: Автотракторостроение. Автоматизированные системы управления автомобилей, тракторов и их двигателей. Мн., 1978.вып 10. 2. Яцкевич В.В., Зеленый П.В. К определению величины выходного параметра системы автоматической стабилизации крутосклонного трактора. – В сб.: Автотракторостроение. Автоматические системы управления мобильными машинами. Мн., 1979, вып. 12.

УДК 62-585.2.001.6

О.П.Лапотко, Н.Я.Онегина

МЕТОД ОЦЕНКИ СРОКА СЛУЖБЫ РАБОЧЕЙ ЖИДКОСТИ ОБЪЕМНОЙ ГИДРОПЕРЕДАЧИ С ПОМОЩЬЮ ИК-СПЕКТРОСКОПИИ

Существует определенная взаимосвязь между физико – хими – ческими и функциональными свойствами рабочей жидкости, а также параметрами гидросистемы. Эксплуатационный спектр

нагрузок, воздействующий на рабочую жидкость — давление, температура, скорость, загрязнение, наличие воды и воздуха, — вызывает, с одной стороны, старение жидкости, сопровождающееся ее окислением, термическим разложением, поляризацией, деструкцией молекул, а с другой — износ конструктивных элементов. Процесс старения жидкости связан с процессом износа конструктивных элементов косвенно, через образующиеся продукты старения, или непосредственно вследствие необратимых изменений основных физико-химических свойств (вязкости, кислотности). Износ конструктивных элементов воздействует на процесс старения рабочей жидкости [1].

О старении масла судят по изменению физико-химических свойств (вязкости, кислотности, щелочности, цвета), определяемых стандартными лабораторными методами испытаний, или по изменению функциональных свойств (противоизносных, смазоч – ных и др.), определяемых по соответствующим методам [1].

Оценка сроков службы рабочих жидкостей с применением этих методов требует долгосрочных испытаний с тем, чтобы показать кинетику изменений, происходящих в рабочей жидкости под воздействием нагрузок и приводящих к утрате жидкостью функциональных свойств — старению. Кроме того, эти методы достаточно дороги, требуют большого объема испытуемой жидкости.

Для исследований структуры углеводородов (масел нефтяно-го происхождения) применяют инфракрасную спектроскопию (ИК-спектроскопию), с помощью которой изучалась термоокислительная стабильность моторных масел с различной композицией присадок [2]. Кроме того, ИК-спектроскопия применялась для изучения влияния присадок на окисление моторного масла, для расшифровки композиций присадок, для идентификации по ИК-спектрам товарных образцов масел [3].

Спектр инфракрасного поглощения минерального масла представляет собой сплошной фон поглощения с выделяющимися на нем максимумами характеристических полос. Сравнение характеристических полос поглощения рабочей жидкости с полосами подобных и уже известных соединений дает возможность определить тип данного соединения, т.е. позволяет провести качественную оценку структуры рабочей жидкости, и отражает состочине связей в молекуле масла. Интенсивность полосы поглощения пропорциональна количеству тех или иных молекулярных групп масла исследуемого вещества, что дает возможность провести количественный анализ.

ИК-спектры масел записываются двумя способами: I прямым, относительно воздуха и II – дифференциальным, относительно масла-растворителя или масла в исходной композиции.

Спектры І отражают состав данной пробы в целом.

Спектры II получают в результате компенсации поглощения идентичных составных частей в двух пробах. Они отражают состав продуктов окисления и деструкции молекул смеси, а также наглядно иллюстрируют накопление продуктов окисления за время опыта.

Интенсивность полос поглощения ИК-спектра выражают одним из трех способов:

1) оптической плотностью в максимуме полосы

$$K_1 = \frac{1}{d} \lg \frac{I_o}{I_{max}};$$

2) интегральной оптической плотностью полосы

$$K_2 = \frac{1}{d} \int_{v_1}^{v_2} \lg \frac{I_o}{I} dv;$$

3) средней оптической плотностью

$$K_3 = \frac{1}{d(\gamma_2 - \gamma_1)} \int_{1}^{\gamma_2} \lg \frac{I_0}{I} d\gamma,$$

 I_Q , I – интенсивность падающего света и прошедшего через образец; ν – частота, см $^{-1}$; d – толщина кюветы, см.

Для разработки метода оценки и прогнозирования сроков службы рабочих жидкостей в объемных гидроприводах машин мы применили ИК-спектроскопию масла в процессе ресурсных испытаний гидропередач фирмы "Зауэр" в стендовых условиях. Параметры нагрузки объемной гидропередачи следующие:

- 1) давление нагнетания, МПа 30;
- 2) частота вращения вала насоса (гидромотора), c^{-1} 37,5;
- 3) температура рабочей жидкости, оС 85;
- 4) время ресурсных испытаний, ч 300;
- 5) рабочая жидкость масло МГЕ 32В.

При испытании гидропередачи через 50 ч работы отбирались пробы масла, определялись лабораторным методом физико-химические параметры масла и записывался ИК-спектр на двухлучевом спектрофотометре UR -20 прямым и дифференциальным способом.

Исходные физико-химические параметры масла следующие:

- 1) вязкость при +40°С, (сСт) 35,4, +50°С, (сСт) 26,4; 2) плотность при +20°С кг 3 0,8861;
- 3) кислотное число мг КОН/г 0,89.

На рис. 1 представлен ИК-спектр свежего масла МГЕ-32 В, записанный прямым способом с толщиной слоя d = 0,22 мм.

По характеристическим полосам можно установить в масле соединений со следующими функциональными группами:

Функциональные группы

Частота, cm^{-1} 3000-2800 - поглощение обусловлено валентными колебаниями С-Н, метильная, метиленовая группы (CH_3 , CH_2). тенсивность полос зависит от числа метиленовых и метильных групп молекуле углеводорода; 1740 - поглощение карбонильные соединений C = 0: - валентные колебания С=С (алкены): 1640 - деформационные колебания метильной 1460 группы СН2; - деформационные колебания метильной 1380 группы СН2; - поглощение аминов C - N : 1300-1000 1200-700 - валентные колебания углеродного скелета: - деформационные колебания N-H 900-650

Отнесение характеристических полос выполнено на основании литературных данных [4].

группы аминов.

В спектре масла, отработавшего 300 ч, наблюдается отсутствующая у свежего масла полоса поглощения кислородсодержащих функциональных групп в области 3600-3000 см⁻¹, также увеличение интенсивности полосы поглощения на частоте 1740 см^{-1} . Для количественной оценки окисленного принято использовать полосу на частоте $1700-1740 \text{ см}^{-1}$, оп-

тическая плотность которой пропорциональна содержанию карбонильных групп конечных продуктов окисления, снижающих эксплуатационные свойства масла, вызывающих рост вязкости, кислотного числа, осадка [2]. По кинетике накопления карбонильного поглощения можно судить о скорости окисления, о качественных изменениях рабочей жидкости.

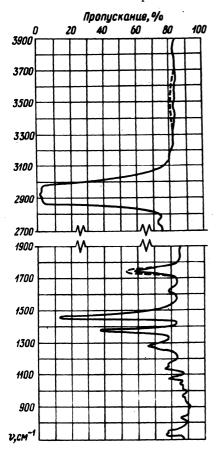


Рис. 1. Инфракрасный спектр масла МГЕ-32В: свежее масло; — — — рабо-

тавшее в гидропередаче.

Проведенный физико-химический анализ масла не показал изменения вязкости кислотного числа.

Исследования срока службы масла МГЕ-32В в объемной гидропередаче показали. что основной групповой химический состав масла остался неизменным, хотя произошло незначительное окисление его Параметры нагрузки гидропередачи, особенно температура масла в объеме – 85^оС и время ресурсных испытаний -.300 ч. не могли привести к серьезным изменениям функ циональных и физико-химическим свойств рабочей жидкости, которые бы потребовали полной замены масла внесения сработавшихся присадок. Это говорит о бильности масла, о его пригодности для дальнейшей эксплуатации.

Таким образом, метод оценки качества рабочей жинкости с помощью ИК-спектроскопии, опробованный при испытании объемной гидроперопачи с наибольшей точностым по сравнению

существующими методами может быть применен для объектии ной абсолютной оценки структурных изменений, происходящих маслах при функционировании гидроприводов.

Литература

1. Лапотко О.П. Функциональная эффективность рабочих жидкостей гидроприводов машин. – В кн.: Развитие методов исследования трибологических явлений в машинах. Мн., 1976. 2. ИК-спектрометрический метод оценки окисляемости масел/Г.Т.Вигант, Г.И.Крылова, Н.Г.Юрченко, Л.Л.Калинина. – Химия и технология топлив и масел. 1978. № 4. 3. Виппер А.Б., Тарасов В.А. Исследование структурных изменений полимерных соединений с сукцинимидной группировкой при окислении минерального масла. – Журнал прикладной химии, 1970. № 7. 4. Казицина Л.А., Куплетская Н.Б.Применение УФ-, ИК- и ЯМР-спектроскопии в органической химии. – М., 1971.

УДК 629.113

А.Т.Скойбеда, А.Ю.Носик, А.А.Шавель, П.Н.Степанюк, А.М.Тенетко

О ВЗАИМОДЕЙСТВИИ ТРАКТОРНЫХ ШИН С ПОЧВОЙ РИСОВЫХ ЧЕКОВ

Характер взаимодействия тракторных шин с почвой рисовых чеков, залитых водой, зависит от различных фазовых состояний грунта по глубине. Верхний, насыщенный водой слой глубиной до 0,1 м обладает низкой сопротивляемостью сдвигу — $\mathfrak{T} = 0,018$ МПа. Средний, основной обрабатываемый почвенный слой имеет относительную влажность 38-40% и сопротивление сдвигу $\mathfrak{T} = 0,052$ МПа. Нижний, необрабатываемый, слой является подстилающим по отношению к первым двум и имеет сопротивление сдвигу $\mathfrak{T} = 0,063$ МПа и влажность до 35% (табл. 1).

Таблица 1. Характеристика почвы рисовых чеков

Глубина пахотного слоя, м	Влажность, %		Объем-	Сопроти-	Сцепле-	
	в поле	в моно- лите	ная масса, кг/м ³	вление сдвигу, МПа	ние, МПа	циент внутрен- него трения
0-01 0,1-0,2 0,2-0,4	51,5 37,0 34,5	40,3 33,2 32,0	1250 1380 1410	0,018 0,052 0,063	0,012 0,043 0,050	0,06 0,12 0,15