УДК 681.586

ДАТЧИКИ ДВИЖЕНИЯ Люцко К.С., Крук А.Д.

Белорусский национальный технический университет Минск, Республика Беларусь

Аннотация. Датчики движения — это устройства, используемые для обнаружения и записи движущихся объектов в окружающей среде. В работе рассмотрены основные виды датчиков движения: пироэлектрические, ультразвуковые, микроволновые и инфракрасные, их преимущества и принцип работы. **Ключевые слова:** датчик движения, объект, устройство, датчик.

MOTION SENSORS Liutsko K., Kruk A.

Belarusian National Technical University Minsk, Republic of Belarus

Abstract. Motion sensors are devices used to detect and record moving objects in the environment. The paper discusses the main types of motion sensors: pyroelectric, ultrasonic, microwave and infrared, their advantages and operating principle.

Keywords: motion sensor, object, device, sensor.

Адрес для переписки: Люцко.К.С., пр. Независимости, 65, г. Минск, 220113, Республика Беларусь e-mail: liutsko@bntu.by

Датчик движения – это устройство, используемое для обнаружения и записи движущихся объектов в окружающей среде.

Основной функцией датчика движения является обнаружение изменений окружающей среды и границ при движении объектов.

Под термином «датчик движения» чаще всего, имеют в виду электронное инфракрасное устройство способное обнаружить присутствие и движение человека, одновременно контролируя питание электрических устройств. Иногда датчики движения ошибочно отождествляют с акселерометрами, но разница заключается в том, что акселерометры не способны регистрировать линейное равномерное движение, но могут определять ориентацию относительно вертикальной оси даже в состоянии покоя.

В зависимости от принципа работы выделяются следующие виды датчиков движения:

– ироэлектрический датчик (PIR) (рисунок 1). Данный вид датчиков движения использует в свое работе пироэлектрический эффект для обнаружения движения. Реагируют на изменение инфракрасного излучения, вызванного движущимися объектами. Состоят из пироэлектрического материала, генерирующего электрический сигнал при изменении теплового излучения в поле действия датчика. Широко используются в системах безопасности и автоматического освещения;

– микроволновой датчик. Эти датчики используют высокочастотные радиоволны для обнаружения движения. Они генерируют постоянный ток микроволновых сигналов и контролируют отраженные сигналы от движущихся объектов. При пересечении объектом зоны действия датчика и

изменении отраженного сигнала происходит регистрация движения. Используются в системах безопасности и автоматических дверях;

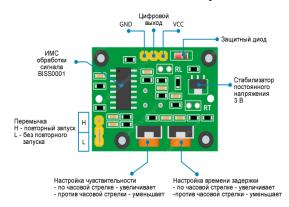


Рисунок 1 – Устройство PIR датчика

– ультразвуковой датчик (рисунок 2). В этих датчиках генерирующих Ультразвуковые волны генерируемые датчиком в последствие отражаются от объектов и фиксируются. Происходит анализ времени прохождения ультразвука и его изменения с целью обнаружения движущихся объектов. Используются в системах безопасности, парковочных системах и промышленности;

Рисунок 2 – Устройство ультразвукового датчика

– инфракрасный датчик. Обнаруживают изменения теплового излучения объектов. Работают на основе пироэлектрического эффекта или используют другие методы, например изменение температуры или интенсивности излучения. Используются в системах безопасности, автоматическом освещении и устройствах умного дома [1].

Каждый тип датчика движения имеет свои особенности и применение в зависимости от конкретных требований задачи. Пироэлектрические датчики хорошо подходят для обнаружения теплового излучения живых объектов, микроволновые датчики обладают высокой чувствительностью, ультразвуковые датчики применяются в парковочных системах, а инфракрасные датчики находят широкое применение в системах безопасности и умных домах.

Направления использования датчиков движения:

– лазерное сканирование – процесс использования лазерных лучей для обнаружения и измерения движения объектов в окружающей среде. В основе работы лазерного сканирования датчиков движения лежит скорость прохождения лазерного луча. Датчик посылает короткий импульс лазерного света и измеряет время, необходимое, для возвращения в первичную точку. Измерение времени позволяет определить расстояние до объекта. В современных системах лазерного сканирования используется особый вид датчиков, называемый лидаром (LIDAR – Light Detection and Ranging);

– видеоаналитика – обнаружение движущихся объектов в видеопотоке. Позволяет следить за объектом и автоматически уведомлять об изменении его положения или взаимодействия с другими

объектами. Видеоаналитика с использованием датчиков движения обеспечивает автоматизированную и эффективную обработку видеоданных, что помогает снизить нагрузку на операторов системы видеонаблюдения и обеспечивает более точное и быстрое обнаружение событий;

– радары – устройства измеряющие расстояние до объектов, определяющие их скорость и направление движения. Датчики движения используются в радарах для обнаружения и отслеживания движущихся объектов в окружающей среде. Работают в данном случае на основе эффекта Доплера (возникает при изменении частоты радиоволн, отраженных от движущихся объектов). Измерение изменения частоты позволяет определить скорость объекта относительно радара.

Преимуществами датчиков движения являются:

- повышение безопасности;
- экономия энергии;
- удобство и эффективность.

Датчики движения продолжают развиваться и находить применение во многих сферах. Их возможности постоянно расширяются, а цена и размеры снижаются, что делает их доступными для широкого использования. Будущее датчиков движения связано с их интеграцией в «умные» системы, где они будут играть ключевую роль в создании комфортной, безопасной и эффективной среды для жизненных и рабочих задач.

Литература

1. Котюк, А.Ф. Датчики в современных измерениях / А.Ф. Котюк. – М. : Радио и связь, $2006.-571\ c.$

УДК 577.2.08

МУЛЬТИСЕНСОРНАЯ СИСТЕМА ДЕТЕКТИРОВАНИЯ БИОАЭРОЗОЛЕЙ Люцко К.С.¹, Филатов С.А.²

¹Белорусский национальный технический университет ²Институт тепло-и массообмена имени А.В. Лыкова НАН Беларуси Минск, Республика Беларусь

Аннотация. Описывается разработка мультисенсорной микропроцессорной системы детектирования биоаэрозолей с открытой архитектурой для мониторинга качества воздуха.

Ключевые слова: биосенсор, биоаэрозоли, мониторинг качества воздуха.

MULTISENSORY SYSTEM FOR DETECTION OF BIOAEROSOLS Liutsko K.S.¹, Filatov S.A.²

¹Belarusian National Technical University
²A.V. Luikov Heat and Mass Transfer Institute of National Academy of Sciences of Belarus
Minsk, Republic of Belarus

Abstract. The development of a multisensor microprocessor-based bioaerosol detection system with an open architecture for air quality monitoring is described.

Key words: biosensor, bioaerosols, air quality monitoring.

Адрес для переписки: Люцко К.С., пр. Независимости, 65, г. Минск, 220113, Республика Беларусь e-mail: liutsko@bntu.by

В настоящее время прямое и косвенное радиационное воздействие аэрозолей на атмосферу признано основным источником неопределенности в моделировании глобального климата,

причем значительную роль играют аэрозоли как антропогенного происхождения (связанных со сжиганием ископаемого топлива, промышленных процессов, работой транспорта) так и естест-