как для лопастей, так в целом и для стальных отливок.

Изученный в числе других метод подвода металла к лопасти сбоку через нижний и верхний питатели способствует как относительно спокойному заполнению формы лопасти, так и направленному затвердеванию, поскольку металл не перемещается с обратной от питателей стороны. Этот метод в числе других может успешно применяться при вертикальной заливке лопастей.

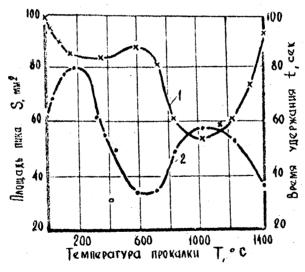
Проведенные исследования наряду с раскрытием гидродинамических особенностей, позволили уточнить количественные характеристики, в том числе коэффициентов расхода, проходное сечение питателей и время заливки. В этих данных наблюдалось достаточно близкое совпадение параметром, полученных расчетами, с результатами моделирования, за исключением случая подвода снизу. Обнаруженный эдесь низкий коэффициент расхода обусловливает более длительное время заливки лопастей и повышенное сечение питателей.

Литература

1. Денисов В.А., Костепецкий С.В., Жуков Г.П. Влияние технологических факторов и конфигурации стальных отливлк на их плотность в сб.: "Новое в процессах литья", Киев, АН УССР, 1974, 2. Василевский А.Ф. Технология стального литья. М., "Машиностроение", 1974.

Ю.П. Ледян, Д.М. Кукуй ИССЛЕДОВАНИЕ ПОВЕРХНОСТНЫХ СВОЙСТВ КВАРИЕВЫХ ПЕСКОВ

Кварцевые пески являются основным материалом, применяющимся для изготовления разовых литейных форм и стержней. Адгезия к песку связующих материалов определяется не только их физико-химическими свойствами, но и состочнием поверхности зерен кварцевого песка.


Исследование поверхностных свойств песка проводились на хроматографе XЛ-69. Исследовался кварцевый песок марки 1КО2 люберецкого месторождения. Газом-носителем является азот, расход которого составлял 8 л/мин при давлении 1 атм. В качестве адсорбата был выбран эфир, так как он адсорбируется на гидроксильных группах поверхности и площадь пика хроматограммы в этом случае характегизует суммарное количество гидроксильных групп. Объем дозы составлял 2 мкл.

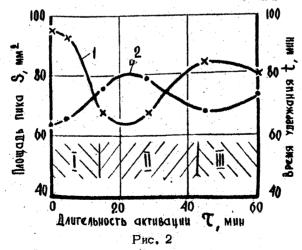
Вьодимая в хроматограф поза частично адсорбируется адсорбентом (кварцевым песком), а частично выходит из колонки и регистрируется детектором и самописцем в виде пика, площадь которого пропорциональна объему, не адсорбировавшемуся на твердой фазе:

$$\mathbf{v}_{\mathbf{n}} = \mathbf{v}_{\mathbf{a}} + \mathbf{v}_{\mathbf{b}}$$

где $\mathbf{v}_{\mathbf{d}}$ - объем вводимой дозы, $\mathbf{v}_{\mathbf{d}}$ - адсорбировавшийся объем, не адсорбировавшийся на твердой фазе.

Навеска песка нагревалась до заданной температуры и выдерживалась в течение 1 часа. На рис. 1 представлены изменения адсорбционной способности кварцевого песка в зависимости от температуры прокалки. Кривая 1 соответствует изменению времени удержания t , кривая 2 - площади пика хроматограммы S , которая пропорциональна объему эфира, не адсорбировавшегося на поверхности зерен песка.

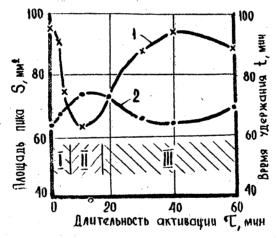
Puc. 1


Анализ экспериментальных данных показывает, что адсорбфионная способность кварцевого песка резко меняется при прокалке его до высоких температур. Прокалка до температур 600-700°С приводит к увеличению адсорбировавшегося объема у Это происходит в результате полного исперения адсорбировав—

 \mathbf{v}_{\bullet} Это происходит в результате полного испарения адсорбировавшейся влаги и адсорбции эфира на гидратированной поверхности кварца. Время удержания этом изменяется незначительно. Дальнейшее повышение температуры прокалки вызывает Спекание поверхностного растворимого слоя кремнезема и дегидратацию поверхности зерен кварца, в результате чего площадь пика S увеличивается, а время упержания t уменьшается. Экстремумы на кривых t и S имеют место при температуре прокалки 900-1000 С. В зоне **β** -кварц переходит в тридимит с измене-. этих температур нием объема, отслаиванием оболочек ? растрескиванием. Дильнейшее повышение температуры вызывает увеличение времени и уменьшение S в результате увеличения ипержания суммарной поверхности зерен кварца.

Удаление с поверхности зерен песка глинистых и окисных пленок приводит к некоторому увеличению времени удержания t и уменьшению площади пика S . Так, кипячение кварцевого песка в 20%-ном растворе соляной кислоты, вызывающее полное удаление глинистых и окисных пленок, приводит к увеличению времени удержания на 12-15% и уменьшению площади пика на 17-20%, что свидетельствует о возрастании адсорбции.

Характер же изменения адсорбционной способности такого песка в зависимости от температуры прокалки остается неизменным.


На рис. 2 представлены результаты гидромеханической ак-

тивации кварцевого песка в микроизмельчителе тканей РТ-2 в зависимости от длительности процесса активации. Кривая 1 соотвествует изменению времени удержания t, кривая 2 плошеди пика хроматограммы s. Процесс гидромеханической активации может быть разделен на три стадии.

На стадии 1 (рис. 2) происходит отделение легкоудаляемой глинистой оболочки, что вызывает уменьшение адсорбции. Увеличение длительности активации приводит к удалению окисных иленок с поверхности эерен песка, в результате чего адсорбционная способность возрастает (П стадия процесса). Дальнейшая гидромеханическая активация приводит к разрушению поверхностного слоя растворимого кремнезема, что вызывает снижение адсорбционной способности (Ш стадия).

Аналогичное изменение поверхностной активности имеет место и при активации кварцевого песка в катковом лабораторном смесителе ЛБ-2 (рис. 3). Кривая 1 соответствует из-

Puc. 3

менению параметра t , а кривая 2 - S. При механической активации песка под катками смесителя наблюдаются те же стадии, что и при гидромеханической активации, однако длительность Ј и П стадии несколько сокращается, а стадии Ш увеличивается. Это связано с тем, что процесс механического удаления глинистых и окисных оболочек под катками смесителя протегает более интенсивно.

Поверхностивя активность кварцевых песков изменяется в значительной мере и с изменением их температуры.

В табл. 1 представлены результаты исследования влияния температуры кварцевого песка, подвергнутого различным видьм активации, на изменение его адсорбционной способности.

Таблица 1. Влияние температуры песка на его адсорбционную способность

		Температура песка, С					Примеча-
Время упержания t , сек Площапь пика S, мм ²	20	50	100	150	200	250	ние
	94 6 7	90 68	8 <u>3</u> 70	$\frac{78,5}{76,4}$	75,3 88	7 <u>3</u> 105	Исходный песок
	103 60,5	98 61	92,5 64	89,7 69,8	89 82	78,2 100	Механичес- кая актива- ция С =5мин ^х
	60 56	44 56,7	32,5 58	30,6 64	29 72	30 80	Терми¤еская активация Т=900°С, С =60 мин
	$\frac{80}{72}$	79. 75 , 3	78,6 83	81 88	80,5 95,4	80,9 100	Гидромеха- ническая активация С=10 мин

х Песок активирован в микроизмельчителе РТ-2.

Увеличение температуры кварцевого песка приводит к эначительному снижению адсорбционной способности его гидратированной поверхности.

Наиболее эффективна в этом отношении предварительная прокалка песка до 900 °C, которая приводит к эначительной дегидротации поверхности и реэкому сокращению времени удержания.

Литература

1. Степанов Ю.А., Семенов В.И. Формовочные материалы. М., "Машиностроение", 1969. 2. Туманский А.Л. Формовочные пески. М., Машгиз, 1956. 3. Связанчая вода в дисперсных системах. Вып. 1. Изд. тельство МГУ, 1970. 4. Гольберт К.А., Вигдергауз М.С. Курс газовой хроматографии. М., "Химия", 1974.