мический эффект. Эффективность НИР составляет 2,0-2,5 руб. на 1 руб. дополнительных затрат.

Литература

1. Несветайлов Г.А. Наука и ее эффективность. – Минск: Наука и техника, 1979. – 100 с. 2. Методика (основные положения) определения экономической эффективности использования в народном хозяйстве новой техники, изобретений и рационализаторских предложений. – М.: Экономика, 1977. – 44 с.

УДК 621.372.501.14

В.М.Бладыко, канд. техн. наук, Л.И.Сончик, инженер (БПИ) АППРОКСИМАЦИЯ СЕМЕЙСТВА "СРЕДНИХ" КРИВЫХ НАМАГНИЧИВАНИЯ СЕРДЕЧНИКА

Аналитический расчет любой нелинейной электрической цепи, содержащей катушки с ферромагнитными сердечниками, начинается с решения задачи аппроксимации. При этом перед исследователем возникает вопрос о том, какую кривую намагни чивания аппроксимировать. Наиболее "доступной" является новная кривая намагничивания, которая приводится в справочниках и которую нетрудно снять экспериментальным путем. Одна ко аппроксимация основной кривой намагничивания может вести к принципиально ошибочным результатам, в если использовать аппроксимацию начального участка основной кривой намагничивания [1]. Поэтому некоторые авторы мендуют при аналитических расчетах аппроксимировать "среднюю" кривую намагничивания, а еще лучше - семейство кривых намагничивания [2, 3]. Однако экспериментальное определение "средних" кривых намагничивания связано с трудоемким процессом снятия петель гистерезиса.

В настоящей статье предлагается простой метод аппрокси – мации "средних" кривых намагничивания, не требующий предварительного определения петель гистерезиса. Метод основан на измерении с помощью схемы, изображенной на рис. 1,а, двух характеристик катушки с ферромагнитным сердечником: вольтамперной характеристики по действующим значениям и вольтамперной характеристики по амплитудным значениям (рис. 1,6).

Выберем в качестве выражения, аппроксимирующего "сред - нюю" кривую намагничивания, гиперболический синус

$$h = \lambda shb, (1)$$

где \measuredangle и β - коэффициенты аппроксимации.

При синусоидальном законе изменения магнитной индукции $b = B_m \sin \omega \ t$

действующее значение напряженности поля можно определить из выражения [2]

$$H = A \sqrt{\frac{1}{2} \left[I_0(2\beta B_m) - 1 \right]}, \qquad (2)$$

где I $_{0}$ (2 β B_{m}) - модифицированная функция Бесселя нулевого порядка.

Рис. 1. Схема измерения (a) и вольтамперные (б) характеристики катушки с ферромагнитным сердечником.

Амплитуда напряженности магнитного поля связана с амплитудой магнитной индукции соотношением

$$H_{m} = \lambda \sinh \beta B_{m}. \tag{3}$$

Решая систему уравнений (2) и (3), находим коэффициенты Δ и β .

Так, коэффициент в находится из выражения

$$\frac{H_{\rm m}}{H} = \frac{\sqrt{2} \, \mathrm{sh} \, \beta \, \mathrm{B}_{\rm m}}{\sqrt{\mathrm{I}_{\rm D}(2\beta \, \mathrm{B}_{\rm m}) - 1}}.$$
 (4)

С учетом найденного значения β коэффициент $\mathcal L$ определяется из выражения (2)

$$\mathcal{L} = \frac{H_{\rm m}}{\sinh\beta \, B_{\rm m}} \tag{5}$$

или из выражения (3)

$$\alpha = \frac{\sqrt{2} H}{\sqrt{I_0 (2\beta B_m) - 1}}.$$
 (6)

Амплитудные значения индукции и напряженности магнитного поля и действующее значение напряженности магнитного поля, необходимые для определения коэффициентов $\mathcal L$ и β , рассчитываются по показаниям измерительных приборов, включенных по схеме на рис. 1, а:

$$B_{\rm m} = \frac{U}{4,44 \, {\rm fwS}};$$
 (7)

$$H = \frac{Il}{w}; (8)$$

$$H_{\rm m} = \frac{I_{\rm m}l}{w} , \qquad (9)$$

где
$$I_m = \frac{U_{cp}}{4 f M}$$
 (10)

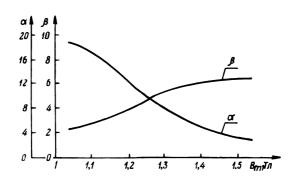


Рис. 2. Зависимость коэффициентов аппроксимации "средних" кривых намагничивания от магнитной индукции.

На рис. 2 приведены коэффициенты аппроксимации "средних" кривых намагничивания, рассчитанные для ферромагнитного сердечника из стали 342. Как видно из рис. 2, коэффициенты аппроксимации зависят от амплитуды магнитной индукции.

Литература

1. Янус Р.И., Фридман Я.А. О случаях неправильного применения коммутационной кривой магнитности при приближенных расчетах цепей с ферромагнетиками. - Электричество,1958, № 6, с. 77-80. 2. Савиновский Ю.А., Нерсесян В.С. Об аппроксимации процессов намагничивания ферромагнитных сер-

дечников с учетом гистерезиса. - Электричество, 1969, № 3, с. 69-73. 3. Бладыко В.М., Мехедко В.Ф., Сончик Л.И. Гармонический синтез кривой намагничивания. -Изв. вузов СССР. Энергетика, 1975, № 10, с. 136-139.

УДК 621.319.7

П.М.Корниенко, канд. техн. наук, В.С.Лившиц, канд. техн. наук, В.Ф.Силюк, канд. техн. наук, В.М.Климович, инженер (БПИ)

ЭКСПЕРИМЕНТАЛЬНОЕ ОБСЛЕДОВАНИЕ ЭЛЕКТРОСТАТИЧЕСКИХ НАПРЯЖЕНИЙ В СБОРОЧНЫХ ЦЕХАХ ЭЛЕКТРОННЫХ ПРИБОРОВ

Современное производство радиоэлектронной аппаратуры и приборов предъявляет повышенные требования к чистоте помещений и воздушной среды. Это обусловило широкое применение в таких цехах синтетических и полимерных материалов, которые обладают рядом положительных свойств: они прочны, устойчивы к истиранию, не отделяют частиц, ворса, с них легко удаляются пыль и загрязнения. Однако эти материалы, как правило, хорошо электризуются и имеют малую электропроводность, что способствует накоплению электростатических зарядов и росту напряжения относительно земли и заземленных предметов.

Возникновение и накопление электростатических зарядов может происходить на одежде и теле человека, диэлектрических покрытиях столов и пола, межоперационной таре, а также проводящих, но изолированных от земди предметах: пинцетах, паяльниках, приспособлениях, корпусах изделий.

Характерны следующие виды повреждений: частичный или полный пробой р-п-переходов, расплавление и сгорание металлизированных дорожек, пробой диэлектрика, частичное расплавление металлизации МОП-транзисторов, разрыв электродов вследствие теплового и электродинамического воздействия [1]. Степень повреждения — ухудшение характеристик изделия или полный отказ — зависит от напряжения и энергии разряда.

При электростатическом разряде с напряжением, близким к критическому (минимально опасному), возможно изменение вольт-амперных характеристик изделия, изменение коэффициентов передачи, увеличение обратных токов. При разряде с напряжением, большим критического, резко возрастает вероятность полного отказа изделия. Критические значения статического напряже-