Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра ЮНЕСКО «Энергосбережение и возобновляемые источники энергии»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к курсовой работе по дисциплине «Энергоэффективные технологии на основе нетрадиционных и возобновляемых источников энергии» для студентов специальности 1-43 01 06 «Энергоэффективные технологии и энергетический менеджмент»

УДК [620.9004.18 + 620.97] (075.8) ББК 31.15я7

В методические указания включены вопросы, связанные с использованием солнечных систем горячего водоснабжения. Рассматриваются классификация и выбор коллекторов солнечной энергии, общие положения расчета солнечных систем горячего водоснабжения. Особое внимание уделяется методике расчета коэффициента замещения солнечной энергии.

Составители: Ю.К. Кривошеев, Н.Г. Хутская

Рецензенты: А.И. Шнип, В.И. Назаров

© Кривошеев Ю.К., Хутская Н.Г., составление, 2004

Введение

В настоящее время промышленное производство и жилищно-коммунальное хозяйство нашей страны нуждаются в проведении решительных мероприятий, направленных на снижение энергоем-кости. Современные специалисты-энергетики должны обладать глубокими теоретическими знаниями и прочными практическими навыками, для того чтобы уметь находить неожиданные решения в области энергосбережения и оценивать их эффективность.

Курсовая работа посвящена одной из важнейших тем в области энергетики на нетрадиционных и возобновляемых источниках энергии — оценке основных параметров солнечных систем горячего водоснабжения. Солнечное теплоснабжение, т.е. использование солнечной энергии для горячего водоснабжения и отопления в жилищнокоммунальной и производственной сферах, получило в мировой практике наибольшее распространение по сравнению с другими направлениями применения нетрадиционных и возобновляемых источников энергии. Существующие методы расчета таких систем позволяют на основе использования климатической информации и учета характеристик применяемого оборудования определять их основные параметры — коэффициент замещения нагрузки (доля солнечной энергии в покрытии нагрузки) за некоторый рассматриваемый период (месяц, сезон, год), полезную теплопроизводительность установки за этот период, площадь солнечных коллекторов в установке.

Студентам предлагается в зависимости от варианта определить количество энергии, поступающей на поверхность коллектора солнечной энергии; рассчитать долю нагрузки, обеспечиваемой за счет солнечной энергии; построить график зависимости коэффициента замещения от площади солнечного коллектора; определить сезонную экономию топлива, обеспечиваемую использованием солнечной энергии.

1. КЛАССИФИКАЦИЯ СОЛНЕЧНЫХ СИСТЕМ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ

Солнечная радиация — практически неисчерпаемый и экологически чистый источник энергии. Мощность потока солнечной энергии у верхней границы атмосферы равна $1,7\cdot10^{14}$ кВт, а на поверхности Земли — $1,2\cdot10^{14}$ кВт. Общее годовое количество поступающей на Землю солнечной энергии составляет $1,05\cdot10^{18}$ кВт·ч, в том числе на

поверхность суши приходится $2 \cdot 10^{17} \, \mathrm{kBt}$ ·ч. Без ущерба для экологической среды может быть использовано до 1,5% всей поступающей солнечной энергии.

Гелиосистемы теплоснабжения рекомендуется применять при соответствующем технико-экономическом обосновании:

- 1) при сезонном теплоснабжении или при режиме теплопотребления с максимальными нагрузками в летний период;
- 2) при высокой себестоимости тепловой энергии, отпускаемой традиционным источником теплоты;
- 3) при высоких среднегодовых значениях интенсивности поступающей солнечной радиации и большом количестве солнечных дней;
- 4) при наличии площадей для размещения коллектора солнечной энергии (КСЭ), отсутствии его затенения ограждающими конструкциями зданий:
 - 5) при повышенных требованиях к чистоте окружающей среды;
 - 6) с целью экономии топливно-энергетических ресурсов.

Существует два основных типа солнечных систем горячего водоснабжения (ССГВ): *с естественной* (рис. 1.1) и *с принудительной* (рис. 1.2) *циркуляцией теплоносителя*. Если в контуре коллектора солнечной энергии и в баке-аккумуляторе теплоты используется вода, ССГВ выполняется по одноконтурной схеме. Для предотвращения замерзания теплоносителя в контуре КСЭ может использоваться антифриз, при этом теплота передается от антифриза к воде с помощью теплообменника, и ССГВ выполняется по двухконтурной схеме (рис. 1.3, 1.4).

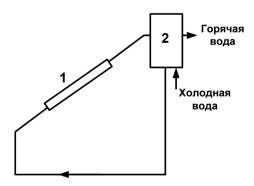


Рис. 1.1. Принципиальная схема солнечной водонагревательной установки с естественной циркуляцией теплоносителя: 1 – коллектор солнечной энергии (КСЭ); 2 – бак-аккумулятор горячей воды

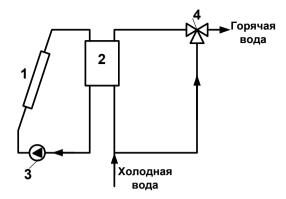


Рис. 1.2. Принципиальная схема солнечной водонагревательной установки с принудительной циркуляцией теплоносителя:

1 – коллектор солнечной энергии (КСЭ); 2 – бак-аккумулятор горячей воды; 3 – насос; 4 – смесительный вентиль

ССГВ первого типа обычно используются для небольших потребителей, при этом бак-аккумулятор теплоты должен быть установлен выше КСЭ. Для крупных потребителей горячей воды для циркуляции теплоносителя требуется насос (рис. 1.4).

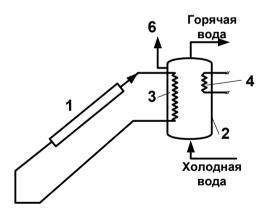


Рис. 1.3. Двухконтурная схема солнечной водонагревательной установки с естественной циркуляцией теплоносителя:

1 – коллектор солнечной энергии (КСЭ); 2 – аккумулятор тепла; 3 – теплообменник; 4 – резервный (дополнительный) источник энергии; 5 – предохранительный клапан

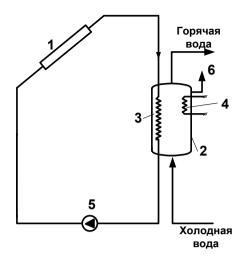


Рис. 1.4. Двухконтурная схема солнечной водонагревательной установки с принудительной циркуляцией теплоносителя:

1 — коллектор солнечной энергии (КСЭ); 2 — аккумулятор тепла;

3 — теплообменник; 4 — резервный (дополнительный) источник энергии;

5 — насос; 6 — предохранительный клапан

2. РАСЧЕТ ПРИХОДА РАДИАЦИИ НА НАКЛОННУЮ ПОВЕРХНОСТЬ

Плотность потока солнечной радиации у верхней границы атмосферы на поверхность, расположенную перпендикулярно направлению солнечных лучей, равна $I_{0\perp}=1,353~{\rm кBT/m^2}$ (солнечная постоянная), а среднее количество энергии, поступающей за 1 ч на 1 м² этой поверхности, равно $F_{0\perp}=4,871~{\rm M}{\rm J}{\rm m}/{\rm (m^2\cdot v)}$.

В системе солнечного теплоснабжения (ССТ) обычно используются плоские КСЭ, устанавливаемые в наклонном положении. Среднемесячное дневное количество суммарной солнечной энергии, поступающей на наклонную поверхность КСЭ, равно

$$\overline{E}_{\kappa} = \overline{R}\overline{E}$$
, МДж/(м²-день), (2.1)

где E — среднемесячное дневное количество суммарного солнечного излучения, поступающего на горизонтальную поверхность, МДж/(м²-день);

R — отношение среднемесячных дневных количеств солнечной радиации, поступающих на наклонную и горизонтальную поверхности.

Для наклонной поверхности с южной ориентацией

$$R = \left(1 - \frac{\overline{E}_{\pi}}{\overline{E}}\right)\overline{R}_{n} + \frac{1 + \cos\beta}{2} \cdot \frac{\overline{E}_{\pi}}{\overline{E}} + \rho \frac{1 - \cos\beta}{2}, \qquad (2.2)$$

где $E_{\rm д}$ — среднемесячное дневное количество диффузной (рассеянной) солнечной энергии, поступающей на горизонтальную поверхность, МДж/(м²-день);

 \overline{R}_n — коэффициент пересчета прямого излучения с горизонтальной на наклонную поверхность;

β – угол наклона КСЭ к горизонту, град;

 ρ — коэффициент отражения для подстилающей поверхности Земли; обычно летом ρ = 0,2, зимой при наличии снежного покрова ρ = 0,7.

Первый, второй и третий члены этого уравнения представляют собой соответственно доли прямого излучения, диффузного излучения небосвода и излучения, отраженного от земли на поверхность коллектора. Среднемесячная величина коэффициента \overline{R}_n

$$\overline{R}_n = \frac{\cos(\varphi - \beta)\cos\delta \cdot \sin\omega_3' + \frac{\pi}{180}\omega_3' \cdot \sin(\varphi - \beta)\sin\delta}{\cos\varphi \cdot \cos\delta \cdot \sin\omega_3 + \sin\varphi \cdot \sin\delta \cdot \frac{\pi}{180}\omega_3}, (2.3)$$

где ф – ширина местности, град;

 δ – склонение Солнца, град;

 ω_3 , ω_3' – часовой угол захода Солнца на горизонтальной и наклонной поверхностях, град.

Угол склонения Солнца в данный день *п* равен

$$\delta = 23,45 \cdot \sin \left(360 \cdot \frac{284 + n}{365} \right). \tag{2.4}$$

На рис. 2.1 показаны основные углы, используемые в приведенных формулах.

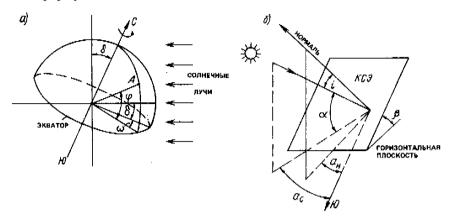


Рис. 2.1. Углы, характеризующие положение точки на земной поверхности (а) и наклонной поверхности коллектора солнечной энергии (б) относительно солнечных лучей:

 ϕ – широта местности; ω – часовой угол; δ – склонение Солнца; i – угол падения солнечных лучей на наклонную поверхность КСЭ; α – угол высоты Солнца; a_c – азимут Солнца; a_u – азимут наклонной поверхности

 $\label{eq:Tadinu} T\,a\,\delta\,\pi\,u\,\mu\,a\ \ 2.1$ Величина δ для среднего дня 1-12-го месяцев

Месяцы	1	2	3	4	5	6	7	8	9	10	11	12
δ, град	-20,9	-13	-2,4	9,4	18,8	23,1	21,2	13,5	2,2	-9,6	-18,9	-23,0

Таблица 2.2

Среднемесячное суточное поступление суммарной E и диффузной E_{π} солнечной радиации, МДж/(м²-день), на горизонтальную поверхность, коэффициент ясности атмосферы K_{π} и температура наружного воздуха T_{θ} , °C, для Беларуси

Пара- метры	1	2	3	4	5	6	7	8	9	10	11	12
E	1,89	4,47	9,31	13,34	18,63	19,74	19,17	15,12	10,0	4,86	2,22	1,35
$E_{\mathcal{A}}$	1,75	3,28	5,94	7,51	8,31	9,73	10,26	8,1	6,12	3,24	1,53	1,08
$K_{\mathfrak{A}}$	0,33	0,40	0,49	0,46	0,50	0,48	0,49	0,47	0,42	0,37	0,33	0,31
$T_{\scriptscriptstyle \mathrm{B}}$	-10,5	-9,7	-4,7	4,0	11,7	16,0	18,3	16,3	10,7	4,1	-2,5	-7,8

Часовой угол захода (восхода) Солнца для поверхности:

1) горизонтальной

$$\omega_3 = \arccos(-\mathsf{tg}\varphi\,\mathsf{tg}\delta);$$
 (2.5)

2) наклонной

$$\omega_3' = \min \{ \omega_3 \cdot \arccos \left[-\operatorname{tg}(\varphi - \beta)\operatorname{tg}\delta \right] \}.$$
 (2.6)

В качестве ω_3' принимается меньшая из двух величин, указанных в фигурных скобках.

Значения среднемесячных величин E, $E_{\rm д}$, коэффициента ясности атмосферы $K_{\rm s}$ и температуры наружного воздуха $T_{\rm B}$ для географических условий Беларуси приведены в табл. 2.2.

3. КЛАССИФИКАЦИЯ И ВЫБОР КОЛЛЕКТОРОВ СОЛНЕЧНОЙ ЭНЕРГИИ (КСЭ)

Различают *плоские коллекторы* без изменения плотности потока солнечной энергии и *фокусирующие коллекторы* с концентрированием солнечной энергии (параболоцилиндрические концентраторы, фоклины и т.п.). Для отопления и горячего водоснабжения наиболее пригодны плоские КСЭ, позволяющие нагревать теплоноситель до 60...80°С. При температурах теплоносителя 80°С и выше целесообразно применять фокусирующие или вакуумированные стеклянные трубчатые КСЭ.

Основным элементом КСЭ является *лучепоглощающая поверхность* (абсорбер) с каналами для теплоносителя.

Тепловая эффективность плоских КСЭ повышается путем оптических и тепловых потерь благодаря применению:

- 1) нескольких слоев прозрачной изоляции (остекления);
- 2) селективных покрытий;
- 3) вакуумирования пространства между лучепоглощающей поверхностью и прозрачной изоляцией и т.п.

Мгновенный коэффициент полезного действия КСЭ равен

$$\eta_k = \frac{q_k}{I_k} = \frac{m_k c_p (T_{\text{TK}} - T_{\text{TH}})}{I_k},$$
 (3.1)

где q_k — удельная теплопроизводительность КСЭ, т. е. количество полезной теплоты, получаемой с 1 м² площади КСЭ за 1 с, Bt/m^2 ;

 I_k — плотность суммарного потока солнечной радиации, поступающей на поверхность КСЭ, Bt/m^2 ;

 m_k – удельный массовый расход теплоносителя в КСЭ, кг/(м²·с); c_p – удельная изобарная теплоемкость теплоносителя, Дж/(кг·К); $T_{\text{тн}}$ и $T_{\text{тк}}$ – температура теплоносителя на входе в КСЭ и выходе

 $I_{\text{тн}}$ и $I_{\text{тк}}$ – температура теплоносителя на входе в КСЭ и выходе из него, °C.

Мгновенный КПД плоского КСЭ равен

$$\eta_k = \eta_0 = \frac{K_k}{I_k} (T_{\text{TH}} - T_{\text{B}}),$$
(3.2)

где K_k – эффективный коэффициент теплопотерь КСЭ, Вт/(м²·К);

 $T_{\rm B}$ – температура наружного воздуха, °C;

 η_0 – эффективный оптический КПД КСЭ.

Характеристика КСЭ – зависимость η_k от $(T_{\text{TH}} - T_{\text{B}})/I_k$ – определяется при его испытании и изображается прямой с нулевой ординатой, равной оптическому КПД при нормальном падении лучей η_0^0 , а тангенс угла наклона прямой дает величину K_k . Эффективный оптический КПД для КСЭ с южной ориентацией $\eta_0 = 0.95 \, \eta_0^0$ при однослойном остеклении и $\eta_0 = 0.93 \, \eta_0^0$ при двухслойном остеклении. При наличии теплообменника в контуре КСЭ величины K_k и η_0 необходимо умножить на 0.97.

КПД КСЭ равен нулю в том случае, если плотность потока солнечной энергии I_k не превышает критического значения:

$$I_{\rm KP} = \frac{K_k}{\eta_0} (T_{\rm TH} - T_{\rm B}). \tag{3.3}$$

Следовательно, $\eta_k > 0$ при $I_k > I_{\rm кp}$. Средняя величина КПД КСЭ за определенный период времени (день, месяц, год) равна

$$\overline{\eta}_k = \sum (\eta_k I_k) / \overline{I}_k \ . \tag{3.4}$$

Суммирование производится только для тех отрезков времени, когда $I_k > I_{\rm kp}$, при этом \overline{I}_k — средняя плотность потока солнечной энергии для рассматриваемого периода, ${\rm BT/m}^2$.

В табл. 3.1 приведены значения максимальной температуры теплоносителей $T_{\text{макс T}}$, оптического КПД $\eta_{\text{о}}$, коэффициента теплопотерь K_k основных типов КСЭ.

Теплопроизводительность КСЭ, т. е. мгновенное количество полезной энергии, даваемой КСЭ, равна

$$Q_k = F_k [I_k \eta_0 - K_k (T_{\text{TH}} - T_{\text{B}})], \text{ Bt},$$
 (3.5)

где F_k – площадь поверхности КСЭ, м².

Оптимальная ориентация КСЭ — южная. При отклонении до 30° к востоку или западу от южного направления годовое количество поступающей солнечной энергии уменьшается на 5...10 %.

Оптимальный угол наклона КСЭ β равен широте местности ϕ для систем круглогодичного действия, $\beta = \phi + 15^{\circ}$ для систем, работающих только в отопительный сезон, и $\beta = \phi$ - 15° для систем, работающих только в летний период.

Таблица 3.1 Основные технические данные КСЭ

Тип коллектора	Максимальное значение $T_{\rm T}$, °C,	Значение η_0	Значение K_k , $B_T/(M^2 \cdot K)$
Неселективный плоский КСЭ:			
с однослойным остеклением НПК-1	80	0,70,85	710
с двухслойным остеклением НПК-2	80	0,650,8	46
без остекления	80	0,90,95	1822
Селективный плоский КСЭ:			
с однослойным остеклением СПК-1	100	0,650,8	4,56
с двухслойным остеклением СПК-2	100	0,60,75	34
Фоклин (коэффициент концентрации 1,5)	120	0,6	0,70,8
Параболоцилиндрический концентратор ПЦК	300	0,650,85	0,60,9
Вакуумированный стеклянный трубчатый коллектор ВСТК	120250	0,50,75	12

КСЭ можно размещать на наружных ограждениях здания (крыше, стенах, ограждениях балконов и т.п.) или отдельно. Стоимость ССТ значительно снижается при совмещении КСЭ с крышей здания. Теплопроизводительность КСЭ снижается на 2...5 % при затенении непрозрачными элементами конструкции и запылении.

4. ОБЩИЕ ПОЛОЖЕНИЯ РАСЧЕТА СИСТЕМ СОЛНЕЧНОГО ОТОПЛЕНИЯ И ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ

Точный тепловой расчет системы солнечного теплоснабжения (ССТ) затрудняется из-за влияния случайных колебаний климатических условий и сложного характера взаимодействия между ее элементами. Поэтому в инженерной практике обычно используются полуэмпирические методы, основанные на обобщении результатов подробного моделирования ССТ с помощью ЭВМ, которые дают возможность получить долгосрочные характеристики ССТ.

Цель теплового расчета ССТ состоит в определении: удельной суточной тепловой производительности системы q_c ; площади F_{κ} лучепоглощающей поверхности КСЭ; объема теплового аккумулятора $V_{\rm ak}$; удельного массового расхода теплоносителя в контуре КСЭ m_{κ} ; угла наклона β КСЭ κ горизонту; площади поверхностей нагрева теплообменников в контурах КСЭ и потребителя; годовой степени замещения топлива $f_{\rm год}$ и расхода дополнительной энергии $Q_{\rm диз}$.

Исходные данные для расчета ССТ включают:

- 1) местоположение гелиосистемы широту, долготу и высоту местности над уровнем моря;
- 2) климатические данные; среднемесячное дневное количество суммарной E и диффузной $E_{\rm д}$ солнечной радиации, поступающей на горизонтальную поверхность; температуру наружного воздуха $T_{\rm B}$;
- 3) характеристики КСЭ η_0 и $K_{\rm K}$, геометрические размеры модуля КСЭ, число слоев остекления, вид теплоносителя;
- 4) месячную тепловую нагрузку отопления Q_0 (или данные для ее расчета);
- 5) среднемесячные значения температур холодной $T_{\rm XB}$ и горячей $T_{\rm \Gamma B}$ воды;
 - 6) суточное общее потребление горячей воды $V_{\mbox{\tiny \GammaB}}.$

Выбирают тип и схему ССТ, тип КСЭ и его характеристики. Системы ССГВ с естественной циркуляцией следует применять при площади КСЭ до $20~\text{m}^2$ для индивидуальных потребителей. В гелиосистемах отопления и ССГВ с большей площадью КСЭ необходимо использовать принудительную циркуляцию теплоносителя.

Температура горячей воды в ССГВ должна быть в пределах 45...75°, кроме случаев, указанных в СНиП.

При проектировании ССТ вначале выбирают решение и оборудование ССТ, затем последовательно выполняют тепловой, гидравлический и технико-экономический расчеты ССТ с оптимизацией.

В отличие от традиционных систем теплоснабжения, при проектировании которых для выбора оборудования достаточно определить часовые расходы теплоты, при расчете ССТ необходимо вычислять месячные расходы теплоты. Расход теплоты на горячее водоснабжение в данном месяце выражается следующим образом:

$$Q_{\text{\tiny \GammaB}} = Q_{\text{\tiny CYT\,\GammaB}} \cdot n_{_{
m I\! I}} = 4,19 \cdot 10^3 \cdot V_{_{
m I\! B}} \cdot (T_{_{
m I\! B}} - T_{_{
m X\! B}}) \cdot N \cdot n_{_{
m I\! I}}$$
, кДж, (4.1)

где $V_{\rm гв}$ — суточный расход горячей воды на 1 человека по нормам, м 3 /(день-чел.);

N — число жителей;

 n_{π} – число дней в данном месяце;

 $T_{\text{гв}}$ и $T_{\text{хв}}$ — температуры горячей и холодной воды, °C (значения $T_{\text{хв}}$ и $n_{\text{д}}$ изменяются по месяцам, а остальные величины — постоянные);

 $Q_{\text{сут } \text{гв}}$ — суточный расход теплоты на горячее водоснабжение, кДж.

Вследствие нестабильности поступления солнечной энергии системы солнечного отопления должны работать с дополнительным (резервным) источником энергии (ДИЭ) (котельная, теплосеть и т.п.), обеспечивающим 100 % тепловой нагрузки. В то же время ССГВ сезонного действия могут быть запроектированы без дублера, если не предъявляются жесткие требования по бесперебойному горячему водоснабжения (летние душевые, пансионаты, пионерские лагеря и т.п.).

При проектировании гелиотопливных систем теплоснабжения необходимо исходить из того, что экономически целесообразно покрывать за счет солнечной энергии лишь определенную долю $f_{\rm год}$ годовой тепловой нагрузки $Q_{\rm год \ H}$ горячего водоснабжения, остальную ее часть должен обеспечивать ДИЭ:

$$Q_{\text{ДИЭ}} = (1 - f_{\text{год}}) Q_{\text{год н}}. \tag{4.2}$$

Годовая доля солнечной энергии в покрытии тепловой нагрузки (или степень замещения топлива) равна

$$f_{\text{год}} = \sum f Q_{\text{MH}} / \sum Q_{\text{MH}} . \tag{4.3}$$

Средний график потребления горячей воды в течение суток по-казан на рис. 4.1.

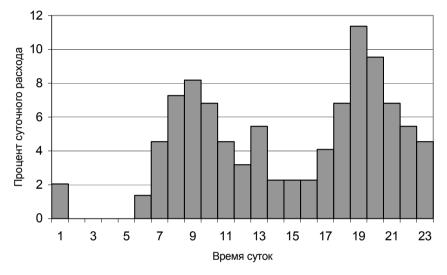


Рис. 4.1. Средний график потребления горячей воды в течение суток

Месячная степень замещения топлива

$$f = \frac{Q_{\text{MC}}}{Q_{\text{MH}}} = \frac{Q_{\text{MH}} - Q_{\nu} \mu_{\text{MB}}}{Q_{\text{MH}}} = 1 - \frac{Q_{\text{M}} \mu_{\text{MB}}}{Q_{\text{MH}}}, \tag{4.4}$$

где $Q_{\rm MH}$, $Q_{\rm MC}$ и $Q_{\rm M}$ ДИЭ – месячные величины тепловой нагрузки, теплоты, обеспечиваемой солнечной и дополнительной энергией, ГДж/мес.

Удельный объемный расход теплоносителя V_k для жидкостных КСЭ следует принимать равным $V_k = 0.01...0.02$ л/(м²·с), удельный объем водяного аккумулятора теплоты $V_{\rm ak} = 0.05...0.1$ м³.

Годовая (сезонная) теплопроизводительность системы $Q_{\rm год\ c}$ и степень замещения $f_{\rm год\ c}$ для ССГВ меньше $Q_{\rm год\ k}$ и $f_{\rm год}$ на 25...35 %, а для ССТ — на 30...50 % (из-за теплопотерь в системе и неиспользуемого избытка полезной теплоты).

Годовая экономия топлива, обеспечиваемая использованием солнечной энергии:

$$B = f_{\text{гол}} Q_{\text{голн}} / (Q_{\text{T}} \eta_{\text{T}}), \text{ т.у.т.},$$
 (4.5)

где $f_{\text{год}}$ – годовая степень замещения;

 $Q_{\text{год H}}$ – годовая нагрузка теплоснабжения, ГДж/год;

 $Q_{\rm T}$ — теплота сгорания топлива, отнесенная к 1 т условного топлива;

 $\eta_{\rm TT}-{\rm K}\Pi {\rm J}$ теплогенерирующей установки, равный 0,45 и 0,6 для индивидуальных теплогенераторов на твердом и жидком (газообразном) топливе и 0,6...0,7 и 0,7...0,8 — для котельных производительностью 20...100 $\Gamma {\rm J} {\rm m}/{\rm y}$ и более на твердом и жидком (газообразном) топливе.

5. РАСЧЕТ КОЭФФИЦИЕНТА ЗАМЕЩЕНИЯ (f-МЕТОД)

Энергетический баланс системы солнечного теплоснабжения за месячный период времени можно представить в следующем виде:

$$Q_{\kappa} - Q_{\Gamma R} + E = \Delta U, \tag{5.1}$$

где Q_{κ} – месячная теплопроизводительность солнечной установки;

 $Q_{\rm FB}$ – месячная нагрузка горячего водоснабжения;

E — общее количество энергии, полученное в течение месяца от дублирующего источника;

 ΔU – изменение количества энергии в аккумулирующей установке.

При размерах аккумуляторов, обычно применяемых в ССТ, разность ΔU мала по сравнению с Q_k , $Q_{\Gamma B}$ и E и может быть принята равной нулю. Тогда уравнение (5.1) можно переписать в следующем виде:

$$f = (Q_{\text{\tiny \GammaB}} - E) / Q_{\text{\tiny \GammaB}} = Q_k / Q_{\text{\tiny \GammaB}},$$
 (5.2)

где f – доля месячной тепловой нагрузки, обеспечиваемой за счет солнечной энергии.

Непосредственно уравнение (5.2) нельзя использовать для расчета f, поскольку величина Q_k является сложной функцией падающего излучения, температуры окружающей среды и тепловых нагрузок. Однако рассмотрение параметров, от которых зависит Q_k , позволяет предположить, что коэффициент замещения f эмпирически можно связать с двумя безразмерными комплексами:

$$X = F_k K_k (T_a - \overline{T}_B) \Delta t / Q_{\text{TB}}; \qquad (5.3)$$

$$Y = F_k \eta_0 \overline{E} n_{\pi} / Q_{\Gamma B}, \qquad (5.4)$$

где Δt – число секунд в месяце;

 T_a – базисная температура, принятая равной 100°С;

 $T_{\rm B}$ – среднемесячная температура наружного воздуха, °С;

 $ar{E}$ — среднемесячный дневной приход суммарной солнечной радиации на наклонную поверхность коллектора, Дж/м².

Безразмерные комплексы X и Y имеют определенный физический смысл: Y можно трактовать как отношение количества энергии, поглощаемой пластиной коллектора в течение месяца, к полной тепловой нагрузке; X — отношение месячных тепловых потерь коллектора при базисной температуре к полной месячной тепловой нагрузке.

Рассмотрим метод расчета характеристик системы солнечного теплоснабжения для условий, когда нагрузка горячего водоснабжения является преобладающей или единственной. Как температура водопроводной воды $T_{\rm XB}$, так и минимально допустимая температура горячей воды $T_{\rm FB}$ влияют на характеристики системы. Поскольку средняя рабочая температура в системе, а следовательно, и потери тепла от коллектора зависят от $T_{\rm XB}$ и $T_{\rm FB}$, разумно предположить, что

выражение комплекса X, характеризующего потери тепла от коллектора, можно скорректировать таким образом, чтобы учесть влияние $T_{\rm XB}$ и $T_{\rm FB}$. Если месячные значения X умножить на поправочный коэффициент, определяемый по нижеприведенному выражению, то f-метод расчета жидкостных систем солнечного отопления и горячего водоснабжения можно использовать для определения месячных значений f, достигаемых в системах солнечного горячего водоснабжения. Поправочный коэффициент для систем горячего водоснабжения равен

$$X_c / X = \frac{11.6 + 1.18 T_{\text{FB}} + 3.86 T_{\text{XB}} - 2.32 \overline{T}_{\text{B}}}{100 - \overline{T}_{\text{B}}}.$$
 (5.5)

Рассмотрим системы солнечного горячего водоснабжения, в которых вместимость бака-аккумулятора составляет 75 л/м². Предполагается, что потребление горячей воды осуществляется по графику, показанному на рис. 4.1. Оба этих условия являются базовыми в f-методе расчета. При вместимости аккумулятора 75 л/м² распределение тепловой нагрузки в течение дня не оказывает сильного влияния на характеристики системы солнечного нагрева воды. Однако фактическое распределение нагрузки горячего водоснабжения может сильно отличаться от среднего. Если большая часть горячей воды ежедневно потребляется в течение короткого промежутка времени, то доля нагрузки, обеспечиваемой за счет солнечной энергии, может быть ниже значений, получаемых при использовании рассмотренного здесь метода расчета. В этом случае увеличение размеров аккумулятора будет более эффективно, чем это следует из соотношения, позволяющего вычислить поправочный коэффициент при 37.5 < M < 300:

$$X_c / X = (M / 75)^{-0.25},$$
 (5.6)

где M – количество воды в аккумуляторе, л/м².

Предполагается, что перегрев воды выше минимально допустимой температуры горячей воды $T_{\rm ГВ}$ невыгоден. Иногда температура воды в аккумуляторе будет превышать $T_{\rm ГВ}$. Считается, что солнечная энергия, затрачиваемая на нагрев воды выше $T_{\rm ГВ}$, расходуется бесполезно и не участвует в покрытии нагрузки горячего водоснабжения.

Чтобы определить долю f полной месячной тепловой нагрузки, обеспечиваемой за счет солнечной энергии, необходимо рассчитать комплексы X и Y для рассматриваемого коллектора и данной месячной тепловой нагрузки. Месячное количество солнечного тепла находится умножением f на месячную нагрузку $Q_{\rm FB}$. Доля годовой тепловой нагрузки, покрываемой за счет солнечной энергии, равна сумме месячных количеств солнечного тепла, деленной на полную годовую нагрузку.

Зависимость между X, Y и f можно аппроксимировать следующим уравнением:

$$f = 1,029 \ Y - 0,065 \ X - 0,245 \ Y^2 + 0,0018 \ X^2 + 0,0215 \ Y^3, \ (5.7)$$
 где $0 < Y < 3; \ 0 < X < 18.$

6. ПРИМЕР РАСЧЕТА

Система солнечного нагрева воды для бытовых нужд будет установлена на доме, расположенном на широте φ ° с.ш. Коллектор для нагрева жидкости с двухслойным остеклением типа НПК-2 следует выбрать из табл. 3.1 и задать соответствующие величины (K_k и η_0). Его используют в системе солнечного теплоснабжения дома, причем система должна обеспечить нагрев воды для семьи из N человек, каждый из которых ежедневно расходует $V_{\rm ГВ}$ литров воды при температуре $T_{\rm ГВ}$, °C. Температура водопроводной воды в данном городе составляет $T_{\rm XB}$, °C. Коллекторы устанавливаются под углом β к горизонту и ориентируются строго на юг. Объем воды в баке-аккумуляторе равен 75 л/м². Необходимо рассчитать долю тепловой нагрузки, обеспечиваемой за счет солнечной энергии, при площади коллектора 2,5; 5 и 10 м².

Для среднего дня каждого месяца рассчитывается количество солнечной энергии, поступающей на наклонную поверхность КСЭ, для чего определяется угол склонения Солнца δ по формуле (2.4), часовые углы захода Солнца для горизонтальной ω_3 и наклонной ω_3' поверхностей по формулам (2.5) и (2.6), среднемесячные коэффициенты пересчета солнечной радиации R_{Π} и R по формулам (2.2) и (2.3), среднемесячное дневное количество солнечной энергии E_k , поступающей на поверхность КСЭ, по формуле (2.1). Результаты расчетов представляются в виде следующей таблицы.

Результаты расчетов прихода солнечной радиации

Месяц	\overline{E} , МДж/(м²-день)	$\overline{E}_{ m Д}$, МДж/(м²-день)	δ, град	ω ₃ , град	ω_3' , град	\overline{R}_n	\overline{R}	\overline{E}_{k} , МДж/(м²-день)
Апрель								
Май								
Июнь								
Июль								
Август								
Сентябрь								

Затем необходимо определить месячные тепловые нагрузки горячего водоснабжения. Средняя суточная тепловая нагрузка равна произведению суточного расхода воды, ее теплоемкости и разности температур горячей $T_{\rm ГВ}$ и холодной $T_{\rm XB}$ воды. Средняя месячная тепловая нагрузка, указанная в столбце 3 табл. 6.2, получена умножением суточной тепловой нагрузки на число дней в месяце (расчет – по формуле (4.1) для соответствующих месяцев года).

Доля месячной тепловой нагрузки, обеспечиваемой за счет солнечной энергии, f есть функция безразмерных комплексов X и Y, определяемых по выражениям (5.3) и (5.4). Эти комплексы должны рассчитываться для соответствующих месяцев года при каждом заданном значении площади коллектора. Уравнения (5.3) и (5.4) следует переписать так, чтобы в левых частях стояли величины X/F_k и Y/F_k , представленные в столбцах 5 и 7 табл. 6.2.

Таблица 6.2 Значения безразмерных комплексов

Месяц	Число дней в месяце	Число секунд в месяце, 10^6	$Q_{{}^{\Gamma}\!{}^{B}}, \ 10^6$	100- <i>T</i> _в , °С	X/F_k , M^{-2}	$\overline{E}_{\it k}$, МДж/м 2 -день	Y/F_k , M^{-2}
	1	2	3	4	5	6	7
Апрель							
Май							
Июнь							
Июль							
Август							
Сентябрь							

Данные о среднемесячной температуре наружного воздуха можно найти в справочнике метеоданных, а значение базисной температуры равно 100°С (столбец 4 табл. 6.2). Среднемесячный дневной приход радиации на наклонную поверхность приведен в табл. 6.2 (столбец 6).

Для системы горячего водоснабжения значения X/F_k , указанные в столбце 5 табл. 6.2, необходимо умножить на поправочный коэффициент из выражения (5.5). Заметим, что этот коэффициент зависит от \overline{T}_B и изменяется от месяца к месяцу. Скорректированные значения X/F_k представлены в столбце 1 табл. 6.3.

Умножая X/F_k и Y/F_k на площадь коллектора, получаем X и Y (табл. 6.3). Значения этих комплексов при различной площади коллектора приведены в столбцах 3 и 4 для соответствующих месяцев года. Доля месячной нагрузки f, обеспечиваемой за счет солнечной энергии, определяется в зависимости от X и Y с помощью уравнения (5.7). Значения f указаны в столбце 5. Месячное количество солнечного тепла (столбец 6) определяется умножением f на месячную нагрузку горячего водоснабжения.

Таблица 6.3 Значения безразмерных комплексов при различной площади коллектора и коэффициента замещения f

Месяц		Y/F _k	Площадь коллектора, ${\rm M}^2$											
	V/E				2,5		5				10			
	X/F _k		X	Y	f	<i>f</i> ∙ <i>Q</i> _{гв} , Дж	X	Y	f	<i>f</i> ∙ <i>Q</i> _{гв} , Дж	X	Y	f	<i>f</i> ∙ <i>Q</i> _{гв} , Дж
	1	2	3	4	5	6	3	4	5	6	3	4	5	6
Апрель														
Май														
Июнь														
Июль														
Август														
Сентябрь														
Сумма														
Доля сезонной нагрузки, обеспечиваемой за счет солнечной энергии														

Доля сезонной нагрузки, обеспечиваемой за счет солнечной энергии, равна отношению сезонного количества солнечного тепла (сумма столбца 6 табл. 6.3) к сезонной тепловой нагрузке (сумма сезонных расходов теплоты, рассчитанных по формуле (4.1)). Результаты расчетов должны быть представлены графически в виде зависимости доли сезонной нагрузки, обеспечиваемой за счет солнечной энергии, от площади коллектора. Затем необходимо рассчитать сезонную экономию топлива, обеспечиваемую использованием солнечной энергии, по соотношению (4.5).

Литература

- 1. Внутренние санитарно-технические устройства: В 3 ч. Ч. 1. Отопление. / В.Н. Богословский, Б.А. Крупнов, А.Н. Сканави и др.; Под ред. И.Г. Староверова и Ю.И. Шиллера. 4-е изд., перераб. и доп. М.: Стройиздат, 1990. 344 с.
- 2. Бекман У., Клейн С., Даффи Дж. Расчет систем солнечного теплоснабжения. М.: Энергоиздат, 1982. 80 с.
- 3. Валов М.И., Казанджан Б.И. Системы солнечного теплоснабжения. М.: Изд-во МЭИ, 1991. 140 с.
- 4. Даффи Дж., Бекман У.А. Тепловые процессы с использованием солнечной энергии. М.: Мир, 1977. 420 с.
- 5. Харченко Н.В. Индивидуальные солнечные установки. М.: Энергоатомиздат, 1991. 208 с.
- 6. Авезов Р.Р., Орлов А.Ю. Солнечные системы отопления и горячего водоснабжения. Ташкент: Фан, 1991. 285 с.
- 7. Системы солнечного тепло- и хладоснабжения / Под ред. Э.В. Сарнацкого, С.А. Чистовича. – М.: Стройиздат, 1990. – 325 с.

Содержание

Введение	3
1. КЛАССИФИКАЦИЯ СОЛНЕЧНЫХ СИСТЕМ ГОРЯЧЕГО	
ВОДОСНАБЖЕНИЯ	3
2. РАСЧЕТ ПРИХОДА РАДИАЦИИ НА НАКЛОННУЮ	
ПОВЕРХНОСТЬ	6
3. КЛАССИФИКАЦИЯ И ВЫБОР КОЛЛЕКТОРОВ	
СОЛНЕЧНОЙ ЭНЕРГИИ (КСЭ)	9
4. ОБЩИЕ ПОЛОЖЕНИЯ РАСЧЕТА СИСТЕМ	
СОЛНЕЧНОГО ОТОПЛЕНИЯ И ГОРЯЧЕГО	
ВОДОСНАБЖЕНИЯ	12
5. РАСЧЕТ КОЭФФИЦИЕНТА ЗАМЕЩЕНИЯ (<i>f</i> -МЕТОД)	15
6. ПРИМЕР РАСЧЕТА	18
Литература	22

Учебное издание

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к курсовой работе по дисциплине «Энергоэффективные технологии на основе нетрадиционных и возобновляемых источников энергии» для студентов специальности 1-43 01 06 «Энергоэффективные технологии и энергетический менеджмент»

Составители: КРИВОШЕЕВ Юрий Константинович ХУТСКАЯ Наталия Геннальевна

Редактор Т.А.Палилова. Корректор М.П.Антонова Компьютерная верстка Н.А.Школьниковой

Подписано в печать 10.06.2004. Формат 60х84 1/16. Бумага типографская № 2. Печать офсетная. Гарнитура Таймс.

Усл. печ. л. 1,4. Уч.-изд. л. 1,1. Тираж 100. Заказ 364.

Издатель и полиграфическое исполнение: Белорусский национальный технический университет. Лицензия № 02330/0056957 от 01.04.2004. 220013, Минск, проспект Ф.Скорины, 65.