УДК 621.311

TECTOBAЯ CXEMA SIMPLIFIED 14-GENERATOR AUSTRALIAN POWER SYSTEM. ПАРАМЕТРЫ, PACUET PEЖИМА И ОСОБЕННОСТИ SIMPLIFIED 14-GENERATOR AUSTRALIAN POWER SYSTEM TEST CIRCUIT. PARAMETERS, MODE CALCULATION AND FEATURES

Е.В. Драневский, И.Д. Винников Научный руководитель – А.А. Волков, старший преподаватель Белорусский национальный технический университет, г. Минск Е. Dranevskiy, I. Vinnikov Supervisor – A. Volkau, Senior Lecturer Belarusian national technical university, Minsk

Аннотация: данная научная работа посвящена моделированию, расчету и анализу установившегося режима тестовой схемы Simplified 14-Generator Australian Power System в программном комплексе RastrWin. Проведен анализ электрических параметров системы, включая напряжение, ток и мощность. Работа содержит подробное описание методов моделирования и расчетов в программном комплексе RastrWin, а также результаты проведенных исследований. Результаты работы могут быть использованы в дальнейших исследованиях в области электроэнергетики и при проектировании и эксплуатации электроэнергетических систем.

Abstract: this work is devoted to modeling, calculation and analysis of the steady state of the Simplified 14-Generator Australian Power System test circuit in the RastrWin software package. The electrical parameters of the system were analyzed, including voltage, current and power. The work contains a detailed description of modeling and calculation methods in the RastrWin software package, as well as the results of the research. The results of the work can be used in further research in the field of electric power industry and in the design and operation of electric power systems.: Анализ, тестовая схема, моделирование, производительность, надежность.

Ключевые слова: анализ, тестовая схема, моделирование, производительность, надежность.

Keywords: analysis, test pattern, simulation, performance, reliability.

Введение

Современная электроэнергетика становится все более сложной и глобальной в своих масштабах, в связи с чем представляет значительный интерес для исследователей и специалистов в области управления и устойчивости электрических систем. Одним из наиболее распространенных подходов в данной области является использование тестовых схем - моделей электрических систем, которые могут быть использованы для исследования работы системы в различных условиях и разработке новых методов управления и устойчивости. Одной из таких тестовых схем является Simplified 14-Generator Australian Power System - симулятор электрической сети, разработанный для тестирования и исследования различных алгоритмов управления и устойчивости системы. Эта тестовая схема является актуальной и важной для научных исследований в

области электроэнергетики, а также может быть использована практическими специалистами для разработки новых технологий в области управления системой электроснабжения.

Основная часть

Тестовая схема Simplified 14-Generator Australian Power System представляет собой математическую модель электроэнергетической системы. Она состоит из 14 генерирующих источников, линий электропередач, трансформаторов и нагрузок (рисунок 1).

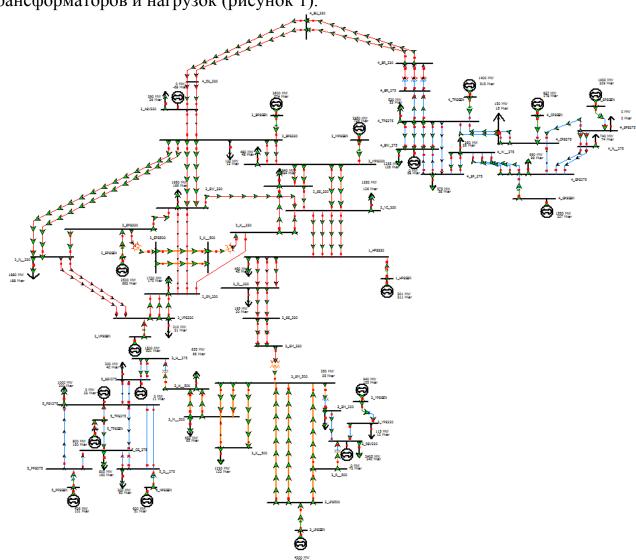


Рисунок 1 – Simplified 14-Generator Australian Power System тестовая схема

Тестовая схема позволяет проводить различные эксперименты, анализировать проблемы и возможности системы, оптимизировать ее работу в различных условиях.

Тестовая схема Simplified 14-Generator Australian Power System в основном используется в научных исследованиях и обучении специалистов в области электроэнергетики. Она является одной из наиболее популярных математических моделей системы электроснабжения и остается актуальной и полезной в своей области использования. Результаты тестов могут быть

использованы для оптимизации работы электроэнергетической системы, предотвращения аварий и повышения устойчивости системы под нагрузкой.

Фрагменты исходных данных по узлам и ветвям схемы представлены на рисунках 2 и 3.

	Number Name	Area Name	Nom kV	PU Volt	Volt (kV)	Angle (Deg)	Load MW	Load Mvar	Gen MW	Gen Mvar	Switched Shunts Mvar	Act G Shunt MW	Act B Shunt Mvar	Area Num	Zone Num
- 1	101 1_HPSGEN	1	15,00	1,00000	15,000	0,00			300,86	311,48		0,00	0,00	1	1
2	102 1_HPS330	1	330,00	1,03895	342,854	-1,40	450,00	45,00				0,00	0,00	1	
3	201 2_BPSGEN	2	20,00	1,00000	20,000	48,90			3600,00	573,62		0,00	0,00	2	
4	202 2_EPSGEN	2	20,00	1,00000	20,000	37,90			2500,00	663,36		0,00	0,00	2	
5	203 2_VPSGEN	2	20,00	1,00000	20,000	32,24			1500,00	531,18		0,00	0,00	2	
6	204 2_MPSGEI	1 2	20,00	1,00000	20,000	39,21			2950,20	734,14		0,00	0,00	2	
7	205 2_ASV330	2	330,00	1,05500	348,150	44,02	390,00	39,00	0,00	-68,27		0,00	0,00	2	
8	206 2_BPS330	2	330,00	1,04720	345,574	41,45	130,00	13,00				0,00	0,00	2	
9	207 2_N330	2	330,00	1,02210	337,292	27,69	1880,00	188,00				0,00	0,00	2	
10	208 2_VPS330	2	330,00	1,03244	340,706	26,25	210,00	21,00				0,00	0,00	2	
11	209 2_EPS330	2	330,00	1,03793	342,516	30,41						0,00	0,00	2	
12	210 2_EPS500	2	500,00	1,05939	529,693	26,68						0,00	0,00	2	
13	211 2_SN_330	2	330,00	1,00806	332,660	18,87	1700,00	170,00				0,00	0,00	2	
14	212 2_SW_330	2	330,00	1,00839	332,769	19,12	1660,00	166,00				0,00	406,74	2	
15	213 2_K500	2	500,00	1,04263	521,313	22,67						0,00	0,00	2	
16	214 2_K_330	2	330,00	1,02565	338,465	18,75						0,00	0,00	2	
17	215 2_MPS330	2	330,00	1,04329	344,285	33,11	480,00	48,00				0,00	0,00	2	
18	216 2_SS_330	2	330,00	1,01299	334,285	16,10	1840,00	184,00				0,00	307,84	2	
19	217 2_YC_330	2	330,00	1,00207	330,684	9,39	1260,00	126,00				0,00	0,00	2	
20	301 3_LPSGEN	3	20,00	1,00000	20,000	-3,39			4200,00	996,58		0,00	0,00	3	
21	302 3_YPSGEN	3	20,00	1,00000	20,000	-18,02			939,90	154,58		0,00	0,00	3	
		_													

Рисунок 2 – Исходные данные по узлам

From Number	From Name	To Number	To Name	Circuit	Status	Branch Device Type	Xfrmr	MW From	Mvar From	MVA From	Lim MVA	% of MVA Limit (Max)	MW Loss	Mvar Loss
101	1_HPSGEN	102	1_HPS330	1	Closed	Transforme	YES	300,9	311,5	433,1	0,0	0,0	0,00	14,8
102	1_HPS330	217	2_YC_330	1	Closed	Line	NO	-277,2	75,9	287,4	0,0	0,0	7,10	-28,7
102	1_HPS330	217	2_YC_330	2	Closed	Line	NO	-277,2	75,9	287,4	0,0	0,0	7,10	-28,7
102	1_HPS330	217	2_YC_330	3	Closed	Line	NO	-298,2	88,0	310,9	0,0	0,0	7,63	-18,5
102	1_HPS330	217	2_YC_330	4	Closed	Line	NO	-298,2	88,0	310,9	0,0	0,0	7,63	-18,5
102	1_HPS330	309	3_D330	1	Closed	Line	NO	415,6	-18,6	416,0	0,0	0,0	7,20	10,2
7 102	1_HPS330	309	3_D330	2	Closed	Line	NO	415,6	-18,6	416,0	0,0	0,0	7,20	10,2
102	1_HPS330	309	3_D330	3	Closed	Line	NO	170,5	-38,8	174,8	0,0	0,0	2,93	-57,9
201	2_BPSGEN	206	2_BPS330	1	Closed	Transforme	YES	3600,0	573,6	3645,4	0,0	0,0	0,01	473,0
202	2_EPSGEN	209	2_EPS330	1	Closed	Transforme	YES	2500,0	663,4	2586,5	0,0	0,0	0,01	339,7
1 203	2_VPSGEN	208	2_VPS330	1	Closed	Transforme	YES	1500,0	531,2	1591,3	0,0	0,0	0,00	170,8
204	2_MPSGEN	215	2_MPS330	1	Closed	Transforme	YES	2950,2	734,1	3040,2	0,0	0,0	0,01	325,9
205	2_ASV330	206	2_BPS330	1	Closed	Line	NO	65,7	-47,8	81,3	0,0	0,0	0,37	-99,9
4 205	2_ASV330	206	2_BPS330	2	Closed	Line	NO	65,7	-47,8	81,3	0,0	0,0	0,37	-99,9
205	2_ASV330	416	4_DU_330	1	Closed	Line	NO	-260,7	-5,8	260,8	0,0	0,0	2,30	-52,6

Рисунок 3 – Исходные данные по ветвям

Заключение

Тестовая схема Simplified 14-Generator Australian Power System - это мощный инструмент для исследования работы системы электроснабжения и разработки новых методов управления и устойчивости. Благодаря своей популярности и широкому использованию в научных исследованиях, она позволяет проводить различные эксперименты с системой и оптимизировать ее работу в различных условиях.

Литература

- 1. Electric Grid Test Case Repository [Электронный ресурс]/ IEEE 96-RTS Test System.— Режим доступа: http://www1.sel.eesc.usp.br/ieee/australian test system/base.htm. Дата доступа: 05.05.2023.
- 2. Illinois [Электронный ресурс]/ Illinois Center for a Smarter Electric Grid (ICSEG). Режим доступа: https://icseg.iti.illinois.edu/simplified-14-generator-australian-power-system/. Дата доступа: 05.05.2023.