УДК 621.777.4

ВЛИЯНИЕ НАЧАЛЬНОЙ СКОРОСТИ ДЕФОРМИРОВАНИЯ НА КАЧЕСТВО БИМЕТАЛЛИЧЕСКИХ РЕЗЦОВ, ПОЛУЧЕННЫХ СКОРОСТНЫМ КОМБИНИРОВАННЫМ ВЫДАВЛИВАНИЕМ

Быков К. Ю., Качанов И. В., Ленкевич С. А., Шаталов И. М. Белорусский национальный технический университет Минск, Республика Беларусь

Целью проведенных исследований было получение экспериментальных биметаллических образцов резцов и уточнение оптимальных технологических параметров процесса скоростного комбинированного выдавливания.

На начальном этапе, для достижения полного заполнения матричной полости и полости промежуточного бойка начальная температура штамповки составляла $T_0 = 1240$ °C, начальная скорость деформирования $\upsilon_0 = 100$ м/с, при диаметре хвостовой части резца $d_1 = 19$ мм. Тем самым обратное выдавливание в полость промежуточного бойка осуществлялось с коэффициентом вытяжки хвостовой части резца $\lambda_1 = 3,34$.

На рисунке 1 представлен экспериментальный образец, выдавленный с начальной скоростью деформирования $v_0 = 100 \text{ м/c}$.

Излишки заусенца по разъему полуматриц

Рисунок 1 — Внешний вид биметаллического резца выдавленного с начальной скоростью деформирования $v_0 = 100$ м/с ($T_0 = 1240$ °C; $\lambda_1 = 3,34$)

По результату проведенного эксперимента было достигнуто полное заполнение матричной полости и полости промежуточного бойка, однако, наблюдались избыточное образование заусенца по разъему полуматриц, а также излишне повышенная температура выдавленного резца, что говорит о значительном превышении требуемой энергии выдавливания. Кроме того, при извлечении выдавленного резца из штамповой оснастки на нем образовывались поверхностные дефекты ввиду избыточной пластичности

металла в конце процесса выдавливания, а также, в некоторых случаях, наблюдалось разрушение промежуточного бойка (рисунок 2).

Учитывая вышеизложенное, начальная скорость деформирования была скорректирована до значений $v_0 = 80 \text{ м/c}$.

Рисунок 2 – Характер разрушение промежуточного бойка

На рисунке 3 представлен экспериментальный образец, полученный с измененной начальной скоростью деформирования $v_0 = 80$ м/с.

Минимальное образование заусенца по разъему полуматриц

Рисунок 3 — Внешний вид биметаллического резца выдавленного с начльнйо скоростью деформирования $v_0 = 80 \text{ м/c}$ ($T_0 = 1240 \text{ °C}$; $\lambda_1 = 3,34$)

По результату проведенного эксперимента было достигнуто полное заполнение матричной полости и полости промежуточного бойка металлом с минимальным образованием заусенца по разъему полуматриц. Таким образом, были установлены оптимальные технологические параметры скоростного комбинированного горячего выдавливания для получения биметаллического резца.