ЛОКАЛЬНЫЕ ФОРМЫ КОЛЕБАНИЙ КОЛЬЦЕВОЙ ПЛАСТИНЫ С НЕКОНЦЕНТРИЧЕСКИМ КРУГОВЫМ ВЫРЕЗОМ

Славашевич И. Л., Михасев Г. И.

«Белорусский государственный университет», Минск

Введение.

В данной работе представлена математическая модель колебания пластины, моделирующей мертвые колебания барабанной перепонки при тимпанопластике и стапедотомии [1], которые не стимулируют движение протеза. В работе [2], были исследованы собственные частоты колебательной системы РСУ при тимпанопластике и стапедотомии, которые сильно зависят от параметров трансплантации хряща, массы протеза и точки его размещения на реконструированной барабанной перепонке. Большой интерес представляет исследование собственных частот, соответствующих колебаниям барабанной перепонки, анатомическая форма которой близка к эллипсу, в случае неподвижности протеза, и в зависимости от расположения протеза на реконструированной тимпанальной мембране.

Основной целью данной работы является исследование малых свободных пластины с неконцентрическим колебаний кольцевой круговым вырезом, характеризуемых локализацией собственных форм вблизи некоторого радиуса. Формальное асимптотическое решение строится с использованием метода Товстика [3]. Собственные частоты, соответствующие локализованным формам колебаний, находятся при отсутствии узловых диаметров. В работе показана зависимость частот от параметра, характеризующего эксцентриситет выреза. Подобное асимптотическое исследование колебаний пластинки проведено в работе [4], в которой исследованы формы колебаний круговой кольцевой пластинки с возможные локальные эксцентрическим круговым вырезом.

Постановка задачи. Разрешающие уравнения.

Рассмотрим тонкую кольцевую пластину с внешними радиуса a_1 и a_2 и неконцентрическим круговым вырезом радиуса b_p (рисунок 1). Центр кругового выреза O_1 находится на расстоянии δ от центра O_2 и характеризуется углом наклона θ_c к оси Ox.

Колебания упругой изотропной пластинки будем описывать, используя классическое уравнение [3], записанное в полярной системе координат с центром в точке O_1 :

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \varphi^2}\right)^2 W(r,\varphi) - \frac{\sigma h \omega^2}{D}W(r,\varphi) = 0$$
(1)

Здесь $D = Eh^3/[12(1-v^2)]$ – цилиндрическая жесткость пластины, ω – собственная частота колебаний, E, v, ζ – модуль упругости, коэффициент Пуассона пластинки (хряща) и плотность хряща, соответственно, h – толщина пластины.

Рисунок 1 – Кольцевая пластина с эксцентрическим круговым вырезом

Пусть пластина занимает область, ограниченную двумя замкнутыми кривыми γ_1 и γ_2 . В выбранной полярной системе координат эти линии задаются уравнениями $r=r_1(\theta)$ и $r=r_2(\theta)$, соответственно. Будем считать, что $r_1(\theta) \leq r \leq r_2(\theta)$.

На внешнем и внутреннем контурах рассмотрим условия жесткого защемления:

$$W(r,\phi) = \frac{\partial W(r,\phi)}{\partial r} = 0 \text{ при } r = r_1(\theta),$$
(2)

$$W(r, \phi) = \frac{\partial W(r, \phi)}{\partial r} = 0 \text{ при } r = r_2(\theta).$$
(3)

Решение краевой задачи.

В выбранной системе координат будем иметь

$$r_1(\varphi) = b, \tag{4}$$

$$r_{2}(\varphi) = F(a_{1}, a_{2}, \delta, \varphi_{c}, \varphi).$$
(5)

Разложим функцию $r_2(\theta)$ в ряд по степеням θ , в окрестности точки θ_0 , в которой первая производная от $r_2(\theta)$, обращается в ноль:

$$r_{2}(\varphi) = R \left(1 - \frac{1}{2} \left(\frac{\delta}{a_{2}} \right)^{2} A \varphi^{2} + \dots \right), \tag{6}$$

где R – размерная величина, зависящая от внешних радиусов a_1 , a_2 , и параметра δ , а A – константа, которая в силу громоздкости не приводятся.

Перейдем к безразмерным величинам

$$\rho = \frac{r}{R}, \quad w(\rho, \theta) = W(r, \theta)/R \tag{7}$$

Тогда уравнение (1) и граничные условия (2), (3) примут вид:

$$\left(\frac{\partial^2}{\partial\rho^2} + \frac{1}{\rho}\frac{\partial}{\partial\rho} + \frac{1}{\rho^2}\frac{\partial^2}{\partial\phi^2}\right)^2 w(\rho,\phi) - \lambda w(\rho,\phi) = 0, \qquad (8)$$

$$w(\rho, \phi) = \frac{\partial w(\rho, \phi)}{\partial \rho} = 0 \text{ при } \rho = \frac{b_p}{R}$$
(9)

$$w(\rho, \varphi) = \frac{\partial w(\rho, \varphi)}{\partial \rho} = 0 \quad \text{при} \quad \rho = 1 - \frac{1}{2} \left(\frac{\delta}{a_2}\right)^2 A \varphi^2 + O(\varphi^4), \tag{10}$$

где $\lambda = \zeta h \omega^2 R^4 / D$ – безразмерный частотный параметр. Пусть

$$\varepsilon = \frac{\delta}{a_2} \ll 1. \tag{11}$$

- малый параметр. Сделаем замену переменной

$$\varphi = \varepsilon^{-\frac{1}{2}} \xi \,. \tag{12}$$

Тогда в новых переменных задача (8) – (10) примет вид

$$\left(\frac{\partial^2}{\partial\rho^2} + \frac{1}{\rho}\frac{\partial}{\partial\rho} + \frac{\varepsilon}{\rho^2}\frac{\partial^2}{\partial\xi^2}\right)^2 w(\rho,\xi) - \lambda w(\rho,\xi) = 0$$
(13)

$$w(\rho,\xi) = \frac{\partial w(\rho,\xi)}{\partial \rho} = 0$$
 при $\rho = \frac{b_p}{R}$ (14)

$$w(\rho,\xi) = \frac{\partial w(\rho,\xi)}{\partial \rho} = 0 \quad \text{при} \quad \rho = 1 - \frac{A}{2} \varepsilon \xi^2 + O(\xi^4), \quad (15)$$

Решение краевой задачи (13)-(15) будем искать в виде [3]:

$$w(\rho,\xi) = \sum_{k=0}^{\infty} \varepsilon^k w_k(\rho,\xi) , \qquad (16)$$

$$\lambda = \sum_{k=0}^{\infty} \varepsilon^k \lambda_k , \qquad (17)$$

где $\omega_k(\rho,\xi) \rightarrow 0$ при $|\xi| \rightarrow \infty$.

Подставляя (16), (17), (18), в (13)–(15), приходим к последовательности краевых задач. В нулевом приближении (при k=0) будем иметь однородную краевую задачу:

$$\left(\frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho}\frac{\partial}{\partial \rho}\right)^2 w_0(\rho,\xi) - \lambda_0 w_0(\rho,\xi) = 0$$
(18)

$$w_0(\rho,\xi) = \frac{\partial w_0(\rho,\xi)}{\partial \rho} = 0 \quad \text{при } \rho = \frac{b_p}{R} = b \tag{19}$$

$$w_0(\rho,\xi) = \frac{\partial w_0(\rho,\xi)}{\partial \rho} = 0 \quad \text{при } \rho = 1 \tag{20}$$

Общее решение этой задачи ищем в виде [3]:

$$w_0(\rho,\xi) = P_0(\xi) w_0(\rho),$$
 (21)

$$w_0(\rho) = C_1 J_0(\lambda_0^{1/4} \rho) + C_2 Y_0(\lambda_0^{1/4} \rho) + C_3 I_0(\lambda_0^{1/4} \rho) + C_4 K_0(\lambda_0^{1/4} \rho), \qquad (22)$$

где $P_0(\xi)$ – неизвестная функция, удовлетворяющая на бесконечности условию затухания ($P_0(\xi) \rightarrow 0$), $J_0(x)$, $Y_0(x)$ – функции Бесселя первого и второго рода нулевого порядка, а $I_0(x)$, $K_0(x)$ – модифицированные функции Бесселя первого и второго рода нулевого рода нулевого порядка.

Подставляя (21) в граничные условия (19) и (20), приходим к системе уравнений:

$$\begin{cases} C_{1}J_{0}\left(\lambda_{0}^{1/4}b\right) + C_{2}Y_{0}\left(\lambda_{0}^{1/4}b\right) + C_{3}I_{0}\left(\lambda_{0}^{1/4}b\right) + C_{4}K_{0}\left(\lambda_{0}^{1/4}b\right) = 0 \\ C_{1}J_{0}'\left(\lambda_{0}^{1/4}b\right) + C_{2}Y_{0}'\left(\lambda_{0}^{1/4}b\right) + C_{3}I_{0}'\left(\lambda_{0}^{1/4}b\right) + C_{4}K_{0}'\left(\lambda_{0}^{1/4}b\right) = 0 \\ C_{1}J_{0}\left(\lambda_{0}^{1/4}\right) + C_{2}Y_{0}\left(\lambda_{0}^{1/4}\right) + C_{3}I_{0}\left(\lambda_{0}^{1/4}\right) + C_{4}K_{0}\left(\lambda_{0}^{1/4}\right) = 0 \\ C_{1}J_{0}'\left(\lambda_{0}^{1/4}\right) + C_{2}Y_{0}'\left(\lambda_{0}^{1/4}\right) + C_{3}I_{0}'\left(\lambda_{0}^{1/4}\right) + C_{4}K_{0}'\left(\lambda_{0}^{1/4}\right) = 0 \end{cases}$$
(23)

относительно неизвестных C_i . Здесь и ниже штрих обозначает дифференцирование по р. Приравнивая определитель данной системы к нулю, получаем уравнение для определения параметра λ_0 .

$$G(\lambda_0) = 0. \tag{24}$$

Пусть $\lambda_0 = \lambda_0^{(l)}$ – корни уравнения (24), которые образуют счетное множество (l=1,2,3...).

В первом приближении имеем неоднородное уравнение:

$$\left(\frac{\partial^2}{\partial\rho^2} + \frac{1}{\rho}\frac{\partial}{\partial\rho}\right)^2 w_1(\rho,\xi) - \lambda_0 w_1(\rho,\xi) = \lambda_1 P_0(\xi) w_0(\rho) + \left[-\frac{2}{\rho^2} w_0''(\rho) - \frac{2}{\rho^3} w_0'(\rho)\right]\frac{\partial^2 P_0}{\partial\xi^2}$$
(25)

С неоднородными граничными условиями

$$w_1(\rho,\xi) = \frac{\partial w_1(\rho,\xi)}{\partial \rho} = 0 \quad \text{при } \rho = \frac{b_p}{R} = b \tag{26}$$

$$w_1(\rho,\xi) = \frac{\partial w_1(\rho,\xi)}{\partial \rho} = \frac{A}{2} \xi^2 P_0(\xi) w_0''(1) \text{ при } \rho = 1$$
(27)

Задача (25)-(27) является неоднородной задачей на спектре. Для того, чтобы задача имела решение, необходимо потребовать выполнение условия разрешимости [5]. После некоторых преобразований данное условие может быть сведено к дифференциальному уравнению относительно функции P_0 :

$$\delta_1 \frac{\partial^2 P_0(\xi)}{\partial \xi^2} + \left(\lambda_1 \delta_0 - \xi^2 \delta_2\right) P_0(\xi) = 0$$
⁽²⁸⁾

где

$$\delta_0 = \int_b^1 \rho(w_0(\rho))^2 d\rho, \qquad (29)$$

$$\delta_1 = 2 \int_b^1 \frac{w_0(\rho)}{\rho^2} \left[-\rho w_0''(\rho) - w_0'(\rho) \right] d\rho , \qquad (30)$$

$$\delta_2 = \frac{A}{2} \left(w_0''(1) \right)^2. \tag{31}$$

Уравнение (28) имеет решение, которое удовлетворяет условию затухания ($P_0(\xi) \rightarrow 0$ при $|\xi| \rightarrow \infty$), если

$$\delta_1 \delta_2 > 0, \, \delta_0 > 0. \tag{32}$$

В этом случае будет существовать серия решений

$$P_0(\xi) = P_0^{(n)}(\xi) = H_n(\eta) e^{-\frac{\eta^2}{2}}, \ \eta = \sqrt[4]{\frac{\delta_1}{\delta_2}\xi},$$
(33)

$$\lambda_1 = \lambda_1^{(n)} = \frac{1}{\delta_0} \sqrt{\delta_1 \delta_2} (1 + 2n), n=0, 1, 2...$$
 (34)

Удовлетворяющая условию затухания. Здесь $H_n^{(\eta)}$ – полиномы Эрмита, где $H_0=1$, $H_1=\eta$, $H_2=\eta^2-1/2,...$

Произведенные расчеты показывают, что условие (32) выполняется. Следовательно, функция

$$w_{0}(\rho,\xi) = H_{n}\left(\sqrt[4]{\frac{\delta_{1}}{\delta_{2}}}\xi\right)e^{-\frac{\sqrt{\delta_{2}}\xi^{2}}{2}}\left\{C_{1}J_{0}\left(\lambda_{0}^{1/4}\rho\right) + C_{2}Y_{0}\left(\lambda_{0}^{1/4}\rho\right) + C_{3}I_{0}\left(\lambda_{0}^{1/4}\rho\right) + C_{4}K_{0}\left(\lambda_{0}^{1/4}\rho\right)\right\}.$$
(35)

есть нулевое приближение разложения (16) собственной формы колебаний пластины в окрестности –елабого" радиуса $\theta = \theta_0$, а

$$\lambda = \lambda_0^{(l)} \left(1 + \varepsilon \chi^{(l,n)} + O\left(\varepsilon^2\right) \right), \tag{36}$$

где $\chi^{(l,n)} = \lambda_0^{(l,n)} / \lambda_0^{(l)}$ — соответствующее собственное значение задачи (13)-(15), пропорциональное квадрату собственной частоты колебаний.

Численные результаты.

Расчеты были выполнены для модели с параметрами a_1 =4.8 мм, a_2 =5 мм, b_p =1.5 мм, E=3.4 H мм⁻², v=0.4, ζ =1.2 10⁻⁶ кг/мм³, h=0.3 мм, $\theta_c = \pi/8.05$ при различных значениях ε . Данные параметры соответствуют реконструированной барабанной перепонке среднего уха, изготовленной из хряща, и жестко скрепленной с T-образным протезом по внутреннему контуру [2].

Таблица 1. Зависимость параметров $\chi^{(l,n)}$ и частоты $\omega^{(l)}$ (Гц) от эксцентриситета выреза є.

3	$\lambda_0^{(1)}$	$\chi^{(1,0)}$	$\omega^{(I)}$	$\lambda_0^{(2)}$	$\chi^{(2,0)}$	$\omega^{(2)}$	$\lambda_0^{(3)}$	$\chi^{(3,0)}$	$\omega^{(3)}$
0,1	1832.11	0.6246	258	14007.2	0.31	684	54022.4	0.3516	1352
0.2	1613.38	0.5952	203	12339.3	0.419	571	47607.2	0.2645	1056
0.3	1448.66	0.5753	162	11082.6	0.491	447	42772.7	0.2258	846
0.5	1225.66	0.435	105	9379.31	0.5376	309	36219.6	0.3317	590

Из таблицы 1, в которой приведены результаты расчетов параметров $\lambda_0^{(l)}$, $\chi^{(l,n)}$, видно, что с увеличением номера частоты l поправка, учитывающая наличие эксцентриситета выреза, уменьшается. Также результаты показывают, что при увеличении параметра ε , частоты уменьшаются. Данные частоты близки к частотам, полученным в работе [2], и соответствующим мертвым формам колебаний барабанной перепонки, при которых протез неподвижен.

РЕЗЮМЕ

Основной целью данной работы является исследование малых свободных колебаний кольцевой пластины с неконцентрическим круговым вырезом,

характеризуемых локализацией собственных форм вблизи некоторого радиуса. Формальное асимптотическое решение строится с использованием метода Товстика. Собственные частоты, соответствующие локализованным формам колебаний, находятся при отсутствии узловых диаметров.

ЛИТЕРАТУРА

- 1. Hüttenbrink, K.-B. Mechanical aspects of middle ear reconstruction / K.-B. Hüttenbrink // Middle Ear Mechanics in Research and Otosurgery (Hüttenbrink, K.-B., eds). – Dresden: Dept. of Oto-Rhino-Laringology, Univ. of Technology, 1997. – P. 165-168.
- Mikhasev, G.I. Prediction of Eigenfrequencies of the Middle Ear Oscillating System after Tympanoplasty and Stapedotomy / G.I. Mikhasev, I. Slavashevich, K. Yurkevich // In book: Shell and Membrane Theories in Mechanics and Biology from macro- to nanoscale structures (eds. by H. Altenbach, G. I. Mikhasev). Advanced structured Materials. Vol. 45. Springe, 2015. DOI 10.1007/978-3-319-02535-3 14. –P. 243–265.
- 3. Михасев, Г.И. Локализованные колебания и волны в тонких оболочках / Г.И. Михасев, П.Е. Товстик. М.: ФИЗМАТЛИТ, 2009. 290 с.
- Фирсов, М.А. О возможных локальных формах колебаний круговой кольцевой пластинки с эксцентрическим круговым вырезом / М.А. Фирсов, Г.И. Михасев, // Асимптотические методы в механике деформируемого твердого тела: сборник трудов, посвященный 70-летию профессора П. Е. Товстика / Санкт-Петербургский государственный университет, под редакцией С. Б. Филиппова. – Санкт-Петербург, 2006. – С. 104–112.
- 5. Найфэ, А. Х. Введение в методы теории возмущений. М., 1978. 535с

SUMMARY

The main purpose of this work is to study the small free oscillations of an annular plate with non-concentric circular cutout, characterized by localization of natural forms near a certain radius. Formal asymptotic solution is constructed using the method Tovstik. The natural frequencies corresponding to the localized vibration modes without nodal diameters.

E-mail: <u>Slavashevichi@yandex.ru</u> <u>Mikhasev@bsu.by</u>

Поступила в редакцию 03.11.2014