пературы охлаждающей жидкости на двигателе с существующей системой охлаждения все же следует считать снижение расхода воздуха, при котором достигается повышение температурного уровня с одновременным снижением расхода мощности на систему охлаждения.

Литература

1. Архангельский В.М. и др. Автомобильные двигатели. Машиностроение. М., 1967.

В_•М_• А дамов, А_•Г_• Латокурский, В_•В_• Шахов МОДЕЛИРОВАНИЕ ТЕМПЕРАТУРНЫХ ПОЛЕЙ ПОРШНЯ ТРАКТОРНОГО ДИЗЕЛЯ

Тенденция к повышению поршневой мощности в современном моторостроении тесно связана свопросом теплонапряженности деталей цилиндро-поршневой группы двигателей. Существуюшие критерии оценки теплонапряженности не дают представления о температурных полях и не учитывают конструктивных факторов. Непосредственное измерение температур трудоемко и требует значительных затрат. Точное аналитическое решение невозможно или очень трудоемко и длительно. Поэтому все большее распространение при исследовании процессов теплопереноса получает метод электротепловой аналогии, основанный на формальном сходстве уравнения теплопроводности для стационарного двумерного поля.

$$\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial z^2} = 0$$
 (1)

и уравнения, описывающего аналоговое электрическое поле,

$$\frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r} \frac{\partial \varphi}{\partial r} + \frac{\partial^2 \varphi}{\partial z^2} = 0 \qquad (2)$$

Для моделирования температурных полей методом электротепловой аналогии изготавливаются дискретные модели и модели—сплошные среды. В первом случае модель выполняется и виде сетки сопротивлений, индуктивностей, емкостей. Модели—сплошная среда может быть электролитом, электропроводной бумагой, электропроводной краской, фольгой и т.п. Дискретные модели более точные, но значительно сложнее в изготовлении и требуют больше средств по сравнению с моделями—сплошными средами. Учитывая все вышеперечисленное, было решено вы —полнять модель из электропроводной бумаги, которая специально для целей моделирования изготавливается промышленностью девятнадцати сортов. Диапазон удельных сопротивлений различных сортов бумаги лежит в пределах 22—85000 Ом [1].

В настоящей работе приведены результаты моделирования температурных полей поршней двигателей Д-50 и Д-240 Минс-кого моторного завода. При изготовлении моделей сделаны следующие допущения:

1) в теле поршня имеет место установившийся тепловой поток; 2) все тепло поступает в поршень от горячих газов к днишу, а отводится в зоне компрессионных колец; 3) коэффициент теплопроводности одинаков по всему сечению поршня; 4) коэффициент теплоотдачи от горячих газов к днишу одинаков для всех участков тепловоспринимающей поверхности.

Модели изготавливались следующим образом. Из листа электропроводной бумаги в масштабе 1:1 вырезалось поперечное сечение поршня. Для моделирования процесса теплоотдачи от горячих газов к днищу поршня подсоединялись полоски из электропроводной бумаги, ширина которых равна ширине пропусков, а длина рассчитывалась по формуле

$$1_1 = \frac{1}{2} - \frac{\lambda_n}{(\lambda_r)_{cp}},$$
 (3)

Удельные сопротивления бумаги, из которой вырезались полоски, и бумаги, из которой вырезалась модель поршня, равны.

Для моделирования процесса теплопередачи в области компрессионных колец к модели подсоединялись полосы из электропроводной бумаги, длина которых рассчитывалась по формуле

12*

$$1_2 = \delta_{\pi} + \frac{\lambda_{\pi}}{\alpha_{\pi}}, \qquad (4)$$

где 1_2 — длина полос, м; $\delta_{\rm ц}$ — толщина стенки цилиндра,м ; $\lambda_{\rm ц}$ — коэффициент теплопроводности материала цилиндра. ккал/м·ч·град; $\lambda_{\rm B}$ — коэффициент теплоотдачи от стенки цилиндра к охлаждающей жидкости, ккал/м·ч·град. Для вычисления ($\lambda_{\rm r}$) ср и ($\lambda_{\rm r}$) рез использовались формулы

$$(\mathcal{L}_{\mathbf{r}})_{\mathrm{cp}} = \frac{1}{4\pi} \int_{0}^{4\pi} \mathcal{L}_{\mathbf{r}} \, \mathrm{d} \, \mathcal{V} ; \qquad (5)$$

$$(T_r)_{pes} = \frac{1}{(\mathcal{L}_r)} \int_{cp}^{4\pi} \mathcal{L}_r \ T \ dr.$$
 (6)

Интегрирование производилось планиметрированием, для чего были построены графики

$$\alpha_{\Gamma} = f \left(\varphi_{\Pi_{\bullet}K_{\bullet}B} \right) \qquad \mathbb{N} \quad \alpha_{\Gamma}T = f \left(\varphi_{\Pi_{\bullet}K_{\bullet}B} \right)_{\bullet}$$

Коэффициент теплоотдачи рассчитывался по формуле Эйхель-берга

$$\alpha_{\Gamma} = 2.1 \sqrt{pT} \qquad \sqrt[3]{c_{m}} \qquad (7)$$

Готовая модель подключалась к интегратору, электрическая схема которого приведена на рис. 1.

Электрический потенциал в различных точках модели поршня определялся по следующей методике. Реостатами. 9 и 10 (рис.1) устанавливался определенный потенциал, измеряемый вольтметром 5. Перемещая щуп 2 по модели, находили точки, в которых показания гальванометра 4 равны нулю. Переход от электрического потенциала к температуре и наоборот осуществляется по формулам

$$t = t_{\min} + \Upsilon (t_{\max} - t_{\min}); \tag{8}$$

$$\varphi = \frac{t - t}{\min}$$

$$t - t = -t$$

$$t - t = -t$$

$$t - t = -t$$

$$t = -t$$

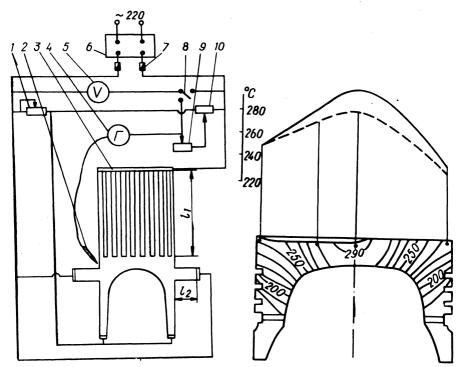


Рис. 1. Электрическая схема интегратора: 1—реостат; 2—шуп; 3—шина; 4—гальванометр; 5—вольтметр; 6—источник питания; 7—предохранитель; 8—переключатель; 9—реостат; 10—реостат.

Рис. 2. Рапределение температур в сечении поршня двигателя Д-50: сплошная -результаты моделирования; пунктир-- результаты натурных испытаний.

Моделирование температурного поля поршня двигателя Д-50 проводилось на режиме р = 5,92 кгс/см 2 при п = 1600 об/мин. Расчетные величины для определения размеров модели принимались следующие: λ = 150 ккал/м·ч·град; (α) = 210 ккал/м·ч·град; α = 0,007 м; α = 52 ккал/м·ч·град; α = 2500 ккал/м·ч·град; (α) = 819 °C. Результаты моделирования приведены на рис. 2. Задесь же для сравнения приведены температуры поршня, измеренные на работающем дви-

гателе [2]. Максимальная температура поршня, полученная моделированием и при измерении на работающем двигателе, находится в одной и той же точке -- центре днища поршня. нако абсолютное значение максимальной температуры, полученное при моделировании (290°C) , на 25°C выше максимальной температуры поршня, полученной при натурных испытаниях. Расхождение температур по мере приближения к краям поршня уменьшается. Как видно, результаты моделирования достаточно хорошо совпадают с замерами температур венно на работающем двигателе. В то же время моделирование позволяет получить полную картину распределения в сечении поршня, а не значения температур в отдельных ках его, что очень важно при выявлении наиболее напряженных участков сечения поршня. Простота изготовления модели воляет варыировать форму сечения поршня для выбора оптимального варианта с точки зрения теплонапряженности.

Моделирование температурных полей поршня двигателя Д-240 проводилось на режиме р = 6,46 кгс/см 2 при n = 2200 об/мин. Расчетные величины приняты такими же, как и при моделировании температурного подя поршня двигателя Д-50, кроме (α) α = 262,6 ккал/м 2 ч град и (α) α = 873 $^{\circ}$ C.

На рис. З представлены результаты моделирования двух вариантов сечения поршня, отличающихся величиной радиуса пе-

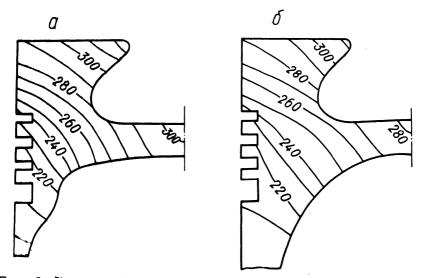


Рис. 3. Распределение температур в сечении поршня двигателя Д-240: а—исходный вариант поршня; б— опытный вариант.

рехода внутренней поверхности поршня от головки к юбке. Исходным вариантом является поршень, устанавливаемый в настоящее время на двигатель Д-240. В опытном варианте выюбке поршия. полнен более плавный переход от днища к ОТР привело к снижению температуры днища поршня в среднем на 15 С. Наибольшее снижение температуры отмечено в центре камеры сгорания (22°С). Температура кромки камеры сгорания СНИзилась на 12°С, а температура в зоне верхнего компрессионного кольца -- на 8°C. Такое перераспределение температур, а также повышение температуры юбки поршня под верхним лосъемным кольцом объясняется увеличением теплового потока через юбку поршня.

Выволы

- 1. Результаты моделирования вполне удовлетворительно согласуются с результатами измерения температуры поршня на работающем двигателе.
- 2. Моделирование позволяет получать температурные поля деталей и на этом основании выбирать оптимальную, с точ-ки зрения распределения температур, конфигурацию детали.
- 3_{\bullet} Увеличение радиуса перехода внутренней поверхности от головки поршня к юбке снижает температуру днища поршня двигателя Д-240 в среднем на 15° С, в то же время несколько возрастает температура юбки под верхним маслосъемным кольцом, что свидетельствует об увеличении теплоотвода через юбку поршня,

Литература

1. Фильчаков П.Ф., Панчишин В.И. Интеграторы ЭГДА. Моделирование потенциальных полей на электропроводной бумаге. Киев, 1961. 2. Адамов В.М., Латокурский А.Г. Исследование теплонапряженности цилиндро-поршневой группы тракторного двигателя Д-50. — В сб.: Автомобиле- и тракторостроение. Исследование автотракторных двигателей. Минск , 1971.