УЛК 666.75

ТЕПЛОИЗОЛЯЦИОННЫЕ КЕРАМИЧЕСКИЕ МАТЕРИАЛЫ ОГНЕУПОРНОГО НАЗНАЧЕНИЯ С ИСПОЛЬЗОВАНИЕМ МЕСТНОГО ГЛИНИСТОГО СЫРЬЯ

Сергиевич О.А.¹, Попов Р.Ю.¹, Богдан Е.О.¹, Дятлова Е.М.¹, Колонтаева Т.В.²

¹Учреждение образования «Белорусский государственный технологический университет»

²Белорусский национальный технический университет

Минск, Республика Беларусь

Аннотация. В работе установлена возможность использования местного глинистого сырья и выгорающих добавок для получения теплоизоляционных огнеупорных материалов.

Ключевые слова: теплоизоляционный материал, механическая прочность, теплопроводность, спекание.

THERMAL INSULATING CERAMIC MATERIALS FOR FIREPROOF PURPOSE USING LOCAL CLAY RAW MATERIALS

Sergievich O.A.¹, Popov R.Yu.¹, Bogdan E.O.¹, Dyatlova E.M.¹, Kolontaeva T.V.²

¹Educational institution "Belarusian State Technological University"

²Belarusian National Technical University

Minsk, Republic of Belarus

Abstract. The work established the possibility of using local clay raw materials and burnable additives to obtain thermal insulation fireproof materials.

Key words: thermal insulation material, mechanical strength, thermal conductivity, sintering.

Адрес для переписки: Сергиевич О.А., ул. Свердлова, 13a, г. Минск, 220006, Республика Беларусь e-mail: Topochka.83@mail.ru

Теплоизоляционные керамические изделия, от качества которых во многом зависит уровень развития ряда химических и металлургических производств, значительно сокращают потери тепла и холода в окружающую среду и обуславливают устойчивый режим работы технологического оборудования. Такие материалы характемалой способностью проводить ризуются теплоту вследствие их высокой пористости. По характеру микроструктуры (строение и форма пор) теплоизоляционные материалы могут быть: ячеистыми, зернистыми, волокнистыми, пластинчатыми или смешанными [1]. Ячеистое строение характерно для ячеистых бетонов, пеностекла, пенокерамики, газонаполненных пластмасс и некоторых других материалов. Зернистое строение имеют сыпучие материалы. Для материалов с волокнистым строением характерна очень высокая степень пористости и отсутствие замкнутых пор. Пластинчатое строение имеет вспученный вермикулит, что является его отличительной особенностью по сравнению с другими пористыми материалами. Теплоизоляционные материалы со смешанным строением макроструктуры, как правило, отличаются лучшими физико-техническими свойствами по сравнению с материалами, имеющими однородную структуру (пеноперлитокерамика, армированная тугоплавким волокном и т. д.) [2].

На основании вышесказанного установлена цель данной работы: разработка составов масс с использованием местного глинистого сырья и выгорающих добавок для получения теплоизоляционных огнеупорных изделий с требуемыми эксплуатационными характеристиками.

Для синтеза керамических теплоизоляционных материалов в качестве исходных сырьевых материалов использовались глина тугоплавкая месторождения «Туровское», огнеупорная глина Веселовского месторождения, шамот из лома огнеупорных алюмосиликатных изделий; в качестве выгорающих добавок – торф, лигнин и древесные опилки.

Керамическая масса для получения образцов методом пластического формования готовилась из предварительно высушенных, измельченных и просеянных глинистых материалов (через сито N = 05), выгорающих добавок - (№ 1) путем совместного смешения требуемого количества исходных сырьевых компонентов и увлажнения до относительной влажности от 26,0 до 28,0 %. Полученная масса вылеживалась несколько дней для усреднения влажности и тиксотропного упрочнения. Формование опытных образцов полуфабриката в виде кирпичасырца размерами (260×130×70) мм осуществлялось на опытном лабораторном ленточном прессе марки СМК-435. Образцы сушились сначала на воздухе, а затем при температуре 70±5 °C в экспериментальной сушилке типа СНОЛ до остаточной влажности после сушки 2,5-2,8 %. Обжиг образцов проводился в лабораторной камерной электропечи марки SNOL 6,7/1300 при максимальной температуре 1050 °C с выдержкой 1 ч и инерционным охлаждением. После обжига образцы имели удовлетворительный внешний вид без признаков деформации.

Линейная воздушная усадка опытных образцов составляет 7,6–10,2 %. Воздушная усадка образцов с выгорающими добавками выше и обусловлена их гигроскопичностью и различной способностью впитывать воду. Огневая усадка образцов без вы-

горающих добавок составляет 1 %, с торфом и древесными опилками — 1,5 %, с лигнином — около 2 %. Огневая усадка обусловлена разным объемным содержанием выгорающих компонентов. Лигнин более легкий по массе, поэтому он занимает больший объем, и при обжиге его потери при прокаливании выше, чем у торфа. Усадка образцов без выгорающих добавок меньше остальных, так как усадка идет только за счет потери химически связанной влаги, воды пор, разложения органических примесей и процессов спекания.

Кажущаяся плотность опытных экспериментальных образцов изменяется в пределах 1100—1300 кг/м³. Средние значения открытой пористости имеют значения от 40 до 56 %, что объясняется малой контактной поверхностью частиц. Перенос вещества при спекании происходит за счет вязкого течения расплава и диффузионных процессов, однако образование большого количества жидкой фазы нежелательно, т. к. происходит заполнение пор и снижаются теплоизоляционные свойства синтезированных материалов.

С увеличением содержания выгорающих добавок теплопроводность образцов снижается, что объясняется значительным повышением их пористости. Установлено, что коэффициент теплопроводности при температуре измерения 350 °C для исследуемых образцов изменяется в пределах от 0.42 до 0.54 BT/(м·K).

Значения показателей механической прочности при сжатии образцов теплоизоляционных материалов составляют от 5,7 до 7,5 МПа при содержании выгорающих добавок до 40 %. Прочность образцов с лигнином и торфом по сравнению с древесными опилками возрастает незначительно, что обусловлено малой поверхностью контакта керамических частиц и сохранением высокой пористости образцов. Зольный остаток заполняет поры и материал становится более плотным.

Методом ренттенофазового анализа была установлена зависимость фазового состава синтезированных образцов от температуры обжига и вида выгорающих добавок (зольного остатка). Для образцов из массы, не содержащей выгорающих добавок, характерно присутствие муллита, кварца и ильменита. В образцах с использованием торфа и лигнина образуются фазы шпинели MgO·Al₂O₃ и анортита CaO·Al₂O₃·2SiO₂. В образцах с древесными опилками присутствуют следующие фазы: шпинель, анортит и α -кварц.

Оптическая микроскопия позволяет охарактеризовать микроструктуру материала, соотношение кристаллической и стекловидной фаз и характер их распределения. На рисунке 1 представлены оптические снимки синтезированных образцов с $20\,\%$ торфа, древесных опилок и лигнина, синтезированные при $1050\,^{\circ}\mathrm{C}$.

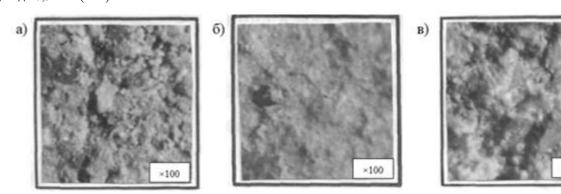


Рисунок 1 — Оптические снимки синтезированных образцов с выгорающими добавками: a-20 % торфа; b-20 % древесных опилок

Образцы с добавкой торфа имеют ярко-рыжий цвет с мелкими включениями железа и кварца в виде белых матовых кристаллов. Образцы мелкопористые, имеются нити расплава. Для образцов с добавкой лигнина и опилок наблюдается высокопористая структура, отдельные зерна кристаллов хорошо просматриваются.

Следует отметить, что по своим физико-механическим показателям синтезированные огнеупорные керамические материалы не уступают

импортным аналогам, что позволяет рекомендовать их в качестве теплоизоляционных материалов тепловых агрегатов и устройств общего назначения.

Литература

- 1. Забрускова, Н.Т. Теплоизоляционная керамика / Н.Т. Забрускова, Ю.Н. Кочан // Стекло и керамика. 1982. № 8. С. 26—27.
- 2. Гузман, И.Я. Высокоогнеупорная пористая керамика / И.Я. Гузман. М.: Металлургия, 1971. 208 с.