УДК 535.37;620.3 КИНЕТИКА ЗАТУХАНИЯ ЛЮМИНЕСЦЕНЦИИ НАНОСТРУКТУРИРОВАННЫХ ПОРОШКОВ ИТТРИЙ (ЛЮТЕЦИЙ)-АЛЮМИНИЕВОГО ГРАНАТОВ И АЛЮМИНАТА ГАДОЛИНИЯ, АКТИВИРОВАННЫХ ИОНАМИ ЕВРОПИЯ

Юмашев К.В.¹, Хорт А.А.², Подболотов К.Б.³, Шиманский В.И.⁴

¹Белорусский национальный технический университет Минск, Республика Беларусь ²Королевский технологический институт Стокгольм, Швеция ³Физико-технический институт НАНБ ⁴Белорусский государственный университет Минск, Республика Беларусь

Аннотация. Исследована кинетика затухания люминесценции наноструктурированных порошков иттрийалюминиевого и лютеций-алюминиевого гранатов и алюмината гадолиния, активированных ионами европия, синтезированных методом экзотермического горения в растворах. Для исследуемых материалов определены времена затухания люминесценции, определяемое временем жизни в состоянии ⁵D₀ ионов европия. Ключевые слова: наноструктурированные порошки, люминесценция, время жизни.

LUMINESCENCE DECAY KINETICS OF NANOSTRUCTURED POWDERS OF YTTRIUM (LUTETIUM)-ALUMINUM GARNETS AND GADOLINIUM ALUMINATE DOPED WITH EUROPIUM IONS

Yumashev K.V.¹, Khort A.A.², Podbolotov K.B.³, Shimanski V.I.⁴

 ¹ Belarusian National Technical University Minsk, Republic of Belarus
²KTH Royal Institute of Technology Stockholm, Sweden
³Physical Technical Institute of NASB
⁴Belarusian State University Minsk, Republic of Belarus

Abstract. Luminescence decay kinetics of europium-doped nanostructured powders of yttrium-aluminum garnet, lutetium-aluminum garnet, and gadolinium aluminate synthesized by the solution combustion technique have been studied. For the materials under study, the luminescence decay times determined by the lifetime in the ${}^{5}D_{0}$ state of europium ions were determined.

Key words: nanostructured powders, luminescence, lifetime.

Адрес для переписки: Юмашев К.В., проспект Независимости, 65/17, Минск, 220113, Беларусь e-mail: kyumashev@bntu.by

В настоящей данной работе исследуется кинетика затухания люминесценции наноструктурированных порошков иттрий-алюминиевого и лютеций-алюминиевого гранатов и алюмината гадолиния. активированных ионами европия, синтезированных методом экзотермического горения в растворах. Сочетание хороших механических и теплофизических свойств данных материалов с отличительными особенностями люминесцентных свойств иона европия делает их перспективными средами для применения в качестве люминофоров с люминесценцией в красной области спектра, в детектировании искажения кристаллической структуры материала, в термографической люминофорной термометрии. Достоинством метода экзотермического горения в растворах, с помощью которого синтезированы исследуемые в данной работе материалы, является сочетание простота и низкой стоимости с высоким структурным совершенством и однородностью синтезированных материалов [1]. Для исследуемых материалов ранее были исследованы спектры люминесценции и определены для них координаты цвета, которые находятся в оранжевой области спектра [2].

Из синтезированных порошков 10 ат. % Eu³⁺:GdAlO₃ (орторомбическая сингония, пространственная группа точечной симметрии P_{bnm}) и 20 ат.% Eu³⁺:Y₃Al₅O₁, 11 ат. % Eu³⁺:Lu₃Al₅O₁₂ (кубическая сингония, пространственная группа точечной симметрии *Ia3d*) после их соответствующей термообработки (прикаливания) приготавливались образцы в виде таблеток. Для образцов 10 ат. % Eu:GdAlO₃ средний радиус нанокристаллов составлял ~24 нм, а для 20 ат. % Eu³⁺:Y₃Al₅O₁₂ и 11 ат. % Eu³⁺:Lu₃Al₅O₁₂ – ~20 нм.

Возбуждение люминесценции осуществлялось на длине волны 0,355 мкм импульсами излучения третьей гармоники лазера на иттрий-алюминиевом гранате с неодимом с длительностью 20 нс. Люминесценция регистрировалась на длине волны 0,605 мкм, соответствующей переходу ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ иона европия Eu³⁺.

На рисунке 1 представлены кинетики затухания люминесценции для исходного (синтезированного) и прокаленных при температурах 800 °C и 1300 °C образцов 10 ат.% Eu:GdAlO₃.

Рисунок 1 – Кинетики затухания люминесценции исходного(*a*) и прокаленных при температурах 800 °C (*б*) и 1300 °C (*в*) образцов 10 ат. % Eu:GdAlO. Сплошные линии – аппроксимация экспериментальных данных двухэкспоненциальной функцией с помощью метода наименьших квадратов. Коэффициент детерминации *R*² = 0,9980 (*a*); 0,9914 (*б*); 0,9815(*в*)

Для всех образцов кинетика затухания не является моноэкспоненциальной и может быть описана двухэкспоненциальной функцией $I(t) = I_1(t) + I_2(t) = I_{10}\exp(-t/\tau_1) + I_{20}\exp(-t/\tau_2)$, где I(t) – интенсивность люминесценции. Для исходного образца времена быстрой и медленной компонент затухания составляют $\tau_1 = 0,2$ мс и $\tau_2 = 0,9$ мс. Для термообработанных образцов времена затухания τ_1 и τ_2 одинаковы и равны $\tau_1 = 0,3$ нс и $\tau_2 = 1,6$ мс. При этом относительный вклад быстрой компоненты затухания в общий общую интенсивность люминесценции [$I_1(t)dt/I(t)dt$] уменьшается при термообработке и составляет 14,9, 9,5 и 6,5 % соответственно для исходного и прокаленных при температурах 800 °C и 1300 °C образцов.

Быструю компоненту τ_1 затухания можно отнести к ионам европия, находящимся в аморфной фазе и дефектах кристаллической решетки, а медленную компоненту τ_2 затухания отнести к ионам европия в нанокристаллах GdAlO₃. Термообработка приводит к уменьшению доли аморфной фазы в образце, а также к снижению дефектности нанокристаллической фазы и, следовательно, к ослаблению безызлучательной релаксации, что проявляется в уменьшении вклада быстрой компоненты затухания (величины A_1) и возрастании времени τ_2 .

На рисунке 2 приведены кинетики затухания люминесценции для исходного и прокаленных при температурах 800 °C и 1300 °C образцов 20 ат. % Eu³⁺:Y₃Al₅O₁₂ и 11 ат.% Eu³⁺:Lu₃Al₅O₁₂.

Рисунок 2 – Кинетика затухания люминесценции исходного (*a*) и прокаленных при температурах 800 °C (*б*) и 1300 °C (*в*) образцов 20 ат. % Eu³⁺:Y₃Al₅O₁₂ и 11 ат. % Eu³⁺:Lu₃Al₅O₁₂. Сплошные линии – аппроксимация экспериментальных данных двухэкспоненциальной функцией с помощью метода наименьших квадратов. Коэффициент детерминации *R*² = 0,9769 и 0,9427(*a*); 0,9333 и 0,9741 (*б*); 0,9745 и 0,9970 (*в*)

Для образцов 20 ат. % Eu³⁺:Y₃Al₅O₁₂ и 11 ат. % Eu³⁺:Lu₃Al₅O₁₂, также, как и для 10 ат. % Eu:GdAlO, кинетика затухания люминесценции не является одноэкспоненциальной и может быть представлена в виде суммы двух экспонент быстрой и медленной с постоянными времени τ₁ и τ_2 . Для исходного образца $\tau_1 = 0.01$ мс $(Eu^{3+}:Y_3Al_5O_{12}), 0,02$ мс $(Eu^{3+}:Lu_3Al_5O_{12})$ и $\tau_2 = 0,2$ мс для обоих образцов. Быструю компоненту т₁ затухания можно связать с ионам европия в аморфной фазе и дефектах кристаллической решетки, а медленную компоненту $\tau_2 - c$ ионам европия в нанокристаллах. Термообработка приводит к увеличению времен затухания. При прокаливании при 800 °C времена $\tau_1 = 0,04$ мс $(Eu^{3+}:Y_3Al_5O_{12}), 0,14$ мс $(Eu^{3+}:Lu_3Al_5O_{12})$ и $\tau_2 = 0,5$ мс для обоих образцов. После прокаливания при 1300 °C: $\tau_1 = 0,14$ мс, $\tau_2 = 0,8$ мс (Eu³⁺:Y₃Al₅O₁₂) и $\tau_1 = 0,18$ мс, $\tau_2 = 0,9$ мс (Eu³⁺:Lu₃Al₅O₁₂). Относительный вклад быстрой компоненты затухания [$\int I_1(t)dt/\int I(t)dt$] после термообработки увеличивается с 3,0 % до 12,5 % (1300 °C) для Eu³⁺:Y₃Al₅O₁₂ и с 3,2 % до 23,1 % (1300 °C) для Eu³⁺:Lu₃Al₅O₁₂. Наблюдаемое увеличение при прокаливании образцов времени затухания люминесценции и относительного ее вклада для быстрой компоненты увеличивает немоноэкспоненциальный характер затухания и, вероятнее всего, связано с конкуренцией эффектов уменьшения доли аморфной фазы в образце и снижения дефектности нанокристаллической фазы с эффектом концентрационного тушения люминесценции.

Если затухание люминесценции не является моноэкспоненциальным, то в некоторых случаях интерес представляет ее средняя длительность. Исходя из математического определения среднего значения функции, средняя длительность люминесценции можно определить по формуле $\tau_{cp} = \int t I(t) dt / \int I(t) dt$. Следует отметить, что в случае моноэкспоненциального затухания значение τ_{cp} будет равно ее постоянной времени затухания. Для образца 10 ат. % Eu:GdAlO τ_{cp} составляет 0,8 мс для исходного и 1,3 мс для термообработанных образцов. Для образцов Eu³⁺:Y₃Al₅O₁₂ и Eu³⁺:Lu₃Al₅O₁₂ τ_{cp} одинаково и составляет 0,2 мс для исходного и 0,4 мс и 0,65 мс для прокаленных при температуре 800 °C и 1300 °C соответственно.

Литература

1. Chemistry – A European Journal / E. Carlos [et. al.]. – 2020 - Vol. 26 - P. 9099 - 9125.

2. Спектрально-люминесцентные свойства нанокристаллов иттрий(лютеций)-алюминиевого гранатов и алюмината гадолиния, активированных ионами европия / Юмашев К.В. [и др.] // Материалы 15-й Международной научно-технической конференции «Приборостроение – 2022, 16–18 ноября 2022 г., Минск, Республика Беларусь. – БНТУ, Минск. – С. 419–421.

УДК 535 012.2 621.373.826.038.82 ХАОТИЧЕСКИЕ И СТОХАСТИЧЕСКИЕ РЕЖИМЫ ГЕНЕРАЦИИ В ЛАЗЕРАХ С АНИЗОТРОПНЫМИ РЕЗОНАТОРАМИ Свирина Л.П.

Белорусский национальный технический университет Минск, Республика Беларусь

Аннотация. На основании экспериментально апробированных моделей проанализированы сценарии возникновения детерминированного хаоса, а также причины появления индуцированных шумом сложных хаотических и стохастических колебаний в лазерах класса A и класса B с анизотропными резонаторами при наличии линейной связи волн генерации. Установлено, что для сложной динамики в анизотропных лазерах с различными активными средами характерны следующие общие свойства: наличие асимметричного хаоса, локализованного в цилиндрическом фазовом пространстве и, вследствие инволютивной симметрии моделей, бистабильности таких аттракторов, а также индуцированных шумом стохастических колебаний, возникающих при рождении периодического режима вблизи порога генерации.

Ключевые слова: анизотропные лазеры с линейной связью, хаотические и стохастические колебания.

CHAOTIC AND STOCHASTIC OSCILLATIOS IN ANISOTROPIC-CAVITY LASERS Svirina L.P.

Belarusian National Technical University Minsk, Republic of Belarus

Abstract. On the basis of the experimentally tested models the routes to deterministic chaos and the reasons for the appearance of the noise-induced complicated chaotic and stochastic oscillations in anisotropic-cavity class A and class B lasers with linear coupling of the emitted waves have been elucidated. It has been shown that complicated dynamics of anisotropic-cavity lasers with different active media manifests the followings common features: localized in cylindrical phase space asymmetric chaos, and due to the involutive symmetry of the models, the bistability of such attractors, as well as noise-induced stochastic oscillations, arising when the Hopf bifurcation line comes closely to the lasing threshold.

Key words: anisotropic-cavity lasers with kinear coupling, deterministic and noise-induced chaos. *Адрес для переписки: Свирина Л.П., пр. Независимости, 65, г. Минск, 220113, Республика Беларусь*

e-mail:lpsvirina@bntu.by

Проведено обобщение полученных результатов с целью с целью создания представлений о механизмах формирования сложных (хаотических и стохастических) режимов генерации в анизотропных лазерах класса А и класса В с линейной связью генерируемых волн. Динамика генерации одномодового четырехчастотного кольцевого газового лазера (ЧКГЛ) подробно изучена в работе [1], где показано, что учет эллиптичности в условиях многомодовой генерации в зависимости от коэффициента линейной связи *r* приводит к возникновению сложных