Здесь λ', i', C' — коэффициент теплопроводности, вт/и-град; удельный вес (кг/ μ^3) и удельная теплоемкость (дж/кг-град) для жилкого металла.

Элементарное количество аккумулированной теплоты за время AT:

 $dG_{ark} = -\frac{n}{n+1} X_i r c' dF dT_4 \cdot \pi$ (4)

Јравнение теплового баданса для установившегося процесса в момент, когда еще отсутствует намороженная корочка

$$n\lambda' \frac{T_{n} - T_{np}}{X_{i}} dF dT = -\frac{n}{n+1} \chi_{i} r c' dF dT_{n}$$
 (5)

После некоторых преобразований и интегрирования в пределах от = 0 до и от $T_{80,X}$ до T_{II} решением данного уравнения явиляется выражение

$$F_0 = \frac{1}{n+1} \ln \frac{T_{\mu\alpha} T_{\kappa\rho}}{T_{\kappa} - T_{\kappa\rho}} \tag{6}$$

HAH

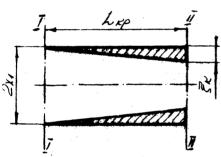
$$T_{4} = T_{e\rho}^{+} (T_{3aA} - T_{e\rho}) e^{-(n_{4})} F_{o}$$
 (7)

rić

$$F_{\theta =} \frac{\alpha T}{K^2}$$
 — критерий Фурье; $G = \frac{\alpha C}{K^2}$ — коэффициент температуропроводности, $m^2/\text{сек}$.

JUTEPATYPA

I. Вейник А.И. Приближенный расчет процессов теплопроводности. М.-Л., Госэнергонадат, 1959.


JAK 621.746.6

В.И.ТУТОВ.Г.А.АНИСОВИЧ. В.А.ГРИНБЕРГ, В.С.СКОТАРЕНКО

К РАСЧЕТУ ЗАТВЕРЛЕВАНИЯ ОТЛИВКИ ПРИ ГОРИЗОНТАЛЬНОМ НЕПРЕРЫВНОМ ЛИТЬЕ

В настоящее время получает развитие литье чугунных заготовок машино- и станкостроения на горизонтальных установках. Формирование отливки при горизонтальном непрерывном литье начинается вграфизовом водоохлаждаемом кристаллизаторе, соединенным с металлоприемником. Затвердевшая на стенках кристаллизатора твердая оболочка вместе с жидкой сердцевиной извлекается из кристаллизатора и дальнейшее затвердевание отливки происходит при ох лаждении на воздухе или в зоне вторичного охлаждения. Структура
и свойства получаемой заготовки определяются комплексным воздействием технологических, тепловых и металлургических параметров
процесса литья. При определении этих параметров и проектировании
витейных установок приходится производить расчет процесса затвердевания отливки. Для создания необходимых расчетных формул, принимая обычные для подобных расчетов упрощения [4], будем
исходить из предположения, что теплота перегрева полностью отводится в кристаллизаторе, а жидкий металл внутри отливки за пре делами кристаллизатора имеет постоянную температуру Ткр.

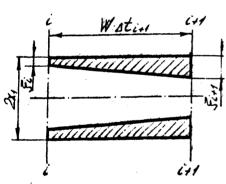
Рассмотрим затвердевание цилинарической отливки в кристаламзаторе / рис. I /.

Толщина твердой корки отливим диаметром 2X, при прохождении через кристаллизатор с длиной оклаждаемой части L к со скоростью W за время At м меняется от O до S к. Расход жидкого металла через кристализатор определяется диамет — ром отливки и скоростью литья. Вместе с жидким металлом черев сечение 1—1 вносится определенное количество тепла $G_{\ell m}$

Рис. I. Скема I-го этапа расчета деленное количество тепла Суж а через сечение II-II тепло

уносится с твердой норкой G_{27} и с жидини металяюм $G_{2\infty}$. Часть тепла отводится кристалянаетором

Тогла


$$Q_{\kappa} = d_{\kappa} (T_{in} - T_{e}) F$$

Выражая соответствующие комичества тепла через раскод и теплосодержание мидкого и твердого металла, определяя среднюю температуру твердой корки $T_{\rm CP}$ и температуру поверхности отливии $T_{\rm TH}$ по формулам работи [2] и решая уравнение /I/,

$$\Delta t = \frac{R[3[X^{4}q_{aga}+(2X-\frac{\pi}{4}c)\frac{\pi}{3c},\frac{2}{3}](d_{2}\frac{\pi}{6c}+\lambda_{1})+d_{2}C[\frac{\pi}{4}U_{ag}(3X-\frac{\pi}{6c})](d_{4}\frac{\pi}{6c}+2\lambda_{1})}{12X_{1}d_{2}U_{ag}\lambda_{1}(d_{2}\frac{\pi}{6c}+\lambda_{1})}$$
(2),

где S_i — плотность материала отливки Q_{ref} теплота перегрева металла; Z_i — эффективная теплота кристаллизации, учитывающая теплоту охлаждения металла в интервале температур кристаллизации; d_z — коэффициент теплоотдачи на поверхности отливки в момент выхода ее из кристаллизатора; C_i — теплоемкость материала отливки; d_K — средний коэффициент теплоотдачи от отливки к кристаллизатору; A_i — коэффициент теплопроводности материала отливки; $V_{KP} = T_{KP}$ — T_{KP} — температура кристаллизации; T_C — температура охлаждающей среды.

Уравнение /2/ связывает условия охлаждения, теплофизические

свойства материала отливки и позволяет определять толщину ватвердевшей за время прохождения через кристаллизатор твердой корки.

Формулы для поэтапного расчета затвердевания отливки вне кристаллизатора могут быть получены путем составления и решения уравнения теплового баланса для произвольного участка отливки, покинувшей кристаллизатор /рис.2/. Это уравнение

Рис. 2. Схема 2-го этала расчета имеет следующий вид:

$$Q_{ine}+Q_{iT}=Q(i+1)\mathcal{H}+Q(i+1)T+Q_{0H}, \qquad /3/$$

где индексами є и с 1 обозначено соответственно количество теплоти, вносимое жидким и твердым металлом через сечение є и
уносимое через сечение с 1, а Сви — количество тепла, теряе—
мое с поверхности отливки за время перемещения отливки от сече—
имя є до с 1 и равное «ti».

Решая уравнение /8/, получаем выражение

$$\Delta t_{i+1} = \frac{\left[\frac{1}{2} \Re \left(2 \chi_i + \frac{1}{2} i + 1 \right) \left(\frac{1}{2} \chi_i + \frac{1}{2} i + \frac{1}$$

При выполнении расчетов по формуле /4/ покинувшая кристаллизатор отливка разбивается на ряд произвольных участков, для каждого из которых производится расчет. Расчет получится тем точнее, чем меньше эти участки.

ЛИТЕРАТУРА

Вейник А.И. Теория особых видов литья. Машгив, М., 1958.
 Вейник А.И. Теория затвердевания отливки. Машгив, М., 1960.

УДК 620.165

С.К.Павлюк. А.Ф.Кислов, И.М.Кувменко

УСТАНОВКА ДЛЯ ИССЛЕДОВАНИЯ ФОРМОИЗМЕНЕНИЯ И ТЕРМИЧЕСКОЙ УСТАЛОСТИ РАБОЧИХ ВТУЛОК КРИСТАЛЛИ-ЗАТОРОВ ПРИ ПОЛУНЕПРЕРЫВНОЙ ОТЛИВКЕ ЧУГУННЫХ ТРУБ

Основным технологическим узлом установок для полунепрерывной отливки чугунных труб является водоохлаждаемый кристаллизатор, в котором происходит формирование отливаемой трубы. В рабочих втулках кристаллизаторов возникают температурные напряжения, достигающие предела текучести металла и вызывающие его пластическую деформацию. В месте наибольшего нагрева втулки появлятется сужение ее внутреннего диаметра, сопровождающееся появлением трещин термической устаности на поверхности металла, обращенной к жидкому чугуну [1].

Для исследования процесса формонаменения и равгара с ценър разработии методов повышения работоснособности рабочих втупок спроектирована, изготовлена и испытана автоматическая установка. На рабочем блоке установки укрепляется полный цилиндрический образец из стали, 10, внутръ которого помещается на регулируемой